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Abstract: We apply a recently developed computational approach test to the one-way
fixed effects ANOVA models of log-normal data with unequal variances. The merits of
the proposed test are numerically compared with the existing tests - the James second
order test, the Welch test and the Alexander-Govern test - with respect to their sizes
and powers in different combinations of parameters and various sample sizes. The sim-
ulation results demonstrate that the proposed method is satisfactory: its type I error
probability is very close to the nominal level. We illustrate these approaches using a
real example.
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1 Introduction

The skewed distributions are particularly common when mean values are small, vari-
ances are large and values cannot be negative (for example lengths of latent periods of
infectious diseases), and often closely fit the log-normal distribution. The log-normal
distribution has been widely used in medical, biological and economic studies, where
data are positive and have a right-skewed distribution. Various other motivations and
applications of the log-normal distribution can be found in Johnson et al. (1994) and
Crow and Shimizu (1987). Let X;;, i = 1,...,5 = 1,...,n;, k independent random
samples from log-normal distributions, i.e.

Yi; = log(Xi;) ~ N(us, 07).

Also, let ¢; = E(X;;) = exp(p; + 507) denotes the mean of the i-th population.

%

Suppose that we are interested in testing

Hy:p1=pa =" =g vS. H 4 : not all the ¢; are equal. (1)
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Then the testing problem (1) is equivalent to testing
Hy:m=n vS. H 4 : not all the 7; are equal. (2)

where n; = log(v;) = i + 2 o2, and 7 is unspecified.
It is well-known that the maximum likelihood estimators (MLEs) for y; and o} are
Y; and S2, respectively, where

B 1 n; 1 74 B
Y = fZ;Yij and  §? = n:Zl% - 7). 3)
J= J=

Therefore, the MLE of n; is given by 7; = fi; + % &2 which is distributed approximately

4
normal with the mean 7; and variance v; = ; + %
K3

Drawing inferences in the mean or the log-transformed mean on the log-normal
population is an interesting topic. Guo and Luh (2000) applied the James (1951)
second order test, the Welch (1951) test and the Alexander and Govern (1994) test to
hypothesis testing in (1). They showed that the actual sizes of these methods are better
than conventional F test for log-transformed data and F test for original data. In this
paper, we first review these methods, and then we apply the computational approach
test (CAT) for testing (1). The CAT was introduced by Pal et al. (2007), generally
for testing about parameters. This approach has been applied to several problems:
Chang and Pal (2008) applied the CAT for the well-known Behrens—Fisher problem.
This approach is also used for testing equality of means of several normal populations
by Chang et al. (2010) when the variances are equal, and by Gokpmar and Gékpinar
(2012) when the variances are unequal.

The advantage of the CAT is that, after adopting a suitable parametric model
for a given dataset the researcher can draw statistical inferences through a series of
computational steps and does not need to know the sufficient statistics involved, the
sampling distribution of the test statistic or how to get the critical value of the test
statistic.

For testing the equality of means of several lognormal populations, our simulation
studies show that the CAT has a type I error probability very close to the nominal
level. However, the other methods are more liberal even for large samples. Only, the
actual sizes of the James, Welch and Alexander- Govern tests are close to the nominal
level where 02’s are close to each other.

This paper is organized as follows: In Section 2, we first review the proposed
approaches by Guo and Luh (2000) for testing the equality of log-normal means. Then,
we apply our method for this problem. We compare the proposed method with the
other methods by some simulated data sets and a real data example in Section 3.
Finally, some concluding remarks are given in Section 4.

2 The methods

Guo and Luh (2000) defined the sample ¢ statistic for the i-th sample as

2
¢W(Y+(@SD w), i=1, .k,
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where

S? n;%S} 1 1 k - n;S?
wi_((ni—l)+2(ni—1)3> ’ w_azizlwi <Yi+2(ni—l)>7

and Q = Zle w; Using the statistic T;, they proposed three methods for testing
equality means in log-normal distributions.

