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Abstract: Based on the generalized log-logistic family (Gleaton and Lynch (2006))
of distributions, we propose a new family of continuous distributions with two extra
shape parameters called the exponentiated odd log-logistic family. It extends the class
of exponentiated distributions, odd log-logistic family (Gleaton and Lynch (2006)) and
any continuous distribution by adding two shape parameters. Some special cases of
this family are discussed. We investigate the shapes of the density and hazard rate
functions. The proposed family has also tractable properties such as various explicit ex-
pressions for the ordinary and incomplete moments, quantile and generating functions,
probability weighted moments, Bonferroni and Lorenz curves, Shannon and Rényi en-
tropies, extreme values and order statistics, which hold for any baseline model. The
model parameters are estimated by maximum likelihood and the usefulness of the new
family is illustrated by means of three real data sets.
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1 Introduction
Numerous classical distributions have been extensively used over the past decades
for modeling data in several areas such as engineering, actuarial, environmental and
medical sciences, biological studies, demography, economics, finance and insurance.
However, in many applied areas such as lifetime analysis, finance and insurance, there is
a clear need for extended forms of these distributions. For that reason, several methods
for generating new families have been investigated to extend well-known distributions
and at the same time provide great flexibility in modelling data in practice. The use
of new generators of continuous distributions from classical ones has become more
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common in the last ten years or so. Some examples are the beta-generated (Eugene
et al. (2002)), gamma-generated (Zografos and Balakrishnan (2009) ) and generalized
Kumaraswamy (Cordeiro and de Castro (2011)) families.

Based on a baseline cumulative distribution function (cdf) G(x; ξ) depending on a
parameter vector ξ, survival function Ḡ(x; ξ) = 1−G(x; ξ) and probability density func-
tion (pdf) g(x; ξ), we define the exponentiated odd log-logistic family (“EOLL-G”, for
short) (for x ∈ R) following the same approach of “odds of death” by Cooray (2006) for
constructing the odd Weibull distribution. The exponentiated odd log-logistic family
is a continuous univariate parametric family of distributions for modelling continuous
univariate data that can be in any interval of the real line. Therefore, the new family
is motivated to analyze continuous univariate data that have any type of support.

Let T be a random variable describing a stochastic system having a baseline G
distribution. The odds x that the system will not be working at time t is G(t)/Ḡ(t).
We are interested in modelling the random variable X of this odds using the two-
parameter Dagum model. We can write

Pr(X ≤ x) = ΠX(x) = FX

(
G(t)

Ḡ(t)

)
,

and then by replacing x in the Dagum cdf (Dagum (1975)) by the ration G(x; ξ)/Ḡ(x; ξ),
the cdf of the new family follows as

F (x; a, b, ξ) =

∫ G(x;ξ)

Ḡ(x;ξ)

0

a b xa b−1

(1 + xa)b+1
dt =

G(x; ξ)ab{
G(x; ξ)a + Ḡ(x; ξ)a

}b , (1)

where a > 0 and b > 0 are two additional shape parameters to the vector ξ of pa-
rameters in G. Clearly, if we take a = b = 1, equation (1) leads to the baseline G.
For a = 1, we obtain the exponentiated-G (“exp-G”) sub-family with power parameter
b. This sub-family is also known as the proportional reversed hazard rate model. If
G(x; ξ) = x/(1 + x), it reduces to the Dagum distribution.

By differentiating (1), we obtain the density function of X as

f(x; a, b, ξ) =
a b g(x; ξ)G(x; ξ)ab−1 Ḡ(x; ξ)a−1{

G(x; ξ)a + Ḡ(x; ξ)a
}b+1

. (2)

For each continuous G distribution (henceforth “G” denotes the baseline distribu-
tion), we can associate the EOLL-G distribution with two extra parameters α and β
defined by the pdf (2). Hereafter, a random variable X with pdf (2) is denoted by
X ∼EOLL-G(α, β, ξ). The two additional parameters induced by the EOLL-G gener-
ator are sought as a manner to furnish a more flexible distribution. For a given G, it
has a wide variety of shapes and it is able to model comfortable bathtub-shaped failure
rate data. Further, the new family can easily be adapted for discriminating between
the G and the EOLL-G distributions. When b is an integer, we consider a system
formed by b independent components following the Odd-G family (Gleaton and Lynch
(2006)) given by

H(x; a, ξ) =
G(x; ξ)a

G(x; ξ)a + Ḡ(x; ξ)a
.
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Suppose the system fails if all of the b components fails and let X denote the lifetime
of the entire system. Then, the cdf of X is

F (x; a, b, ξ) = H(x; a, a, ξ)b =
G(x; ξ)ab{

G(x; ξ)a + Ḡ(x; ξ)a
}b ,

which is the proposed generator.
Also, for b = 1, we have a = log

[
F (x)
F̄ (x)

]
/log

[
G(x)
Ḡ(x)

]
which revals that the parameter

a is the log odd ratio between the proposed model and baseline cdf G(.).
The hazard rate function (hrf) of X is obtained from equations (1) and (2) as

h(x; a, b, ξ) =
abg(x; ξ)G(x; ξ)a b−1[Ḡ(x; ξ)]a−1{

G(x; ξ)a + Ḡ(x; ξ)a
}{{

G(x; ξ)a + Ḡ(x; ξ)a
}b −G(x; ξ)ab

} . (3)

