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Abstract: In this paper, a new method has been proposed to introduce an extra pa-
rameter to a family of lifetime distributions for more flexibility. A special sub-case
has been considered in details namely; two parameters Weibull distribution. Various
mathematical properties of the proposed distribution, including explicit expressions or
the moments, quantile, moment generating function, residual life, mean residual life
and order statistics are derived. The maximum likelihood estimators of unknown pa-
rameters cannot be obtained in explicit forms, and they have to be obtained by solving
non-linear equations only. A simulation study is conducted to evaluate the perfor-
mances of these estimators. For the illustrative purposes, two data sets have been
analyzed to show how the proposed model work in practice.
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1 Introduction
Broadly speaking, classical distributions are widely used for modelling real life data
in several areas such as engineering, environmental, actuarial, and medical sciences,
biological studies, economics, finance and insurance. However, in many applied areas
such as lifetime analysis, engineering, finance and insurance, there is a clear need for
the extended versions of these classical distributions. Furthermore, in many practical
fields, classical distributions do not provide an adequate fit to real data. For instance,
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if the data are skewed, the normal distribution will not be a good candidate model and
vice verse. So, in such situations we need modified forms of the existing distributions.
In this regard, a serious attempt have been made that is quite rich and still growing
rapidly. After the massive work by Pearson (1895) for proposing statistical distribu-
tions via the system of differential equation approach, several general methods have
been introduced for generating family of lifetime distributions. Another prominent
approach based on differential equation was developed by Burr (1942). The quan-
tile method to develop new distributions of Hastings et al. (1947), Johnson (1949)
translation approach and Tukey (1960) are other milestone set in this credit. Since
1990, methodologies of generating new statistical distributions shifted to introduce ad-
ditional parameters to the existing distributions or combining existing distributions.
Often adding extra parameter(s) brings more flexibility to a class of distribution func-
tions, and it can be very useful for statistical modelling. For example, Marshal and
Olkin (1997) introduced the Marshal-Olkin generated (MO-G) family by introducing
an extra parameter to the Weibull distribution to bring more flexibility to the Weibull
model takes the following form

G (x;σ, ξ) =
F (x; ξ)

1− (1− σ) (1− F (x; ξ))
, σ, ξ > 0, x ∈ R. (1)

Mudholkar and Srivastava (1993) proposed another method to introduce an extra
parameter to a two-parameter Weibull distribution. The cumulative distribution func-
tion (cdf) of the Mudholkar and Srivastava (1993)’s proposed exponentiated Weibull
(EW) model has the following form

G (x; a, θ, γ) =
(
1− e−γxθ

)a
, x ≥ 0, a, θ, γ > 0. (2)

The model (2) has two shape parameters and one scale parameter. Due to the presence
of an extra shape parameter, the proposed EW distribution is more flexible than the
traditional two-parameter Weibull model. Eugene et al. (2002) introduced the beta
generated method that uses the beta distribution with parameters a and b as the
generator to develop the beta generated distributions. The distribution of a beta-
generated random variable X is defined as

G (x; a, b, ξ) =

∫ F (x;ξ)

0

r(t; a, b)dt, a, b, ξ > 0. (3)

where r(t) is the probability density function (pdf) of a beta random variable and
F (x; ξ) is the cdf of any random variable X. Alzaatreh et al. (2013) proposed another
prominent method for generating families of continuous distributions called T-X family
by replacing the beta pdf with a pdf, b(t), of a continuous random variable and applying
a function W {F (x; ξ)} that satisfies some specific conditions. Other families belong
to the T-X family including: Gamma-G Type-1 of Zografos and Balakrishnan (2009),
Gamma-G Type-2 of Risti´c and Balakrishnan (2012), Gamma-G Type-3 of Torabi
and Montazari (2012), McDonald-G (Mc-G) of Alexander et al. (2012), Logistic-G
of Torabi and Montazari (2014), Logistic-X Family of Tahir et al. (2016), and a
new Weibull-X family of Ahmad et al. (2018). Recently Aljarrah et al. (2014) used
quantile functions to generate T-X family of distributions. Shaw and Buckley (2009)
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proposed another useful approach known as the quadratic rank transmutation map
defined by