2.1 Welch method

The Welch test statistic for testing (1) is

Y, T2
(G+1)(k—1)

w =

where .
_ _ 2 _ 1)1 — s 2 -
G=2k-2)0* =17 Y (- wi/Q) [ (ni 1),
Therefore, Hy is rejected if W > F,(k — 1, 7) where

-1

S e Sy

and F,(k —1,7) is 100(1 — «) percentile of the F distribution with k-1 and 7 degrees
of freedom.

2.2 Alexander- Govern method

The Alexander- Govern test statistic for testing (1) is

k
AG = Z 72
=1

where Z = C; + (C? + 301')/%' — D, /E;

Ai =nNn; — 15, a; = 481412, Cz = \/Az log(l + T’ZQ/(?’I,Z — 1)),

D; = 4CT +33C? +855C;,  E; = 10a? + 8a;C + 1000a;.
Therefore, Hy is rejected if AG > x2(k — 1) where x2(k — 1) is 100(1 — ) percentile

of the chi-square distribution with k-1 degrees of freedom.

2.3 James second order method

The James test statistic for testing (1) is

7= Zf:l T;.
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Therefore, Hy is rejected if W > ¢ where,

=g +05(3Ci+Co) Y (1-wi/Q) [(ni— 1))

+(1/16)(3Cs + C2)*(1 — (k — 3)/61){Zf:1 ((1- wi/Q)Q/(m - 1))

+ (1/2)(3Cy + C2){(8Ra3 — 10Ryy + 4Ro1 — 6R2, + 8R1o Ry

—4R?)) + (2Ra3 — ARoo + 2Ryt — 2R3, + 4R12R11 — 2RY))

x (Cy —1)(1/4)(—=R2, + 4R12R11 — 2R12R10 — 4R3, Ryo — R%))(3Cy — 205 — 1)}
+ (Ra3 — 3Raz + 3Ra1 — Ra0)(5Cs + 204 + Ca) + (3/16)(R3, — 4Ry3

+ 6Rgy — 4R15 + Ra0)(35Cs + 15Cs + 9Cy + 5C5) + (1/16)(—2R22 + 4R1o

— Rgo +2R12R19 — 4Ry1 Rig + R3))(9Cs — 3Cs — 5Cy — Cy)

+ (1/4)(=Rga + R?))(27Cs 4 3Cs + Cy 4 C3)

+ (1/4)(Ra3 — R12R11)(45Cs + 9Cs + 7Cy + 3Cy),

and for any positive integers a and b,

a

_ q
Rab = Qb Zz 1 n-_1 Cra = (k—1)(k+1)....(k +2a —3)’

and ¢ = x2(k — 1).

2.4 The CAT

Pal et al. (2007) introduced the CAT in a general setup. Suppose X1, Xo,..., X,
is a random sample from a population with the known density function f(z|\) with
A = (0,v) , where 6 is the parameter of interest and 1 is the nuisance parameter. To
test Hy : 0 = 6 against a suitable alternative H; at level «, the general methodology
of the CAT for testing is given through the following steps:

1) First obtain A = (,4) , the MLE of \.

2) Assume that Hy is true, i.e., set § = 6y. Then find the MLE of ¢ from the data.
Call this as the ‘restricted MLE’ of ¢ under Hy and denote by ¢ gz
3) Generate artificial sample Y7,Y3, ..., Y, from f(z|0y, ¥ rarr) & large number of times
(say, M times). For each of these replicated samples, recalculate the MLE of A\ = (6, %).
Retain only the component that is relevant for §. Let these recalculated MLE values
of 6 be 91,92,.. HM

4) Let 9(1 < 9 @2) <o < é(M) be the ordered values of é(z), 1<I< M.
5) (i) For testing Hy : 8 = 0y against H; : 6 < 0y, define 0, = é(aM). Reject Hy if
6 < 6y, and accept Hy otherwise. Alternatively, calculate the p-value as

1y
p:M;I(91<9).
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( i) For testing Hy : 6 = 0y against H;y : 0 > 6y, define Oy = é((l a)M)- Reject Hy if
6 >y and accept Hy otherwise. Alternatively, calculate the p-value as