We can easily simulate data from this family. If U ∼ U(0, 1) then

QG

{
u

1
ab

u
1
ab + (1− u

1
b )

1
a

}
∼ EOLL−G(a, b; ξ), (4)

where QG(u) = G−1(u) is the quantile function of the baseline distribution G (qf).
The remaining of the paper is organized as follows. In Section 2, two special cases

of the EOLL-G family are given. In Section 3, the shapes of the density and hazard
rate functions are described analytically. A useful expansion for the EOLL-G density
family is obtained in Section 4. In Section 5, we derive a power series for the EOLL-
G qf. In Section 6, the quantile measures of EOLL-G family are obtained. General
explicit expressions and some special cases for the EOLL-G moments are provided in
Section 7. The incomplete moments are investigated in Section 8. In Section 9, we
derive its generating function. In Section 10, we obtain the mean deviations. Section
11 provides expressions for the Rényi and Shannon entropies. The order statistics and
their moments are determined in Section 12. Estimation of the model parameters by
maximum likelihood is performed in Section 13. A simulation study is presented in
Section 14. Applications to three real data sets illustrate the potentiality of the new
family in Section 15. The paper is concluded in Section 16.

2 Special cases
This section introduces some of the many distributions which can arise as special models
within the EOLL-G family of distributions. We consider only two parents: normal and
Weibull distributions.

2.1 EOLL-Normal (EOLLN)
The EOLLN distribution is defined from (2) by taking G(x; ξ) = Φ(x−µ

σ ) and g(x; ξ) =

ϕ(x−µ
σ ) where ϕ(·) and Φ(·) are the pdf and cdf of the standard normal distribution,

respectively, and ξ = (µ, σ2).
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EOLLN density

Figure 1: Density function of EOLL-N distribution

The EOLLN pdf is given by

f(x; a, b, µ, σ) =
abϕ(x−µ

σ )[Φ(x−µ
σ )]ab−1[1− Φ(x−µ

σ )]a−1

σ
{
Φ(x−µ

σ )a + [1− Φ(x−µ
σ )]a

}b+1
, (5)

where x ∈ R, µ ∈ R is a location parameter and σ > 0 is a scale parameter.
A random variable with density (5) is denoted by X ∼ EOLLN(a, b, µ, σ2).
Plots of the EOLLN density function for selected shape parameter values are dis-

played in Figure 1. These plots indicate that decreasing of the a and b values causes a
flattening of the pdf curves.

2.2 EOLL-Weibull (EOLLW)
The pdf and cdf of the Weibull distribution with scale parameter α and shape parameter
β is given by

g(x;α, β) = αβxβ−1e−αxβ

and G(x;α, β) = 1− e−αxβ

.

Applying these expressions in (2) gives the EOLLW density function

f(x;α, β, a, b) =
abαβxβ−1e−abαxβ

[1− e−αxβ

]a−1{[
1− e−αxβ

]a
+ e−aαxβ

}b+1
. (6)

Plots of the density function of EOLL-Weibull distribution for selected parameter
values are displayed in Figure 2 and the hazard function displayed in Figure 3.

3 Asymptotics and shapes
Let X be a nonnegative random variable. Then, the asymptotics of equations (1), (2)
and (3) as x → 0 are given by

F (x) ∼ G(x)a b as x → 0,
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Figure 2: Plot of the density function of EOLL-Weibull distribution
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Figure 3: Plot of the hazard function of EOLL-Weibull distribution

f(x) ∼ abg(x)G(x)a b−1 as x → 0,

h(x) ∼ abg(x)G(x)a b−1

1−G(x)a b
as x → 0.

The asymptotics of equations (1), (2) and (3) as x → ∞ are given by
1− F (x) ∼ b Ḡ(x)a as x → ∞,

f(x) ∼ abg(x)Ḡ(x)a−1 as x → ∞,

h(x) ∼ a g(x)

Ḡ(x)
as x → ∞.

The shapes of the density and hazard rate functions can be described analytically.
The critical points of the EOLL-G density function are the roots of the equation:

g′(x)

g(x)
+ (ab− 1)

g(x)

G(x)
+ (1− a)

g(x)

Ḡ(x)
− a(b+ 1)g(x)

G(x)a−1 − Ḡ(x)a−1

G(x)a + Ḡ(x)a
= 0. (7)

There may be more than one root to (7). Let λ(x) = d2 log[f(x)]
dx2 . We have

λ(x) =
g′(x)g(x)− [g′(x)]2

g(x)2
+ (ab− 1)

g(x)G(x)− g(x)2

G(x)2
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+ (1− a)
g′(x)Ḡ(x) + g(x)2

Ḡ(x)2

− a(b+ 1)g′(x)
G(x)a−1 − Ḡ(x)a−1

G(x)a + Ḡ(x)a

− a(a− 1)(b+ 1)g(x)2
G(x)a−2 + Ḡ(x)a−2

G(x)a + Ḡ(x]a

− (b+ 1)

{
ag(x)

G(x)a−1 − Ḡ(x)a−1

G(x)a + Ḡ(x)a

}2

.