G (x;λ, ξ) = (1 + λ)F (x; ξ)− λF (x; ξ)
2

ξ > 0, |λ| ≤ 1, x ∈ R. (4)

where λ is a transmuted parameter. Cordeiro and deCastro (2011) proposed another
prominent approach known as the Kumaraswamy-G (Ku-G) family of distributions by

G (x; a, b, ξ) = 1− {1− (1− F (x; ξ)
a
)}b a, b, ξ > 0, x ∈ R. (5)

where a> 0 and b> 0 are the additional shape parameters. Mahdavi and Kundu (2017)
proposed a new method for introducing new lifetime distributions by the cdf given by

G (x;α, ξ) =
αF (x;ξ) − 1

α− 1
, α, ξ > 0, α ̸= 1, x ∈ R. (6)

Using (6), Mahdavi and Kundu (2017) and Dey et al. (2017) introduced the alpha
power exponential (APE) and alpha power transformed Weibull (APTW) distribution,
respectively. Elbatala et al. (2018) proposed a new power transformation to extend
the existing distributions. The distribution function of the Elbatala et al. (2018)’s
new alpha power transformed family of distributions is given by

G (x;α, ξ) =
F (x; ξ)αF (x;ξ)

α
, α, ξ > 0, α ̸= 1, x ∈ R. (7)

Using F (x; ξ) as the cdf of the Weibull model, Elbatala et al. (2018) proposed a three-
parameter new alpha power transformed Weibull (NAPTW) distribution. Recently,
Ahmad (2018) proposed a new family of lifetime distributions, called the Zubair-G
family by the cdf

G (x;α, ξ) =
eαF (x;ξ)2 − 1

eα − 1
, α, ξ > 0, x ∈ R. (8)

For more survey about methods to generating distributions see Lee et al. (2013) and
Jones (2015). The key aim of this research is to introduce an extra parameter to a
family of lifetime distribution functions to bring more flexibility to the given family. We
call this new method as a new extended alpha power transformation (NEAPT) method.
The proposed NEAPT method is very easy to deploy, hence it can be used quite
effectively for data analysis purposes. The rest of this article is organized as follows. In
Section 2, we define the proposed method. A special sub-model of the proposed family
along with the graphical sketching of its pdf and cdf is discussed in Section 3. Some
mathematical properties are obtained in Section 4. Maximum likelihood estimates of
the model parameters are obtained in Section 5. A simulation study is conducted in
Section 6. Section 7, is devoted to analyze two real life applications. Finally, concluding
remarks are provided in Section 8.

2 Proposed method and motivation
In this section, we define the propose class, a new extended alpha power transformed
family. Let F (x; ξ) be the cdf of a continuous random variable X depending upon the
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vector parameter (ξ)
T , then the new extended alpha power transformation of F (x; ξ)

for x ∈ R, is defined as follows

G (x;α, ξ) =
αF (x;ξ) − eαF (x;ξ)

α− eα
, α, ξ > 0, α ̸= e, x ∈ R, (9)

where,F (x; ξ) is cdf of the baseline random variable depending on the vector parameter
ξ and α is an additional parameter. The probability density function (pdf), survival
function (sf), hazard rate function (hrf), reverse hazard rate function (rhrf) and cumu-
lative hazard rate function (chrf) of the NEAPT family, respectively, are given by

g (x;α, ξ) =
f (x; ξ)

(
(logα)αF (x;ξ) − αeαF (x;ξ)

)
α− eα

, (10)

S (x;α, ξ) =
α− eα − αF (x;ξ) + eαF (x;ξ)

α− eα
, (11)

h (x;α, ξ) =
f (x; ξ)

(
(logα)αF (x;ξ) − αeαF (x;ξ)

)
α− eα − αF (x;ξ) + eαF (x;ξ)

, (12)

H (x;α, ξ) = − log

(
α− eα − αF (x;ξ) + eαF (x;ξ)

α− eα

)
. (13)

The new pdf is most tractable when F (x, ξ) and f (x, ξ) have simple analytical expres-
sions. Henceforth, a random variable X with pdf (10) is denoted byX ∼ NEAPT (x;α, ξ).
Furthermore, for the sake of simplicity, the dependence on the vector of the parameters
is omitted and simply G (x)= G (x;α, ξ) will be used. Moreover, the key motivations
for using the NEAPT family in practice are the following:

