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Abstract 

In this paper, a new method has been proposed to incorporate an extra parameter to a family of lifetime 

distributions for more flexibility. A special sub-case has been considered in details namely; two parameter 

Weibull distribution. Various mathematical properties of the proposed distribution, including explicit 

expressions for the moments, quantiles, moment generating function, residual life, mean residual life and order 

statistics are derived. The maximum likelihood estimators of unknown parameters cannot be obtained in explicit 

forms, and they have to be obtained by solving non-linear equations only. A simulation study is conducted to 

evaluate the performances of these estimators. For the illustrative purposes, two data sets have been analyzed to 

show how the proposed model work in practice. 

Keywords: Family of distributions; Alpha power transformation; Weibull distribution; Moments; Order 

statistic; Residual life function; Maximum likelihood estimation. 

1. Introduction 

Introducing an extra parameter to an existing family of distribution functions, is a well-known technique in the 

statistical distribution theory. Often adding an extra parameter brings more flexibility to a class of distribution 

functions, and it can be very useful for statistical modeling. For example, Marshal and Olkin (1997) introduced 

the Marshal-Olkin generated (MO-G) family by introducing an extra parameter to the weibull distributions to 

bring more flexibility to the Weibull model takes the following form  
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Mudholkar and Srivastava (1993) proposed a method to introduce an extra parameter to a two-

parameter Weibull distribution. The cumulative distribution function (cdf) of the Mudholkar and Srivastava 

(1993)’s proposed exponentiated Weibull (EW) model has the following form 
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The model (2) has two shape parameters and one scale parameter. Due to presence of an extra shape parameter, 

the proposed EW distribution is more flexible than the traditional two-parameter Weibull model.  

 Eugene et al. (2002) introduced the beta generated method that uses the beta distribution with 

parameters a and b as the generator to develop the beta generated distributions. The distribution of a beta-

generated random variable X is defined as 
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where r(t) is the probability density function (pdf) of a beta random variable and  ;F x   is the cdf of any 

random variable X.         
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 Alzaatreh et al. (2013) proposed a new method for generating families of continuous distributions 

called T-X family by replacing the beta pdf with a pdf, b(t), of a continuous random variable and applying a 

function   ;W F x  that satisfies some specific conditions. Other families belong to T-X family including: 

Gamma-G Type-1 of Zografos and Balakrishnan (2009), Gamma-G Type-2 of Risti´c and Balakrishnan (2012), 

Gamma-G Type-3 of Torabi and Montazeri (2012), McDonald-G (Mc-G) of Alexander et al. (2012), Logistic-G  

of Torabi and Montazeri (2014) and Logistic-X Family of Tahir et al. (2016). Recently Aljarrah et al. (2014) 

used quantile functions to generate T-X family of distributions.     

 Shaw and Buckley (2009) proposed another useful approach known as the quadratic rank transmutation 

map defined by 
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where λ is a transmuted parameter.        

 Cordeiro and de Castro (2010) proposed another prominent approach known as the Kumaraswamy-G 

(Ku-G) family of distributions by 
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where a> 0 and b> 0 are the additional shape parameters.      

 Mahdavi and Kundu (2017) proposed a method for introducing new lifetime distributions by the cdf 

given by 
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Using (1), Mahdavi and Kundu (2017) and Dey et al. (2017) introduced the alpha power exponential (APE) and  

alpha power transformedWeibull (APTW) distributions, respectively.     

 Elbatal et al. (2018) proposed a new power transformation to extend the existing distributions. The 

distribution function of the Elbatal et al. (2018)’s new alpha power transformed family of distributions is given 

by   
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Using  ;F x  as the cdf of the Weibull model, Elbatal et al. (2018) proposed a three-parameter extension of the 

Weibull model.          