If x = x0 is a root of (7) then it corresponds to a local maximum if λ(x) > 0 for all
x < x0 and λ(x) < 0 for all x > x0. It corresponds to a local minimum if λ(x) < 0
for all x < x0 and λ(x) > 0 for all x > x0. It refers to a point of inflection if either
λ(x) > 0 for all x ̸= x0 or λ(x) < 0 for all x ̸= x0.

The critical point of h(x) are obtained from the equation

g′(x)

g(x)
+ (ab− 1)

g(x)

G(x)
+ (1− a)

g(x)

1−G(x)
− ag(x)

G(x)a−1 − [Ḡ(x)]a−1

G(x)a + Ḡ(x)a

− abg(x)

{{
G(x)a + Ḡ(x)a

}b−1
[G(x)a−1 − Ḡ(x)a−1]−G(x)ab−1

}
{
G(x)a + Ḡ(x)a

}b −G(x)ab
= 0. (8)

There may be more than one root to (8). Let τ(x) = d2 log[h(x)]/dx2. We have

τ(x) =
g′(x)g(x)− [g′(x)]2

g(x)2
+ (ab− 1)

g(x)G(x)− g(x)2

G(x)2

+ (1− a)
g′(x)Ḡ(x) + g(x)2

Ḡ(x)2

− ag′(x)
G(x)a−1 − Ḡ(x)a−1

G(x)a + Ḡ(x)a

− a(a− 1)g(x)2
G(x)a−2 + Ḡ(x]a−2

G(x)a + Ḡ(x)a

−
{
ag(x)

G(x)a−1 − Ḡ(x)a−1

G(x)a + Ḡ(x)a

}2

− abg′(x)

{{
G(x)a + Ḡ(x)a

}b−1
[G(x)a−1 − Ḡ(x)a−1]−G(x)ab−1

}
{
G(x)a + Ḡ(x)a

}b −G(x)ab

− ab(a− 1)g(x)

{{
G(x)a + Ḡ(x)a

}b−1
[G(x)a−2 + Ḡ(x)a−2]

}
{
G(x)a + Ḡ(x)a

}b −G(x)ab

− ab(b− 1)g(x)

{{
G(x)a + Ḡ(x)a

}b−2
[G(x)a−1 − Ḡ(x)a−1]2 −G(x)ab−2

}
{
G(x)a + Ḡ(x]a

}b −G(x)ab
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−

abg(x)

{{
G(x)a + Ḡ(x)a

}b−1
[G(x)a−1 − Ḡ(x)a−1]−G(x)ab−1

}
{
G(x)a + Ḡ(x)a

}b −G(x)ab


2

.

If x = x0 is a root of (8) then it refers to a local maximum if τ(x) > 0 for all x < x0

and τ(x) < 0 for all x > x0. It corresponds to a local minimum if τ(x) < 0 for all
x < x0 and τ(x) > 0 for all x > x0. It gives an inflection point if either τ(x) > 0 for
all x ̸= x0 or τ(x) < 0 for all x ̸= x0.

4 A useful expansion
For an arbitrary baseline cdf G(x), a random variable Z has the exp-G distribution
with power parameter c > 0, say Z ∼exp-G(c), if its pdf and cdf are given by

hc(x) = cG(x)c−1 g(x) and Hc(x) = G(x)c,

respectively. Some structural properties of the exp-G distributions are explored by
Mudholkar et al. (1995), Gupta and Kundu (2001) and Nadarajah and Kotz (2006),
among others.

We can demonstrate that the cdf (1) of X admits the expansion

F (x) =
G(x)a b[

G(x)a + Ḡ(x)a
]b =

∞∑
k=0

αk G(x)k

∞∑
k=0

βk G(x)k
=

∞∑
k=0

bk G(x)k, (9)

where b0 = α0/β0,

αk = sk(a b), βk = hk(a, b) and bk =
1

β0

[
αk −

k∑
r=1

βrbk−r

]
, for k ≥ 1, (10)

and sk(a b) and hk(a, b) are defined by equations (34) and (37) (see Appendix) and
Hk(x) = G(x)k denotes the exp-G cumulative distribution with power parameter k.
So, the density function of X can be expressed as an infinite linear combination of
exp-G density functions

f(x; a, b, ξ) =

∞∑
k=0

bk+1 hk+1(x; ξ), (11)

where hk+1(x; ξ) = (k + 1) g(x; ξ)G(x; ξ)k denotes the exp-G density function with
power parameter k + 1. Hereafter, a random variable with the density function
hk+1(x; ξ) is denoted by Yk+1 ∼ exp-G(k+1). Equation (11) reveals that the EOLL-G
density function is a linear combination of exp-G densities. Thus, some mathematical
properties of the new model can be obtained directly from those properties of the
exp-G distribution. For example, the ordinary and incomplete moments and moment
generating function (mgf) of X can be obtained from those quantities of the exp-G
distribution.
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5 Quantile power series
In this section, we derive a power series expansion for the qf x = Q(u) = F−1(u) of
X by expanding (12). If the G qf, say QG(u) = G−1(u), does not have a closed-form
expression, it can usually be expressed in terms of a power series

QG(u) =

∞∑
i=0

ai u
i, (12)

where the coefficients ai are suitably chosen real numbers which depend on the param-
eters of the G distribution. For several important distributions, such as the normal,
Student t, gamma and beta distributions, QG(u) does not have explicit expressions
but it can be expanded as in equation (12). As a simple example, for the normal
N(0, 1) distribution, ai = 0 for i = 0, 2, 4, . . . and a1 = 1, a3 = 1/6, a5 = 7/120 and
a7 = 127/7560, . . .