1. A very simple and convenient method of adding additional parameters to modify
the existing distributions.

2. To improve the characteristics and flexibility of the existing distributions.

3. To introduce the extended version of the baseline distribution having closed form
for cdf, sf as well as hrf.

4. To provide better fits than the other modified models.

3 Sub-model description

Let X be the Weibull random variable with cdf F (x; ξ) = 1−e−γxθ

, x ≥ 0, γ, θ > 0,
where ξ = (γ, θ). Then, the cdf of the new extended alpha power transformed Weibull
(NEAPTW) distribution has the following expression

G (x;α, ξ) =
α

(
1−e−γxθ

)
− e

α
(
1−e−γxθ

)
α− eα

, α, ξ > 0, α ̸= e, x ≥ 0, (14)
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The pdf, sf and hrf of the NEAPTW distribution are given, respectively, by

g (x;α, ξ) =
γθxθ−1e−γxθ

α− eα

(
(logα)α

(
1−e−γxθ

)
− αe

α
(
1−e−γxθ

))
, x ≥ 0, (15)

S (x;α, ξ) =
α− eα − α

(
1−e−γxθ

)
+ e

α
(
1−e−γxθ

)
α− eα

, x ≥ 0, (16)

h (x;α, ξ) =

γθxθ−1e−γxθ

(
(logα)α

(
1−e−γxθ

)
− αe

α
(
1−e−γxθ

))
α− eα − α(1−e−γxθ ) + eα(1−e−γxθ )

, x ≥ 0. (17)

For different values of the model parameters, plots for the pdf of the NEAPTW
distribution are sketched in Figure 1. For the selected values of parameters, some
possible shapes for the hrf of the NEAPTW model are drawn in Figure 2.

Figure 1: Different plots for the pdf of the NEAPTW distribution.

Figure 2: Different plots for the hrf of the NEAPTW distribution.

4 Basic mathematical properties
In this section, we derive some general properties of the new model, such as the quantile
function, moments, moment generating function, residual, reverse residual life and
order statistic.
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4.1 Quantile function
Let X be the NEAPTW random variable with pdf (10), then, the quantile function of
X is derived as

x = Q (u) = G−1 (u) = F−1 (t) , (18)

where t is the solution of the expression αt − log (αt − u (α− eα)), and u has the
uniform distribution on interval (0,1). The expression (18) does not have a closed
form, therefore, computer software can be used to obtain a closed form solution of the
quantile function.

4.2 Moments
Moments are very important and helps to describe the important characteristics of
the distribution (e.g., central tendency, dispersion, skewness and kurtosis). The rth
moment of the NEAPT family of distributions are derived as follows

µ/
r =

1

α− eα

(
(logα)

∫ ∞

−∞
xrf (x; ξ)αF (x;ξ)dx− α

∫ ∞

−∞
xrf (x; ξ) eαF (x;ξ)dx

)
. (19)

Using the series representation in the form αv =
∑∞

i=0
(logα)i

i! vi, so the expression (19)
can be re-write as

µ/
r =

1

α− eα

( ∞∑
i=0

(logα)
i+1

i!

∫ ∞

−∞
xrf (x; ξ)F (x; ξ)

i
dx

−
∞∑
i=0

αi+1

i!

∫ ∞

−∞
xrf (x; ξ)F (x; ξ)

i
dx

)
, (20)

=
1

α− eα

( ∞∑
i=0

(logα)
i+1

i!
ηr,i −

∞∑
i=0

αi+1

i!
ηr,i

)
,

where ηr,i =
∫∞
−∞ xrf (x; ξ)F (x; ξ)

i
dx. Furthermore, a general expression for moment

generating function (mgf) of the NEAPT random variable X is

MX (t) =
1

α− eα

 ∞∑
i,r=0

(logα)
i+1

tr

r!i!
ηr,i −

∞∑
i,r=0

αi+1tr

r!i!
ηr,i

 . (21)

4.3 Residual and reverse residual life
The residual life offer wider applications in reliability theory and risk management.
The residual lifetime of NEAPT random variable X denoted by R(t)is derived as

R(t) (x) =
S (x+ t)

S (t)
,

R(t) (x) =
α− eα − αF (x+t;ξ) + eαF (x+t;ξ)