 Recently, Ahmad (2018) proposed a new family of life distributions, called the Zubair-G family by the 

cdf 
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For more survey about methods to generating distributions see Lee et al. (2013) and Jones (2015). The key aim 

of this research is to introduce an extra parameter to a family of lifeimte distribution functions to bring more 

flexibility to the given family. We call this new method as a new extended alpha power transformation 

(NEAPT) method. The proposed APT method is very easy to use, hence it can be used quite effectively for data 

analysis purposes.          

 This rest of this article is organized as follows. In section 2, we define the proposed method. A special 

sub-model of the proposed family along with the graphical skecting of its pdf and cdf is discussed in section 3. 

Some mathematical properties are obtained in section 4. Maximu likelihood estimates of the model parameters 

are obtained in section 5. A simulation study is conducted in section 6. Section 7, is devoted to analyze two real 

life applications. Finally, concluding remarks are provided in section 8. 
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2. Proposed Method and Motivation 

In this section, we define the propose class, new extended alpha power transformed (NEAPT) family. Let

 ;F x  be the cdf of a continuous random variable X depending upon the vector parameter  
T

 , then the new 

extended alpha power transformation of  ;F x  for x , is defined as follows 
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where,  ;F x   is cdf of the baseline random variable depending on the vector parameter   and  is an 

additional parameter. The probability density function (pdf), survival function (sf), hazard rate function (hrf), 

reverse hazard rate function (rhrf) and cumulative hazard rate function (chrf) of the NEAPT family are given by 

(10)-(13), respectively. 
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The new pdf is most tractable when  F x   and  f x   have simple analytical expressions. Henceforth, a 

random variable X with pdf (10) is denoted by  ; ,EAPTX N x   . Furthermore, for the sake of simplicity, the 

dependence on the vector of the parameters is omitted and simply  G x =  ;G x   will be used. Moreover, 

the key motivations for using the NEAPT family in practice are the following: 

 A very simple and convienent method of adding additional parameters to modify the existing 

distributions. 

 To improve the characteristics and flexibility of the existing distributions. 

 To introduce the extended version of the baseline distribution having closed form for cdf, sf as well as 

hrf. 

  To provide better fits than the other modified models. 

3. Sub-Model Description 

Let X be the Weibull random variable with cdf ( ; ) 1 ,      0,  , 0xF x e x
      , where  ,   . Then, 

the cdf of the NEAPTW distribution has the following expression 
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The pdf, sf and hrf of the NEAPTW distribution are given, respectively, by 
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For different values of the model parameters, plots of the pdf of the NEAPTW distribution are sketched in 

Figure 1. 

 

 

 

 

 

Figure 1. Different plots for the pdf of the NEAPTW distribution. 

For the selected values of parameters, some possible shapes for the hrf of the NEAPTW model are drawn in 

Figure 2.   
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Figure 2. Different plots for the hrf of the NEAPTW distribution. 

4. Basic Mathematical Properties 

In this section, we derive some general properties of the new model, such as thequantile function, moments, 

moment generating function, residual, reverse residual life and order statistic.  

4.1. Quantile function 

Let X be the NEAPTW random variable with pdf (10), the quantile function of X, say Q(u), is given by 
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Hence, generating random numbers form the NEAPT distributions can be done by setting X = Q(U), where U 

follows the standard uniform distribution. 

4.2. Moments 

Moments are very important and helps to describe the important characteristics of the distribution (e.g., central 

tendency, dispersion, skewness and kurtosis). The rth moment of the NEAPT family of distributions are derived 

as follows 
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Furthermore, a general expression for moment generating function (mgf) of the NEAPT random variable X is  
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4.3. Residual and Reverse Residual Life 

The residual life offer wider applications in reliability theory and risk management. The residual lifetime of 

NEAPT random variable X denoted by  t
R is derived as 
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Additionally, the reverse residual lifetime of the NEAPT random variable denoted by  t
R is  
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4.4. Order statistics 

Let X1, X2, . . . , Xk be a random sample of size k taken independently from the NEAPT distribution with 

parameters and . Let X1:k, X2:k, . . . , Xk:k be the corresponding order statistics. Then, from David (1981), the 

density of Xr:k for (r=1, 2, . . . , k) is gi ven by 
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Using (21) and (22), in (23), we get the density of the rth order statistic. 