We use throughout the paper a result of Gradshteyn and Ryzhik (2000) for a power
series raised to a positive integer n (for n ≥ 1)

QG(u)
n =

( ∞∑
i=0

ai u
i

)n

=

∞∑
i=0

cn,i u
i, (13)

where the coefficients cn,i (for i = 1, 2, . . .) are easily obtained from the recurrence
equation (with cn,0 = an0 )

cn,i = (i a0)
−1

i∑
m=1

[m(n+ 1)− i] am cn,i−m. (14)

Clearly, cn,i can be determined from cn,0, . . . , cn,i−1 and then from the quantities
a0, . . . , ai.

Next, we derive an expansion for the argument of QG(·) in (4)

A =
u

1
ab

u
1
ab + (1− u

1
b )

1
a

.

Using the the generalized binomial expansion since u ∈ (0, 1), we can write

A =

∑∞
k=0 a

∗
k u

k∑∞
k=0 b

∗
k u

k
=

∞∑
k=0

δku
k,

where a∗k = sk(a/b), b∗k =
∑∞

i=0(−1)isk(i/b)

( 1
a

i

)
, and the coefficient δk (fork ≥ 0) is

determined from the recurrence equation

δk =
1

b∗0

[
a∗k − 1

b∗k

k∑
r=1

b∗r δk−r

]
.
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Also si(1/ab) and sk(i/b) are given by equation (34). Then, the qf of X can be expressed
from (4) as

Q(u) = QG

( ∞∑
k=0

δk u
k

)
. (15)

For any baseline G distribution, we can combine (12) with (15) to obtain

Q(u) = QG

( ∞∑
m=0

δm um

)
=

∞∑
i=0

ai

( ∞∑
m=0

δm um

)i

,

and then using (13) and (14), we have

Q(u) =

∞∑
m=0

em um, (16)

where em =
∑∞

i=0 ai di,m, di,0 = δi0 and, for m > 1,

di,m = (mδ0)
−1

m∑
n=1

[n(i+ 1)−m] δn di,m−n.

Equation (16) is the main result of this section since it allows to obtain various math-
ematical quantities for the EOLL-G family as shown in the next sections.

The formulae derived throughout the paper can be easily handled in most symbolic
computation software platforms such as Maple, Mathematica and Matlab. These plat-
forms have currently the ability to deal with analytic expressions of formidable size
and complexity. The infinity limit in these sums can be substituted by a large positive
integer such as 20 or 30 for most practical purposes

6 Quantile measure
The effects of the extra shape parameters a and b on the skewness and kurtosis of X can
be considered based on quantile measures. The Bowley skewness based on quartiles, is
given by

B =
Q
(
3
4

)
+Q

(
1
4

)
− 2Q

(
1
2

)
Q
(
3
4

)
−Q

(
1
4

) .

The Moors kurtosis based on quantiles, is given by

M =
Q
(
3
8

)
−Q

(
1
8

)
+Q

(
7
8

)
−Q

(
5
8

)
Q
(
6
8

)
−Q

(
2
8

) .

These measures are less sensitive to outliers and they exist even for distributions
without moments. In Figures 4 and 5, we plot the measures B and M for the EOLL-
N(0,1,a, b) discussed in Section 2. These plots reveal how both measures B and M
vary with the shape parameters.
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Figure 4: Plot of the Bowly skewness function of EOLL-N(0,1,a, b) distribution
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7 Moments
Hereafter, we shall assume that G(x) is the baseline cdf of a random variable Y and that
F (x) is the cdf of the random variable X having density function (2). The moments
of the EOLL-G distribution can be obtained from the (r, k)th probability weighted
moments (PWMs) of Y defined by

τr,k = E[Xr G(X)k] =

∫ ∞

−∞
xr G(x)k g(x)dx. (17)

In fact, we have

µ′
k = E(Xr) =

∞∑
k=0

(k + 1) bk+1 τr,k. (18)

where bk is defined by equation (10). Thus, the moments of any EOLL-G distribution
can be expressed as an infinite linear combination of the baseline PWMs.

A second formula for τr,k can be written in terms of QG(u) = G−1(u). Setting
G(x) = u, we obtain

τr,k =

∫ 1

0

QG(u)
r ukdu. (19)
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The PWMs for various distributions can be determined by using equations (17) and
(19). The following special cases were already published by Cordeiro and Nadarajah
(2011).