1L
—MZI(91>9).
=1

(iii) For testing Hy : 6 = 6y against Hy : 6 # 6, define 0, = é((a) : and Oy =
—)M
2
9(( a) ; Reject Hg if 8 < 0 or 8 > Oy and accept Hp otherwise. Alternatively,
1-—)M
2
calculate the p-value as:

p= Qmin(pla 1 _p1)7

where p; = 47 Zf\il 1(6, < 0)
Now implement the CAT for testing the equality of several log-normal means. To apply
our proposed CAT, we first need to express Hy in term of a suitable scalar 6. Define

k k k %
0 — M Z l 122 - (Zi:l Zf)
al 1 . k 1 ’
im1 Vi o1 Vi Zi:l v
where 77 = (ZLI U%)’l Zf 1 2. It is seen that the hypothesis in (2) is equivalent to

HO:HZO vs Hj:0>0.

If we apply the steps of CAT, then we have the following steps for testing the equal-
ity of means of several log-normal distributions:
1) Obtain 1; = X; and 62 = 52, i=1,...,k and Calculate 6= h(fii; 63).
2) Assume that Hy in (2) is true, i.e., set p; = n— 02,1 < i < k. The likelihood func-

29>
tion (underHy) is a function of (1, 0%, ...,0%) only. The restricted MLEs of n, 0%, ..., or,)c
denoted by Ngrar, c?f(RML), i =1,...,k, are found using numerical methods, see Gill
(2004). Define fi(RML) = T(RML) — %Uf(RMLy
3) Generate artificial sample Y1, ...., Yi,, (= Yi, say) independent random sample from

N(fvirmry, 22(RML)) Repeat this process M times. In the I-th replication 1 <1 < M

based on Y( ) get the MLEs of y; and o2 by (3) and call them as ,uéz) and & A2( ) Then
recalculate 0 as 6y = h(ji (()lz), &gfl)).

4) Order the fo; values as 90(1 < 90(2 <...< 90(M
5) Let 0y = 80((1 Q)M) and reject Hy if 6 > 0U and accept Hy otherwise. Alternatively,
if the value p = 4; lel (6‘01 > HML) is smaller than the nominal level «, then reject
Hy.

3 Simulation studies and numerical example

In this section, first, a simulation study is performed to evaluate the size and power
properties of the CAT. This method is compared with the three methods provided by
Guo and Luh (2000). Then we provide a real data analysis for testing equality means
by our proposed method and existing methods.
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3.1 Simulation studies

We performed a simulation study in order to compare the actual sizes and powers of
the James, Welch, Alexander- Govern tests and CAT with M = 10, 000 replications for
testing equality of k log-normal distributions. For this purpose, the random samples
with size n; is generated from log-normal distribution with the parameters p; and o?
(i =1,...,k). We considered the cases k = 2,3,4,5,6 .

Guo and Luh (2000) in their simulation study considered six sample size patterns.
Also, they consider twelve designs were then totally crossed by the sample size pattern
which made 24 configurations. The number of their replications was 10,000. Their
simulation was for large sample sizes, but we also consider small sample sizes. We
consider the 24 configurations of their simulation and another designs and sample size
patterns, also the number of our replications is 20,000. For comparing the actual sizes,
the values are chosen such that the means of the log-normal distributions are equal.

We considered two cases for the common parameter 1 (logarithm of common log-
normal mean) for comparing actual sizes of the methods. The results of the actual
sizes for n = 2 are given in Table 1, and for n = 0.5 are given in Table 2. We conclude
that the CAT has a type I error probability very close to the nominal level for all cases.
However, the other methods are more liberal (type I error probability is larger than
the nominal level) even for large samples. Only, the actual sizes of the James, Welch
and Alexander- Govern tests are close to the nominal level when o2’s are close to each
other.

For power comparison, in the designs of equal variance, the mean value of the first
group is added 1. In addition, we consider other designs. The results are given in Table
3. Tt can conclude that the power of CAT can be as good as (if not better than) the
other methods when the 0?’s are close to each other. But the powers of James, Welch
and Alexander- Govern tests are larger than the power CAT.