5. Estimation 

In this section, the maximum likelihood estimators of the parameters and  of NEAPT family from 

complete samples are derived. Let X1, X2, . . . , Xk be a simple random sample from NEAPT family with 

observed values x1, x2, . . . , xk. The log-likelihood function of this sample is 
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Obtaining the partial derivatives of (24), we get 
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simultaneously, yields the maximum likelihood estimates (MLEs) of    . 

6. Simulation Study 

In this section, we assess the performance of the maximum likelihood estimators in terms of the sample size n.  

A numerical evaluation is carried out to examine the performance of maximum likelihood estimators for 

NEAPTW model (as particular case from the family). The evaluation of estimates is performed based on the 

following quantities for each sample size; the Biases and the empirical man square errors (MSEs) using the 

Mathematic package. The numerical steps are listed as follows: 

1. A random sample X1, X2, . . . , Xn of sizes; n=30 and 50 are considered, these random samples are 

generated from the NEAPTW distribution by using  inversion method. 

2. Six set of the parameters are considered. The MLEs of NEAPTW model are evaluated for each 

parameter value and for each sample size. 

3. 3000 repetitions are made to calculate the Biases and mean square error (MSE) of these estimators. 

4. Formulas used for calculating bias and MSE are given by    
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5. Step (iii) is also repeated for the other parameters  ,  . 

Empirical results are reported in Table (1). We can detect from these tables that the estimates are quite stable 

and are close to the true value of the parameters as the sample sizes increase.  

 

Table (1): Simulation Results: MLEs, Biases and MSEs 

 

n 

 

Parameters 
Set 1 (  =0.5, =0.5, =0.5)    Set 2 (  =0.5, =0.5, =1)    

MLE Bias MSE MLE Bias MSE 

30 
  0.3173 -0.1827 0.0400 0.3458 -0.1542 0.0395 

  0.5775 0.0775 0.1840 0.6468 0.1468 0.1472 

  1.4039 0.9039 1.0334 3.3607 2.3607 6.1295 

50 
  0.4214 -0.0786 0.0107 0.3923 -0.1077 0.0271 
  0.5690 0.0690 0.0187 0.6522 0.1522 0.1021 

  0.9435 0.4435 0.2094 2.0076 1.0076 1.6355 
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Continued of  Table (1) 

 

 

n 

 

Parameter 
Set 3 (  =0.5, =0.5, =0.2)    Set 4 (  =0.5, =1, =0.5)    

MLE Bias MSE MLE Bias MSE 

30 

  0.4139 -0.0861 0.0080 0.3788 -0.1212 0.0149 

  0.3796 -0.1204 0.0206 0.9839 -0.0161 0.0113 

  1.1505 0.9505 0.9371 1.7008 1.2008 1.4631 

50 

  0.5453 0.0453 0.0052 0.4526 -0.0474 0.0024 

  0.3656 -0.1344 0.0193 0.9933 -0.0067 0.0064 

  0.7862 0.5862 0.4112 1.0624 0.5624 0.3292 

 

 

Continued of  Table (1) 

 

 

n 

 

Parameter 
Set 3 (  =0.5, =1.5, =0.5)    Set 4 (  =0.5, =2, =0.5)    

MLE Bias MSE MLE Bias MSE 

30 
  0.3823 -0.1177 0.0140 0.3835 -0.1165 0.0138 

  1.4461 -0.0539 0.0216 2.0013 0.0013 0.0636 

  1.6326 1.1326 1.3134 1.7260 1.2260 1.5385 

50 
  0.4600 -0.0400 0.0018 0.4526 -0.0474 0.0027 

  1.4300 -0.0700 0.0174 1.9423 -0.0577 0.0138 

  0.9927 0.4927 0.2490 1.0227 0.5227 0.2860 

 

Continued of  Table (1) 

 

 

n 

 

Parameter 
Set 3 (  =1, =0.5, =0.5)    Set 4 (  =0.7, =0.5, =0.5)    