8 Incomplete moments
The nth incomplete moment of X is defined as mn(y) =

∫ y

−∞ xr f(x)dx. Here, we
propose two methods to determine the incomplete moments of the new family. First,
the nth incomplete moment of X can be expressed as

mn(y) =

∞∑
k=0

bk+1

∫ G(y; ξ)

0

QG(u)
n uk du. (20)

The integral in (20) can be computed at least numerically for most baseline distri-
butions. A second method to obtain the incomplete moments of X follows from (20)
using equations (13) and (14). We obtain

mn(y) =

∞∑
k,m=0

(k + 1) bk+1 cn,m
m+ k + 1

G(y; ξ)m+k+1, (21)

where the coefficients cn,m are given by (14). The Bonferroni and Lorenz curves
and the Bonferroni and Gini indices have many applications in economics, reliability,
demography, insurance and medicine. The Bonferroni and Lorenz curves are given by

B(p) =
1

pµ

∫ q

0

xf(x)dx =
1

pµ

∫ p

0

F−1(x)dx

L(p) =
1

µ

∫ q

0

xf(x)dx =
1

µ

∫ p

0

F−1(x)dx

where q = F−1(p). The Bonferroni and Gini indices are defined by

B = 1−
∫ 1

0

B(p)dp and L = 1− 2

∫ 1

0

L(p)dp.

After some simple calculation, the Bonferroni and Gini indices of the EOLL-G distri-
bution are given by

B = 1− 1

µ

∞∑
k,m=0

(k + 1) bk+1 c1,m
(m+ k + 1)p

∫ 1

0

G(q; ξ)m+k+1dp,

L = 1− 2

µ

∞∑
k,m=0

(k + 1) bk+1 c1,m
(m+ k + 1)

∫ 1

0

G(q; ξ)m+k+1dp

where bk+1 and c1,m are determined from equation(10) and (14), respectively.
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9 Generating function
In this section, we provide two formulae for the moment generating function (mgf)
M(s) = E(es X) of a random variable X with the EOLL-G distribution. A first
formula for M(s) comes from equation (11) as

M(s) =

∞∑
k=0

bk+1 Mk+1(s), (22)

where Mk+1(s) is the generating function of the exp-G distribution with power power
parameter k+1. Hence, M(s) can be determined from the exp-G generating function.

A second formula for M(s) can be derived from equation (22) as

M(s) =

∞∑
k=0

(k + 1) bk+1 ρk(s), (23)

where the quantity ρk(s) =
∫∞
−∞ exp(sx)G(x)k g(x)dx follows from the baseline qf as

ρk(s) =

∫ 1

0

exp [sQG(u)]u
kdu. (24)

10 Mean deviations
The mean deviations about the mean (δ1(Y ) = E(|Y − µ′

1|)) and about the median
(δ2(Y ) = E(|Y −M |)) of Y can be expressed as

δ1(Y ) = 2µ′
1 F (µ′

1)− 2m1 (µ
′
1) and δ2(Y ) = µ′

1 − 2m1(M), (25)

respectively, where M = QG

[
0.5

1
ab

0.5
1
ab +(1−0.5

1
b )

1
a

]
is the median of Y , µ′

1 = E(Y ) comes

from equation (18), F (µ′
1) is easily calculated from equation (9) and

m1(z) =
∫ z

−∞ x f(x)dx is the first incomplete moment.
Now, we provide two alternative ways to compute δ1(Y ) and δ2(Y ). A general

equation for m1(z) can be derived from equation (11) as

m1(z) =

∞∑
k=0

bk+1 Jk+1(z), (26)

where
Jk+1(z) =

∫ z

−∞
xhk+1(x)dx.

Equation (??) is the basic quantity to compute the mean deviations for the EOLL-G
distributions. The mean deviations defined in (25) depend only on the first incomplete
moment of the Exp-G distributions. So, alternative representations for δ1(Y ) and δ2(Y )
are

δ1(Y ) = 2µ′
1 F (µ′

1)− 2

∞∑
k=0

bk+1 Jk+1 (µ
′
1) and δ2(Y ) = µ′

1 − 2

∞∑
k=0

bk+1 Jk+1(M).
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A second general formula for m1(z) can be derived by setting u = G(x) in (26)

m1(z) =

∞∑
k=0

(k + 1) bk+1 Tk(z),

where Tk(z) is given by

Tk(z) =

∫ G(z)

0

QG(u)u
kdu.

Applications of these equations can be conducted to obtain Bonferroni and Lorenz
curves defined for a given probability π by B(π) = m1(q)/π µ′

1 and L(π) = m1(q)/µ
′
1,

respectively, where q = QG([
1−(1−2−α)1/λ

1−(1−p 2−α)1/λ
]) is immediately calculated from the parent

quantile function.

11 Entropies
An entropy is a measure of variation or uncertainty of a random variable X. Two
popular entropy measures are the Rényi and Shannon entropies (Shannon (1951);
Rényi(1961)). The Rényi entropy of a random variable with pdf f(x) is defined by

IR(c) =
1

1− c
log

(∫ ∞

0

f c(x)dx

)
,

for c > 0 and c ̸= 1. The Shannon entropy of a random variable X is defined by
E {− log [f(X)]}. It is the special case of the Rényi entropy when c ↑ 1. For a random
variable X with the EOLL-G distribution, direct calculation yields

E {− log [f(X)]} = − log[a b]− E {log [g(X; ξ)]}+ (1− ab) E {log [G(x; ξ)]}
+ (1− a) E

{
log
[
Ḡ(x; ξ)