3.2 A real example

In this section, we analyze pharmacokinetics data from alcohol interaction in men that
have been studied by Bradstreet and Liss (1995). This data also is analyzed by Tian
and Wu (2007). The summary statistics of the log-transformed data is presented in
Table 4. We are interesting to test the equality of means of the three groups.

The test statistics of the James, Welch and Alexander-Govern methods based on
the above data are given by 0.0668, 0.0329, and 0.0651, respectively. Also, their corre-
sponding critical values for o = 0.05 are 6.5368, 3.2213 and 5.9915. Also, the p-value
of the CAT based on the above data is 0.9698 with M=10,000. Therefore, none of the
tests rejects the hypothesis of equality of means for the three groups.
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Table 1: The actual sizes of the tests at nominal level 0.05 with common 7 = 2

Py eoy ke O'%,...,O'}% Niy...,Ng James | Welch | A-G CAT

1.5,-2.5 1,9 10,10 0.0891 | 0.0892 | 0.0887 | 0.0503
1.5,-2.5 1,9 15,10 0.0921 | 0.0921 | 0.0919 | 0.0491
1,-2 2,8 10,10 0.0774 | 0.0771 | 0.0752 | 0.0492
1,-2 2,8 15,10 0.0817 | 0.0820 | 0.0811 | 0.0498
1.5,1.5 1,1 30,30 0.0459 | 0.0459 | 0.0451 | 0.0498
1.5,1.5 1,1 40,20 0.0465 | 0.0465 | 0.0458 | 0.0502
1.5,0 1,4 30,30 0.0518 | 0.0518 | 0.0515 | 0.0481
1.5,0 1,4 40,20 0.0618 | 0.0619 | 0.0617 | 0.0504
1.5,-0.5 1,5 30,30 0.0546 | 0.0546 | 0.0541 | 0.0480
1.5,-0.5 1,5 40,20 0.0641 | 0.0642 | 0.0640 | 0.0500
1.5,-2.5 1,9 30,30 0.0611 | 0.0612 | 0.0611 | 0.0488
1.5,-2.5 1,9 40,20 0.0733 | 0.0733 | 0.0732 | 0.0498
0.5,0,-.0.5 1,2,3 10,10,10 0.0512 | 0.0510 | 0.0522 | 0.0461
0.5,0,-.0.5 1,2,3 15,10,10 0.0613 | 0.0614 | 0.0630 | 0.0468
2,-1.5,1 2,9,4 10,10,10 0.0751 | 0.0749 | 0.0735 | 0.0453
2,-1.5,1 2,9,4 15,10,10 0.0883 | 0.0887 | 0.0895 | 0.0474
0.5,0,-0.5,-1 1,2,3,4 10,10,10,10 0.0606 | 0.0614 | 0.0613 | 0.0389
0.5,0,-0.5,-1 1,2,3,4 15,10,10,15 0.0679 | 0.0688 | 0.0702 | 0.0457
1,0,-2.5,-0.5 2,4,9,5 10,10,10,10 0.0692 | 0.0702 | 0.0707 | 0.0417
1,0,-2.5,-0.5 2,4,9,5 15,10,10,15 0.0796 | 0.0806 | 0.0798 | 0.0453