MLE Bias MSE MLE Bias MSE 

30 
  0.3805 -0.6195 0.3854 0.3617 -0.3383 0.1185 

  0.5353 0.0353 0.0193 0.5744 0.0744 0.0362 

  1.3352 0.8352 0.8101 1.4132 0.9132 0.9261 

50 
  0.4796 -0.5204 0.2709 0.4819 -0.2181 0.0482 

  0.5005 0.0005 0.0028 0.4916 -0.0084 0.0012 

  0.8493 0.3493 0.1277 0.9416 0.4416 0.2124 

 

7. Applications 

To prove the flexibility of the proposed family two applications to real data sets are analyzed. The goodness of 

fits of the NEAPTW distribution have been compared with the other lifetime models such as exponentiated 

Weibull, Marshall-Olkin Weibull and Kumaraswamy Weibull distributions. The distibutions functions of the 

competing distribution are as: 

 The exponentiated Weibull is given by 

   , , , 1 ,                         , , , 0.
a

xG x a e x a
       

 The Marshall-Olkin Weibull is 

 
 

   

1
; ,       

1

     .

11
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x

a
x

e
xG

e









   








 

   

 








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 The Kumaraswsamy Weibull i given by 

   , , , , 1 1 1 ,                         , , , , 0.

b
a

xG x a b e x a b
    

     
 

 

The analytical measures of goodness of fit including the Akaike information criterion (AIC), consistent Akaike 

information criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion 

(HQIC) and Kolmogorov-Smirnov (KS) statistic are considered to compare the proposed method with the other 

fitted models. In general, a model with smaller values of these analytical measure indicate better fit to the data. 

All the required computations have been carried out in the R-language using “SANN” algorithm. 

Data 1: The data set represents survival times of guinea pigs injected with the different amount of tubercle 

bacilli studied by Bjerkedal (1960), see appendix A. The MLEs and the considered statistics are shown in Tables 

2 and 3, respectively. 

Table 2. Maximum likelihood estimates of the fitted distributions using data 1. 

 

Table 3. The statistics of the fitted models using data 1. 

 

Corresponding to data 1, the estimated pdf and cdf are provided in Figure 3, the PP plot and Kaplan Meier 

survival plot are sketched in Figure 4, whereas, the estimated hazard function and scale-TTT are given in Figure 

5.  

Dist. ̂  ̂  ̂  ̂  â  b̂  

NEAPTW 0.017 0.074 1.989    

MOW  0.210 0.698 1.770   

EW  0.708 1.171  1.994  

Ku-W  0.641 1.062  2.310 1.432 

Dist. KS AIC BIC CIAC HQIC 

NEAPTW 0.094 209.53 216.36 209.88 212.25 

MOW 0.106 213.45 220.28 213.80 216.17 

EW 0.100 211.62 218.45 211.97 214.341 

Ku-W 0.097 213.63 222.73 214.22 217.25 
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Figure 3. Plots of the estimated pdf and cdf of the NEAPTW distribution corresponding to data 1. 

 

 

 

 

 

 

Figure 4. PP and Kaplan-Meir survival plots of the NEAPTW distribution corresponding to data 1. 
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Figure 5. Scale TTT-transform plot and estimated hazard rate plot of the NEAPTW distribution corresponding 

to data 1. 

Data 2: The second data set representing the remission times (in months) of a random sample of 128 bladder 

cancer patients taken from Lee and Wang (2003), see appendix A. The MLEs and the considered statistics are 

shown in Tables 4 and 5, respectively.  

Table 4.  Maximum likelihood estimates of the fitted distributions using data 2. 

 

Table 5. Analytical measures of the fitted distributions using data 2. 

 

Corresponding to data 1, the estimated pdf and cdf are proved in Figure 6, the PP plot and Kaplan Meier 

survival plot are sketched in Figure 7, whereas, the estimated hazard function and scale-TTT are given in Figure 

8. 