]}
+ (b+ 1)E

{
G(x; ξ)a + Ḡ(x; ξ)a

}
First, we define and obtain

A(a1, a2, a3; a) =

∫ 1

0

ua1(1− u)a2

[ua + (1− u)a]
a3
du

=

∞∑
i=0

(−1)i
(
a3
i

)∫ 1

0

ua1+i

[ua + (1− u)a]
a3
du

=

∞∑
i=0

(−1)i
(
a3
i

)∫ 1

0

∑∞
k=0 δ1,ku

k∑∞
k=0 δ2,ku

k
du

=

∞∑
i=0

(−1)i
(
a3
i

)∫ 1

0

∞∑
k=0

δ3,ku
k

=

∞∑
i=0

(−1)i
(
a3
i

)
δ3,k

k + 1
(28)
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where

δ1,k = sk(a1 + i) , δ2,k = hk(a, a3) and δ3,k =
1

δ2,0

[
δ1,k − 1

δ2,0

k∑
r=1

δ2,rδ3,k−r

]
(29)

After some algebraic manipulations, we obtain

E {log [G(X)]} = a b
∂

∂t
A(a b+ t− 1, a− 1, b+ 1; a)

∣∣∣∣
t=0

E
{
log
[
Ḡ(X)

]}
= a b

∂

∂t
A(a b− 1, a+ t− 1, b+ 1; a)

∣∣∣∣
t=0

E
{
G(x; ξ)a + Ḡ(X; ξ)a

}
= a b

∂

∂t
A(a b− 1, a− 1, b+ 1− t; a)

∣∣∣∣
t=0

The simplest formula for the entropy of X is given by

E {− log[f(X)]} = − log[a b]− E {log [g(X; ξ)]}

+ (1− a b)a b
∂

∂t
A(a b+ t− 1, a− 1, b+ 1; a)

∣∣∣∣
t=0

+ (1− a)a b
∂

∂t
A(a b− 1, a+ t− 1, b+ 1; a)

∣∣∣∣
t=0

+ (b+ 1)a b
∂

∂t
A(a b− 1, a− 1, b+ 1− t; a)

∣∣∣∣
t=0

After some algebraic developments, we obtain an alternative expression for IR(c)

IR(c) =
c

1− c
log(a b) +

1

1− c
log

 ∞∑
i,k=0

w∗
i,k EYk

(gc−1[G−1(Y )])

 ,

where Yk ∼ B(k + 1, 1),

w∗
i,k =

(−1)i
(
c(a− 1)

i

)
γ3,k(a, b, , c, i)

k + 1
,

and γ1,k = sk(c(a b− 1) + i),

γ2,k = hk(a, c(b+ 1)), γ3,k =
1

γ2,0

[
γ1,k − 1

γ2,0

k∑
r=1

γ2,rγ3,k−r

]
, (30)

where sk(c(a b− 1) + i) and hk(a, c(b+ 1)) are defined by equation (37).

12 Order statistics
Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1, . . . , Xn is a random sample from the EOLL-G family of distributions. We
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can write the density of the ith order statistic, say Xi:n, as

fi:n(x) = Kf(x)F i−1(x) {1− F (x)}n−i
= K

n−i∑
j=0

(−1)j
(
n− i

j

)
f(x)F (x)j+i−1,

where K = n!/[(i− 1)! (n− i)!].
Following similar algebraic developments of Nadarajah et al. (2013), we can write

the density function of Xi:n as

fi:n(x) =

∞∑
r,k=0

mr,k hr+k+1(x), (31)

where hr+k(x) denotes the exp-G density function with power parameter r + k,

mr,k =
n! (r + 1) (i− 1)! br+1

(r + k + 1)

n−i∑
j=0

(−1)j fj+i−1,k

(n− i− j)! j!
,

and bk is defined in equation (10). Here, the quantities fj+i−1,k are obtained recursively
by fj+i−1,0 = bj+i−1

0 and (for k ≥ 1)

fj+i−1,k = (k b0)
−1

k∑
m=1

[m(j + i)− k] bm fj+i−1,k−m.

Based on the expansion (31), we can obtain some structural properties (ordinary and
incomplete moments, generating function, etc.) for the EOLL-G order statistics from
those exp-G properties.

13 Estimation
Here, we determine the maximum likelihood estimates (MLEs) of the model parameters
of the new family from complete samples only. Let x1, . . . , xn be observed values from
the EOLL-G distribution with parameters a, b and ξ. Let Θ = (a, b, ξ)⊤ be the r × 1
parameter vector. The total log-likelihood function for Θ is given by

ℓn = ℓn(Θ) = n log(a b) +

n∑
i=1

log[g(xi; ξ)] + (ab− 1)

n∑
i=1

log[G(xi; ξ)]

+ (a− 1)

n∑
i=1

log[Ḡ(xi; ξ)]− (b+ 1)

n∑
i=1

log
{
G(xi; ξ)

a + Ḡ(xi; ξ)
a
}
. (32)

The log-likelihood function can be maximized either directly by using the SAS
(PROC NLMIXED) or the Ox program (sub-routine MaxBFGS) (see Doornik (1996))
or by solving the nonlinear likelihood equations obtained by differentiating (32). The
components of the score function Un(Θ) = (∂ℓn/∂a, ∂ℓn/∂b, ∂ℓn/∂ξ)