1.5,1.5,1.5,1.5 1,1,1,1 30,30,30,30 0.0442 | 0.0442 | 0.0442 | 0.0467
1.5,1.5,1.5,1.5 11,11 45,35,25,15 0.0494 | 0.0498 | 0.0500 | 0.0493
1.5,1.5,1.5,0 11,14 30,30,30,30 0.0515 | 0.0516 | 0.0512 | 0.0463
1.5,1.5,1.5,0 1,1,14 45,35,25,15 0.0651 | 0.0655 | 0.0630 | 0.0481
1.5,1.5,1.5,-0.5 1,1,1,5 30,30,30,30 0.0561 | 0.0561 | 0.0556 | 0.0503
1.5,1.5,1.5,-0.5 1,1,1,5 45,35,25,15 0.0659 | 0.0666 | 0.0646 | 0.0491
1.5,1.5,1.5,-2.5 1,1,1,9 30,30,30,30 0.0604 | 0.0605 | 0.0600 | 0.0487
1.5,1.5,1.5,-2.5 1,1,1,9 45,35,25,15 0.0746 | 0.0752 | 0.0715 | 0.0500
0.5,0,-0.5,-1,-1.5 1,2,3,4,5 10,10,10,10,10 0.0742 | 0.0764 | 0.0742 | 0.0394
0.5,0,-0.5,-1,-1.5 1,2,3,4,5 15,15,10,10,15 0.0824 | 0.0842 | 0.0816 | 0.0491
1,0,0.25,-0.5,-2.5 2,4,3.5,5,9 10,10,10,10,10 0.0677 | 0.0698 | 0.0696 | 0.0381
1,0,0.25,-0.5,-2.5 2,4,3.5,5,9 15,15,10,10,15 0.0725 | 0.0741 | 0.0750 | 0.0440
1,1,05,2.51,1 22,5922 | 10,10,10,10,10,10 | 0.0725 | 0.0743 | 0.0706 | 0.0413
1,1,-0.5,-2.5,1,1 2,2,5,9,2,2 15,10,15,10,15,10 | 0.0737 | 0.0766 | 0.0727 | 0.0459
1,0,-0.5,-2.5,0.25,1 2,4,5,9,3.5,2 | 10,10,10,10,10,10 | 0.0693 | 0.0724 | 0.0703 | 0.0366
1,0,-0.5,-2.5,0.25,1 2,4,5,9,3.5,2 | 15,10,15,10,15,10 | 0.0711 | 0.0736 | 0.0709 | 0.0400
1.5,1.5,1.5,1.5,1.5,1.5 1,1,1,1,1,1 30,30,30,30,30,30 | 0.0474 | 0.0481 | 0.0479 | 0.0488
1.5,1.5,1.5,1.5,1.5,1.5 1,1,1,1,1,1 45,35,35,25,25,15 | 0.0525 | 0.0534 | 0.0532 | 0.0508
1.5,1.5,1.5,1.5,1.5,0 1,1,1,1,14 30,30,30,30,30,30 | 0.0550 | 0.0554 | 0.0553 | 0.0500
1.5,1.5,1.5,1.5,1.5,0 1,1,1,1,14 45,35,35,25,25,15 | 0.0623 | 0.0630 | 0.0598 | 0.0492
1.5,1.5,1.5,1.5,1.5,-0.5 | 1,1,1,1,1,5 30,30,30,30,30,30 | 0.0552 | 0.0558 | 0.0549 | 0.0485
1.5,1.5,1.5,1.5,1.5,-0.5 | 1,1,1,1,1,5 45,35,35,25,25,15 | 0.0658 | 0.0667 | 0.0624 | 0.0486
1.5,1.5,1.5,1.5,15-2.5 | 1,1,1,1,1,9 | 30,30,30,30,30,30 | 0.0554 | 0.0558 | 0.0553 | 0.0459
1.5,15,1.5,1515-25 | 1,1,1,1,1,9 | 45,35,35,25,25,15 | 0.0717 | 0.0730 | 0.0682 | 0.0488
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Table 2: The actual sizes of the tests at nominal level 0.05 with common 7 = 0.5