α− eα − αF (t;ξ) + eαF (t;ξ)
. (22)
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Additionally, the reverse residual lifetime of the NEAPT random variable denoted by
R̄(t)is

R̄(t) =
S (x− t)

S (t)
,

R̄(t) (x) =
α− eα − αF (x−t;ξ) + eαF (x−t;ξ)

α− eα − αF (t;ξ) + eαF (t;ξ)
. (23)

4.4 Order statistics
Let X1, X2, . . . , Xk be a random sample of size k taken independently from the
NEAPT distribution with parameters α and ξ. Let X1:k, X2:k, . . . , Xk:k be the
corresponding order statistics. Then, from David (1981), the density of Xr:k for (r=1,
2, . . . , k) is given by

gr:k (x) =
g (x;α, ξ)

B (r, k − r + 1)

k−r∑
i=0

(
k − r
i

)
(−1)

i
[G (x;α, ξ)]

i+r−1
. (24)

Using (9) and (10), in (24), we get the density of the rth order statistic.

5 Estimation
In this section, the maximum likelihood estimators of the parameters α and ξ of
NEAPT family from complete samples are derived. Let X1, X2, . . . , Xk be a
simple random sample from NEAPT family with observed values x1, x2, . . . , xk.
The log-likelihood function of this sample is

logL (x;α, ξ) = −k log (α− eα) +

k∑
i=1

log [f (xi; ξ)]

+

k∑
i=1

log
[
(logα)αF (xi;ξ) − αeαF (xi;ξ)

]
, (25)

Obtaining the partial derivatives of (25), we get
∂

∂α
logL (x;α, ξ) =− k (1− eα)

α− eα

+

k∑
i=1

((logα)F (xi; ξ) + 1)αF (xi;ξ)−1 − αeαF (xi;ξ) (1 + F (xi; ξ))

(logα)αF (xi;ξ) − eF (xi;ξ)
,

(26)

∂

∂ξ
logL (x;α, ξ) =

k∑
i=1

∂f (xi; ξ) /∂ξ

f (xi; ξ)

+

k∑
i=1

(logα)
2
αF (xi;ξ)∂F (xi; ξ) /∂ξ − α2eαF (xi;ξ)∂F (xi; ξ) /∂ξ

(logα)αF (xi;ξ) − αeαF (xi;ξ)
.

(27)
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Setting ∂
∂α logL(x;α, ξ) and ∂

∂ξ logL(x;α, ξ) equal to zero and solving numerically
these expressions simultaneously, yields the maximum likelihood estimates (MLEs) of
(α, ξ).

6 Simulation study
In this section, we assess the performance of the maximum likelihood estimators in
terms of the sample size n. A numerical evaluation is carried out to examine the
performance of maximum likelihood estimators for NEAPTW model (as particular
case from the family). The evaluation of estimates is performed based on the following
quantities for each sample size; the biases and the empirical mean square errors (MSEs)
using the mathematical package. The numerical steps are listed as follows:

1. A random sample X1, X2, . . . , Xn of sizes; n=30 and 50 are considered,
these random samples are generated from the NEAPTW distribution by using
inversion method.

2. Eight sets of the parameters are considered. The MLEs of NEAPTW model are
evaluated for each parameter value and for each sample size.

3. 1000 repetitions are made to calculate the biases and mean square error (MSE)
of these estimators.

4. Formulas used for calculating bias and MSE are given by
Bias (α̂) = 1

1000

∑1000
i=1 (α̂− α)andMSE (α̂) = 1

1000

∑1000
i=1 (α̂− α)

2, respectively.

5. Step (iii) is also repeated for the other parameters(θ, γ).

Empirical results are reported in Table 1. We can detect from these tables that
the estimates are quite stable and are close to the true value of the parameters as the
sample sizes increase.

7 Applications
To prove the flexibility of the proposed family two applications to real data sets are ana-
lyzed. The goodness of fit test of the NEAPTW distribution have been compared with
the other lifetime models including exponentiated Weibull, Marshall-Olkin Weibull
and Kumaraswamy Weibull distributions. The distribution functions of the competing
models are as:

1. The exponentiated Weibull is given by

G (x;α, θ, γ) =
(
1− e−γxθ

)a
, x, a, θ, γ > 0.