⊤ are given by

∂ℓn
∂a

=
n

a
+

n∑
i=1

log
{
G(xi; ξ)Ḡ(xi; ξ)

}
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− (b+ 1)
n∑

i=1

G(xi; ξ)
a log[G(xi; ξ)] + Ḡ(xi; ξ)

a log[Ḡ(xi; ξ)]

G(xi; ξ)a + [Ḡ(xi; ξ)]a

∂ℓn
∂b

=
n

b
−

n∑
i=1

log
{
G(xi; ξ)

a + Ḡ(xi; ξ)
a}+ a

n∑
i=1

log[G(xi; ξ)],

and

∂ℓn
∂ξ

=

n∑
i=1

g(xi; ξ)
(ξ)

g(xi; ξ)
+ (a− 1)

n∑
i=1

G(xi; ξ)
(ξ)

G(xi; ξ)

1− 2G(xi; ξ)

Ḡ(xi; ξ)

− a(b+ 1)
n∑

i=1

G(xi; ξ)
(ξ) G(xi; ξ)

a−1 − Ḡ(xi; ξ)]
a−1

G(xi; ξ)a + Ḡ(xi; ξ)a
,

where h(ξ)(·) means the derivative of the function h with respect to ξ.

14 Simulation study
In this section, we assess the performance of the MLEs of the EOLL-N distribu-
tion parameters with respect to sample size n. The validity of the MLEs is dis-
cussed by the measures namely bias, mean square error of the estimate (MSE), cov-
erage lenghts (CL) and coverage probability (CP). We generated N = 104 parallel
samples of size n = 50, 100, 200, 500, 1000, 2000, 5000 from EOLL-N distribution with
a = 2, b = 1, µ = 0, σ = 1, by using inverse transform method. The MLEs of param-
eters are computed in each generated sample, say

(
âi, b̂i, µ̂i, σ̂i

)
for i = 1, 2, · · · , N.

The standard errors of the MLEs are computed by inverting the observed information
matrices, say

(
sâi

, sb̂i , sµ̂i
, sσ̂i

)
for i = 1, 2, · · · , N. The bias and mean square errors

are computed by

Biasϵ(n) =
1

N

N∑
i=1

(ϵ̂i − ϵ), MSEϵ(n) =
1

N

N∑
i=1

(ϵ̂i − ϵ)2,

for ϵ = a, b, µ, σ. The coverage probabilities and coverage lenghts given by

CPϵ(n) =
1

N

N∑
i=1

I(ϵ̂i − 1.95996sϵ̂i , ϵ̂i + 1.95996sϵ̂i),

CLϵ(n) =
3.919928

N

N∑
i=1

sϵ̂i .

The obtained numerical results for the above measures are tabulated in Table 1 . As
it can be seen from Table 1, the bias is decreases as the sample size n increases, except
for the parameter α which is near zero and negligible. The MSEs for each parameter
decrease to zero as n increases. This shows the consistency property of the MLEs. The
coverage probability is very close to 0.95 and approaches to the nominal value as the
sample size increases. Moreover, when the sample size increases the coverage length
is decrease for each parameter. Note that the reported results are for only one choice
for (a, b, µ, σ). On the other hand, the results were similar for a wide range of other
choices for (a, b, µ, σ).
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Table 1: Result of simulation from EOLL-N distribution
Bias MSE

n a b µ σ a b µ σ
50 -0.0123 0.6309 1.5366 1.0060 0.3294 11.063 46.933 17.784
100 -0.0223 0.7091 1.5693 0.5011 0.1962 11.070 50.315 4.8956
200 -0.0125 0.6532 1.3900 0.2194 0.0992 10.378 45.634 1.4285
500 -0.0062 0.4039 0.8395 0.0573 0.0254 6.6305 27.918 0.1986
1000 -0.0022 0.1409 0.2934 0.0173 0.0078 1.5637 6.7731 0.0412
2000 -0.0005 0.0498 0.1050 0.0058 0.0032 0.3005 1.2943 0.0154
5000 0.0000 0.0193 0.0411 0.0017 0.0011 0.0261 0.1124 0.0050
10000 0.0000 0.0108 0.0231 0.0007 0.0005 0.0119 0.0516 0.0023

CL CP
n a b µ σ a b µ σ
50 2.1539 5.2829 11.512 11.095 0.7851 0.6622 0.7505 0.7320
100 1.6482 4.3221 8.9617 6.7426 0.8670 0.7163 0.7255 0.8210
200 1.0896 3.3850 6.9063 3.4553 0.9130 0.7686 0.7547 0.8825
500 0.5356 2.3718 4.9136 1.2803 0.9572 0.8299 0.8368 0.9409
1000 0.3259 1.6344 3.3737 0.6997 0.9565 0.8787 0.8804 0.9535
2000 0.2159 1.0916 2.2622 0.4512 0.9539 0.9046 0.9056 0.9540
5000 0.1321 0.6333 1.3131 0.2744 0.9525 0.9323 0.9339 0.9520
10000 0.0926 0.4230 0.8775 0.1921 0.9578 0.9416 0.9386 0.9552

15 Applications
In this section, we provide four applications to real data. In the first three applications
we present some results fitting the special models defined in Section 2.