Ky eny Mk O‘%,...,O‘i N1y, N James | Welch | A-G CAT

0,-4 1,9 10,10 0.0865 | 0.0871 | 0.0870 | 0.0489
0,-4 1,9 15,10 0.0905 | 0.0908 | 0.0907 | 0.0506
-0.5,-3.5 2,8 10,10 0.0748 | 0.0763 | 0.0770 | 0.0503
-0.5,-3.5 2,8 15,10 0.0850 | 0.0859 | 0.0856 | 0.0513
0,0 1,1 30,30 0.0437 | 0.0446 | 0.0448 | 0.0483
0,0 1,1 40,20 0.0444 | 0.0455 | 0.0456 | 0.0478
0,-1.5 1,4 30,30 0.0531 | 0.0532 | 0.0532 | 0.0496
0,-1.5 1,4 40,20 0.0593 | 0.0595 | 0.0595 | 0.0484
0,-2 1,5 30,30 0.0569 | 0.0571 | 0.0571 | 0.0505
0,-2 1,5 40,20 0.0675 | 0.0677 | 0.0676 | 0.0513
0,-4 1,9 30,30 0.0627 | 0.0628 | 0.0627 | 0.0483
0,-4 1,9 40,20 0.0723 | 0.0724 | 0.0723 | 0.0507
0,-0.5,-1 1,2,3 10,10,10 0.0547 | 0.0536 | 0.0540 | 0.0451
0,-0.5,-1 1,2,3 15,10,10 0.0648 | 0.0632 | 0.0627 | 0.0480
-0.5,-4,-1.5 2,9,4 10,10,10 0.0677 | 0.0692 | 0.0694 | 0.0435
-0.5,-4,-1.5 2,9,4 15,10,10 0.0868 | 0.0870 | 0.0864 | 0.0472
0,-0.5,-1,-1.5 1,2,3,4 10,10,10,10 0.0606 | 0.0602 | 0.0594 | 0.0429
0,-0.5,-1,-1.5 1,2,3,4 15,10,10,15 0.0694 | 0.0674 | 0.0664 | 0.0455
-0.5,-1.5,-4,-2 2,4,9,5 10,10,10,10 0.0682 | 0.0683 | 0.0678 | 0.0414
-0.5,-1.5,-4,-2 2,4,9,5 15,10,10,15 0.0825 | 0.0817 | 0.0809 | 0.0465
0,0,0,0 1,1,1,1 30,30,30,30 0.0447 | 0.0449 | 0.0449 | 0.0468
0,0,0,0 1,11 15,35,25,15 0.0486 | 0.0485 | 0.0482 | 0.0485
0,0,0,-1.5 11,14 30,30,30,30 0.0504 | 0.0507 | 0.0505 | 0.0462
0,0,0,-1.5 1,1,1,4 45,35,25,15 0.0645 | 0.0668 | 0.0661 | 0.0500
0,0,0,-2 1,1,1,5 30,30,30,30 0.0574 | 0.0582 | 0.0580 | 0.0506
0,0,0,-2 1,1,1,5 45,35,25,15 0.0655 | 0.0687 | 0.0682 | 0.0505
0,0,0,-4 1,1,1,9 30,30,30,30 0.0605 | 0.0620 | 0.0619 | 0.0506
0,0,0,-4 1,1,1,9 45,35,25,15 0.0704 | 0.0746 | 0.0740 | 0.0486
0,-0.5,-1,-1.5,-2 1,2,3,4,5 10,10,10,10,10 0.0694 | 0.0718 | 0.0692 | 0.0405
0,-0.5,-1,-1.5,-2 1,2,3,4,5 15,15,10,10,15 0.0784 | 0.0794 | 0.0773 | 0.0469
-0.5,-1.5,-1.25,-2,-4 2,4,3.5,5,9 10,10,10,10,10 0.0682 | 0.0693 | 0.0674 | 0.0428
-0.5,-1.5,-1.25,-2,-4 2,4,3.5,5,9 15,15,10,10,15 0.0728 | 0.0724 | 0.0710 | 0.0446
20.5,-05,2-4-05-05 | 2,2,5,9,2,2 | 10,10,10,10,10,10 | 0.0714 | 0.0761 | 0.0730 | 0.0434
-0.5,-0.5,-2,-4,-0.5,-0.5 2,2,5,9,2,2 15,10,15,10,15,10 | 0.0707 | 0.0752 | 0.0726 | 0.0440
-0.5,-1.5,-2,-4,-1.25,-0.5 | 2,4,5,9,3.5,2 | 10,10,10,10,10,10 | 0.0726 | 0.0737 | 0.0711 | 0.0394