2. The Marshall-Olkin Weibull (MOW) is

G (x;σ, ξ) =

(
1− e−γxθ

)a
1− (1− σ)

(
1−

(
1− e−γxθ

)a) , x, σ, ξ > 0.
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Table 1: Simulation results: MLEs, biases and MSEs

α = 0.5, γ = 0.5, θ = 0.5 α = 0.6, γ = 0.5, θ = 1
n Parameters MLE Bias MSE MLE Bias MSE
30 α 0.3173 -0.1827 0.0400 0.4458 -0.1542 0.0395

γ 0.5775 0.0775 0.1840 0.6468 0.1468 0.1472
θ 1.4039 0.9039 1.0334 3.3607 2.3607 6.1295

50 α 0.4214 -0.0786 0.0107 0.5923 -0.1077 0.0271
γ 0.5690 0.0690 0.0187 0.6522 0.1522 0.1021
θ 0.9435 0.4435 0.2094 2.0076 1.0076 1.6355

α = 0.5 , γ= 0.5, θ= 0.2 α = 0.3 , γ= 1, θ= 0.5
30 α 0.4139 -0.0861 0.0080 0.2488 -0.1212 0.0149

γ 0.3796 -0.1204 0.0206 0.9839 -0.0161 0.0113
θ 1.1505 0.9505 0.9371 1.7008 1.2008 1.4631

50 α 0.5453 0.0453 0.0052 0.3126 -0.0474 0.0024
γ 0.3656 -0.1344 0.0193 0.9933 -0.0067 0.0064
θ 0.7862 0.5862 0.4112 1.0624 0.5624 0.3292

α = 0.7 , γ= 1.5, θ= 0.5 α = 0.5 , γ= 2, θ= 0.5
30 α 0.4823 -0.1177 0.0140 0.3835 -0.1165 0.0138

γ 1.4461 -0.0539 0.0216 2.0013 0.0013 0.0636
θ 1.6326 1.1326 1.3134 1.7260 1.2260 1.5385

50 α 0.6600 -0.0400 0.0018 0.4526 -0.0474 0.0027
γ 1.4300 -0.0700 0.0174 1.9423 -0.0577 0.0138
θ 0.9927 0.4927 0.2490 1.0227 0.5227 0.2860

α = 1 , γ= 0.5, θ= 0.5 α = 0.7 , γ= 0.5, θ= 0.5
30 α 0.6805 -0.6195 0.3854 0.5617 -0.3383 0.1185

γ 0.5353 0.0353 0.0193 0.5744 0.0744 0.0362
θ 1.3352 0.8352 0.8101 1.4132 0.9132 0.9261

50 α 0.9796 -0.5204 0.2709 0.6819 -0.2181 0.0482
γ 0.5005 0.0005 0.0028 0.4916 -0.0084 0.0012
θ 0.8493 0.3493 0.1277 0.9416 0.4416 0.2124

3. The Kumaraswamy Weibull (Ku-W) is given by

G (x; a, b, θ, γ) = 1−
(
1−

(
1− e−γxθ

)a)b
, x, a, b, θ, γ > 0.

The analytical measures of goodness of fit including the Akaike information criterion
(AIC), consistent Akaike information criterion (CAIC), Baysian information criterion
(BIC), Hannan-Quinn information criterion (HQIC) and Kolmogorov-Smirnov (KS)
statistic are considered to compare the proposed method with the other fitted models.
In general, a model with smaller values of these analytical measures indicate better fit
to the data. All the required computations have been carried out through the statistical
software R using the package (AdequacyModel) with ”SANN” algorithm.
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Data 1:
The data set represents survival times of guinea pigs injected with the different amount
of tubercle bacilli studied by Bjerkedal (1960). Table 2 shows the estimated parameters
along with the corresponding standard errors. Whereas, the considered statistical tools
for the fitted density functions are provided in Table 3. The NEAPTW distribution
provides a better fit than the other distributions in terms of AIC, BIC, CAIC, HQIC
and KS test statistic. These distributions are some of the most widely used for this
kind of data. The MOW is a common alternative for positive data and the EW and
Ku-W are very flexible distributions.