 

 

Dist. ̂  ̂  ̂  ̂  â  b̂  

NEAPTW 6.984 0.901 0.511    

MOW  0.877 0.564 11.829   

EW  0.720 0.541  4.332  

Ku-W  0.487 0.520  3.712 1.988 

Dist. KS AIC BIC CIAC HQIC 

NEAPTW 0.034 825.58 834.14 825.78 829.06 

MOW 0.075 834.98 843.54 835.18 838.46 

EW 0.046 828.21 836.77 828.41 831.69 

Ku-W 0.041 829.20 840.61 829.53 833.84 
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Figure 6. Plots of the estimated pdf and cdf of the NEAPTW distribution for data 2. 

 

 

 

 

 

 

 

Figure 7. PP and Kaplan-Meir survival plots of the NEAPTW distribution for data 2. 
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Figure 8. Scale TTT-transform plot and estimated hazard rate plot of the NEAPTW distribution for data 2. 

8. Conclusions 

In this article, a new method is adopted to add an additional parameter to the existing distributions. This effort 

leads to a new family of lifetime distributions, called the NEAPT family of distributions.  General expressions 

for some of mathematical properties of the new family are derived. The estimation of the of model parameters 

through maximum likelihood method is discussed and a simulation study is carried out. There are certain 

advantages of using the proposed method like its cdf has a closed form solution and facilitating data modeling 

with monotonic and non-monotonic failure rates. A special sub-model of the new family, called NEAPTW 

distribution is considered and two real applications are analyzed. The practical applications of the proposed 

model reveal better fits to real-life data than the other well-known existing distributions. 
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Appendix 

Availability of data and material 

The idea of the power transformation has been used to propose the new family of distributions. 

Data 1: The first data set taken from Bjerkedal (1960) as follows: 0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 

0.92, 0.93, 0.96, 1, 1, 1.02, 1.05, 1.07, 07, 0.08, 1.08, 1.08, 1.09, 1.12, 1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 

1.24, 1.3, 1.34, 1.36, 1.39, 1.44, 1.46, 1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 1.76, 1.83, 1.95, 1.96, 1.97, 

2.02, 2.13, 2.15, 2.16, 2.22, 2.3, 2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 3.42, 3.47, 3.61, 4.02, 

4.32, 4.58, 5.55. 

Data 2: The second data set taken from Lee and Wang (2003) are as follows: 0.08, 0.20, 0.40, 0.50, 0.51, 0.81, 

0.90, 1.05, 1.19, 1.26, 1.35, 1.40, 1.46, 1.76, 2.02, 2.02, 2.07, 2.09, 2.23, 2.26, 2.46, 2.54, 2.62, 2.64, 2.69, 2.69, 

2.75, 2.83, 2.87, 3.02, 3.25, 3.31, 3.36, 3.36, 3.48, 3.52, 3.57, 3.64, 3.70, 3.82, 3.88, 4.18, 4.23, 4.26, 4.33, 4.34, 

4.40, 4.50, 4.51, 4.87, 4.98, 5.06, 5.09, 5.17, 5.32, 5.32, 5.34, 5.41, 5.41, 5.49, 5.62, 5.71, 5.85, 6.25, 6.54, 6.76, 

6.93, 6.94, 6.97, 7.09, 7.26, 7.28, 7.32, 7.39, 7.59, 7.62, 7.63, 7.66, 7.87, 7.93, 8.26, 8.37, 8.53, 8.65, 8.66, 9.02, 

9.22, 9.47, 9.74, 10.06, 10.34, 10.66, 10.75, 11.25, 11.64, 11.79, 11.98, 12.02, 12.03, 12.07, 12.63, 13.11, 13.29, 

13.80, 14.24, 14.76, 14.77, 14.83, 15.96, 16.62, 17.12, 17.14, 17.36, 18.10, 19.13, 20.28, 21.73, 22.69, 23.63, 

25.74, 25.82, 26.31, 32.15, 34.26, 36.66, 43.01, 46.12, 79.05. 