-0.5,-1.5,-2,-4,-1.25,-0.5 | 2,4,5,9,3.5,2 | 15,10,15,10,15,10 | 0.0764 | 0.0804 | 0.0778 | 0.0468
0,0,0,0,0,0 1,1,1,1,1,1 30,30,30,30,30,30 | 0.0478 | 0.0477 | 0.0474 | 0.0486
0,0,0,0,0,0 1,1,1,1,1,1 45,35,35,25,25,15 | 0.0516 | 0.0522 | 0.0515 | 0.0497
0,0,0,0,0,-1.5 1,1,1,1,1,4 30,30,30,30,30,30 | 0.0524 | 0.0526 | 0.0524 | 0.0471
0,0,0,0,0,-1.5 1,1,1,1,1,4 45,35,35,25,25,15 | 0.0608 | 0.0643 | 0.0633 | 0.0498
0,0,0,0,0,-2 1,1,1,1,1,5 30,30,30,30,30,30 | 0.0525 | 0.0531 | 0.0527 | 0.0471
0,0,0,0,0,-2 1,1,1,1,1,5 45,35,35,25,25,15 | 0.0603 | 0.0642 | 0.0632 | 0.0491
0,0,0,0,0,-4 1,1,1,1,1,9 | 30,30,30,30,30,30 | 0.0584 | 0.0588 | 0.0583 | 0.0474
0,0,0,0,0,-4 11,1,1,1,9 | 45,35,35,25,25,15 | 0.0692 | 0.0749 | 0.0737 | 0.0501
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Table 3: Empirical powers of the tests
Ky Uk U%,...,O‘i N1yeeny Nk James | Welch | A-G CAT
2.5,1.5 1,1 10,10 0.3902 | 0.3869 | 0.3770 | 0.3982
2.5,1.5 1,1 15,10 0.482510.4810| 0.4741|0.4619
2.5,1.5 1,1 30,30 0.8679 | 0.8677 | 0.8666 | 0.8769
2.5,1.5 1,1 40,20 0.7926 | 0.7930 | 0.7911 | 0.7921
1.5,1.5 0.5,1 15,10 0.0433 | 0.0437| 0.0418 | 0.0488
1.5,1.5 0.5,1 30,30 0.1270]0.1271 | 0.1258 | 0.1285
1,-4 1,9 10,10 0.1581 | 0.1587 | 0.1586 | 0.0900
1,-4 1,9 15,10 0.1682 ] 0.1683 | 0.1682 | 0.0964
1,-4 1,9 30,30 0.1862]0.1863 | 0.1863 | 0.1532
0.5,-3.5 2,8 10,10 0.1508 | 0.1527| 0.1530 | 0.0970
05,35 28 15,10 0.1554 | 0.1565 | 0.1562 | 0.0945
0.5,-3.5 2,8 30,30 0.1904 1 0.1912| 0.1911 | 0.1653
21,2 1.51,2 15,10,10 0.4866 | 0.4864 | 0.4875 | 0.4906
2,1,2 1.5,1,2 30,30,30 0.9575|0.9575 | 0.9575 | 0.9619
1,-0.5,-1 1,2,3 10,10,10 0.3073 ] 0.3082| 0.3090 | 0.2225
1,-0.5,-1 1,2,3 15,10,10 0.3694 | 0.3622 | 0.3610 | 0.2524
0.5,-4,-1.5 2,94 10,10,10 0.1769 | 0.1783| 0.1780 | 0.0940
0.5,-4,-1.5 2,94 15,10,10 0.2249 | 0.2214 | 0.2202 | 0.1068
25151515 1,11 10,10,10,10 0.3654 | 0.3669 | 0.3462 | 0.3645
25151515 1,11 15,10,10,15 0.5352 | 0.5382 | 0.5424 | 0.5152
25,1.5,1515 11,1 30,30,30,30 0.92500.925 |0.9231 | 0.9296
2.5,1.5,1.5,1.5 1,1,1,1 45,35,25,15 0.9631]0.9633]0.9671 | 0.9583
1,0.75,0.5,1 1.51,1.4,1.2 15,10,10,15 0.1221]0.1231]0.1241 [0.1177
1,0.75,0.5,1 1.5,1,1.4,1.2 30,30,30,30 0.2369 | 0.2372 | 0.2369 | 0.2466