Corresponding to data 1, the estimated pdf and cdf are provided in Figure 3, the
PP plot and Kaplan-Meier survival plot are sketched in Figure 4, whereas, the QQ and
box plots are given in Figure 5.

Table 2: Maximum likelihood estimates of the fitted distributions using data 1.

Dist. α̂ γ̂ θ̂ σ̂ â b̂
NEAPTW 0.017

(0.4132)
0.074
(0.03817)

1.989
(0.1604)

MOW 0.210
(0.0255)

0.698
(0.3153)

1.770
(0.0771)

EW 0.708
(0.3530)

1.171
(0.2830)

1.994
(0.9831)

Ku-W 0.641
(0.5713)

1.062
(0.6322)

2.310
(2.4604)

1.432
(1.0107)

Table 3: The statistics of the fitted models using data 1.

Dist. KS AIC BIC CIAC HQIC
NEAPTW 0.094 209.53 216.36 209.88 212.25
MOW 0.106 213.45 220.28 213.80 216.17
EW 0.100 211.62 218.45 211.97 214.341
Ku-W 0.097 213.63 222.73 214.22 217.25

Data 2:
The second data set taken from Dey et al. (2017), representing the life of fatigue
fracture of Kevlar 373/epoxy that are subject to constant pressure at the 90 stress
level until all had failed. The data set was initially presented by Barlow et al. (1984)
and later studied by Andrews and Herzberg (2012). For this data set, the NEAPTW
distribution has the overall best performance when compared to the same distributions
of the previous example. The estimated parameters along with the standard errors and
goodness-of-fit statistics for the fitted models are given in Tables 4 and 5, respectively.
Corresponding to data 2, the estimated pdf and cdf are proved in Figure 6, the PP
plot and Kaplan Meier survival plot are sketched in Figure 7, whereas, the QQ and
box plots are given in Figure 8.
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Figure 3: Plots of the estimated pdf and cdf of the NEAPTW distribution for data 1.

Figure 4: PP and Kaplan-Meier survival plots of the NEAPTW distribution for data 1.

Figure 5: QQ-plot of the NEAPTW distribution and box plot for data 1.

Conclusions
In this article, a new method is adopted to add an additional parameter to the existing
distributions. This effort leads to a new family of lifetime distributions, called the
NEAPT family of distributions. General expressions for some of mathematical proper-
ties of the new family are derived. The estimation of the of model parameters through
maximum likelihood method is discussed and a simulation study is carried out. There
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Table 4: Maximum likelihood estimates of the fitted distributions using data 2.

Dist. α̂ γ̂ θ̂ σ̂ â b̂
NEAPTW 3.538

(0.3369)
0.373
(0.4041)

0.753
(0.7029)

MOW 0.616
(0.8930)

1.622
(0.8006)

5.371
(54.074)

EW 0.023
(0.0749)

1.046
(0.9743)

3.3627
(0.6778)

Ku-W 0.012
(0.5073)

2.917
(0.4676)

1.235
(0.2678)

4.1479
(2.7288)

Table 5: Analytical measures of the fitted distributions using data 2.

Dist. KS AIC BIC CIAC HQIC
NEAPTW 0.058 173.596 179.165 173.983 176.192

MOW 0.061 175.439 181.999 175.817 178.026
EW 0.080 178.246 184.815 178.633 180.842

Ku-W 0.0827 180.483 189.242 181.139 183.944

Figure 6: Plots of the estimated pdf and cdf of the NEAPTW distribution for data 2.

are certain advantages of using the proposed method like its cdf has a closed form so-
lution and facilitating data modeling with monotonic and non-monotonic failure rates.
A special sub-model of the new family, called NEAPTW distribution is considered
and two real applications are analyzed. For these data sets, some certain accuracy
measures are calculated to compare the goodness of fit of the proposed model to the
other competing distributions. These measures reveal that the proposed distribution
provides best fit to these data than the other considered distributions. To support
these accuracy measures, empirical pdf, cdf, PP, QQ and Kaplan–Meier plots are also
sketched which show that the NEAPTW model fits the data well. We hope that the
proposed model will attract wider applications in numerous applied fields..
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Figure 7: PP and Kaplan-Meier survival plots of the NEAPTW distribution for data 2.

Figure 8: QQ-plot of the NEAPTW distribution and box plot for data 2.
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