1,0,0,-2 1,1,1,5 10,10,10,10 0.3391 ] 0.3476 | 0.3449 | 0.2252
1,0,0,-2 1,1,1,5 30,30,30,30 0.8853 | 0.8866 | 0.8862 | 0.8637
1,0,0,-2 1,1,1,5 45,35,25,15 0.9488 | 0.9406 | 0.9393 | 0.8772
1,0,0,-2 1,1,1,5 10,10,10,10 0.3366 | 0.3485| 0.3451 | 0.2221
1,0,0,-4 1,1,1,9 30,30,30,30 0.8843|0.8844 | 0.8843 | 0.8438
1,0,0,-4 1,1,1,9 45,35,25,15 0.9464 | 0.9376 | 0.9369 | 0.8446
3,3.5,3.5,3,4 1.5,1,1.75,1.25,2 | 15,15,10,10,15 0.3005 | 0.3065 | 0.3101 | 0.2864
3,3.5,3.5,3,4 1.5,1,1.75,1.25,2 | 30,30,30,30,30 | 0.7647 | 0.7652 | 0.7588 | 0.7728
0.5,-0.5,2,-4,-0.5,-0.5 |2,2,5,9,2,2 10,10,10,10,10,10 | 0.1494 | 0.1586 | 0.1517 | 0.0789
0.5,-0.5,2,-4,-0.5,-0.5 |2,2,5,9,2,2 15,10,15,10,15,10 | 0.2131 | 0.2142 | 0.2069 | 0.1009
0.5,-1.5,-2,-4,-1.25,-0.5 | 2,4,5,9,3.5,2 10,10,10,10,10,10 { 0.1663 | 0.1732 | 0.1670 | 0.0842
0.5,-1.5,-2,-4,-1.25,-0.5 | 2,4,5,9,3.5,2 15,10,15,10,15,10 | 0.2308 | 0.2307 | 0.2236 | 0.1093
2.5,1.5,1.5,1.5,1.5,1.5 |1,1,1,1,1,1 10,10,10,10,10,10 | 0.3179 | 0.3272] 0.2942 | 0.3125
2.5,1.5,1.5,1.5,1.5,1.5 |1,1,1,1,1,1 15,10,15,10,15,10 | 0.4878 | 0.4982| 0.4894 | 0.4654
2.5,1.5,1.5,1.5,1.5,1.5 |1,1,1,1,1,1 30,30,30,30,30,30 | 0.9159 | 0.9165 | 0.9056 | 0.9210
251515151515 |1,1,1,1,1,1 45,35,35,25,25,15 | 0.9775 | 0.0780 | 0.9792 | 0.9749
1,1,0,1.251,1.5 1.5,1,1.4,1.2,1.3,1| 15,10,15,10,15,10 | 0.3593 | 0.3666 | 0.3689 | 0.3503
1,1,01.251,15 1.5,1,1.4,1.2,1.3,1| 30,30,30,30,30,30 | 0.7906 | 0.7913 | 0.7862 | 0.7944
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Table 4: The summary statistics for log-transformed pharmacokinetics data

Group | n; Ui 52'2
1 22 | 2.601 | 0.24
2 22 | 2.596 | 0.20
3 22 1 2,599 | 0.17

4 Conclusions

In simulation study, we compared the performance of the James, Welch, Alexander-
Govern tests and CAT for one-way fixed effects ANOVA models of log-normal in terms
of actual size and empirical power. The actual size of the CAT is close to the nominal
level in all cases and usually is smaller than the actual size of other tests. In terms
of power, the CAT is satisfactory. In addition, the CAT without going through the
analytical derivation of the relevant test does the testing automatically.
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