For the first three applications, the goodness-of-fit statistics including the Cramér-
von Mises (W ∗) and Anderson-Darling (A∗) test statistics are adopted to compare the
fitted models. The smaller the values of A∗ and W ∗, the better the fit to the data.
We also consider the Kolmogrov-Smirnov (K-S) statistic and its corresponding p-value
the minus log-likelihood function (-Log(L)) for the sake of comparison. For the fourth
application (censored data), we adopt the AIC and BIC statistics to compare the fitted
models since the A∗ and W ∗ statistics are not suitable for censored data.

For the next three applications, we take the odd log-logistic normal (OLLN) distri-
bution and for the purpose of comparison, we fitted the following models to the above
data sets:

• The normal distribution.

• The exponentiated normal (EN) distribution.

• The beta normal (BN) distribution with density

fBN (x) =
1

σB(a, b)

[
Φ

(
x− µ

σ

)]a−1 [
1− Φ

(
x− µ

σ

)]b−1

ϕ

(
x− µ

σ

)
.
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• The gamma normal (GN) distribution with density

fGN (x) =
ba

σΓ(a)

[
− log

{
1− Φ

(
x− µ

σ

)}]a−1

×
[
1− Φ

(
x− µ

σ

)]b−1

ϕ

(
x− µ

σ

)
.

• The Kumaraswamy normal (KN) distribution with density

fKN (x) =
a b

σ

{
Φ

[(
x− µ

σ

)]}a−1{
1−

[
Φ

(
x− µ

σ

)]a}b−1

ϕ

(
x− µ

σ

)
.

• The odd log-logistic normal (OLL-N) distribution (special case of OLLLN distri-
bution when β → 1) with density

fOLL−N (x) =
aϕ
(
x−µ
σ

)
[Φ
(
x−µ
σ

)
]a−1[1− Φ

(
x−µ
σ

)
]a−1

σ{[1− Φ
(
x−µ
σ

)
]a + [Φ

(
x−µ
σ

)
]a}2

,

where x ∈ R, µ ∈ R, a > 0, b > 0 and σ > 0.

15.1 Application 1
Data 1 - First, we consider the data set which represents failure times of a particular
windshield device. These data were also studied by Blischke and Murthy (2011) . The
data, referred as D1, are: 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309,
1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914,
2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.823,
4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432, 2.097, 2.934, 4.240,
1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568,
2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485, 1.652, 2.229,
3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663.

The MLEs of the parameters and the standard errors (SE) in parentheses and the
goodness-of-fit statistics for D1 we listed in Table 2. We can note that the OLLLN
model outperforms all the fitted competitive models under these statistics. The fitted
densities and histogram of the data are displayed in Figure 6. For D1, we note that
the fitted OLLLN distribution best captures the empirical histogram.

15.2 Application 2
Data 2- The second data set, referred to as D2, Armitage and Berry (1987) provided
the weights in ounces of 32 newborn babies. These data are:

72, 80, 81, 84, 86, 87, 92, 94, 103, 106, 107, 111, 112, 115, 116, 118, 119, 122, 123,
123, 114, 125, 126, 126, 126, 127, 118, 128, 128, 132, 133, 142.

The MLEs of the parameters and SEs in parentheses and the goodness-of-fit statis-
tics for D2 are presented in Table 3. We can see that the OLLLN model outperforms
all the fitted competitive models under these statistics.

The density and histogram plots are dosplayed in Figure 7. For D2, we note that
the fitted OLLLN distribution best captures the empirical histogram.
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Table 2: The MLEs of the parameters and SEs in parentheses and the goodness-of-fit statistics
for D1.

Model µ σ a b -log(L) W∗ A∗ K-S p-value
EOLLN 3.272 0.351 0.267 0.434 124.591 0.024 0.218 0.053 0.969

(0.249) (0.114) (0.136) (0.161)
Normal 2.557 1.112 128.119 0.091 0.607 0.092 0.444

(0.121) (0.086)
EN 1.823 1.339 1.954 128.064 0.074 0.521 0.084 0.560

(2.342) (0.701) (3.864)
BN 0.808 2.443 7.113 2.469 128.085 0.074 0.519 0.084 0.562

(7.144) (8.149) (48.513) (14.595)
GN 2.805 0.541 0.290 0.197 127.757 0.057 0.438 0.074 0.710

(1.057) (0.264) (0.381) (0.215)
KN 1.653 0.747 0.918 0.319 127.848 0.063 0.468 0.079 0.641

(1.063) (0.534) (1.013) (0.518)
OLL-N 2.626 0.602 0.452 127.062 0.075 0.523 0.095 0.407

(0.126) (0.218) (0.232)

(a) (b)
Histogram for D1

x

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4 EOLL − N

OLL − N
EN
N

Histogram for D1

x

D
en

si
ty

0 1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4 EOLL − N

Kw − N
BN
GN

Figure 6: Histogram and density plots for D1. (a) Plots for sub-models (b) Plots for the others
models.

Table 3: The MLEs of the parameters and SEs in parentheses and the goodness-of-fit statistics
for D2.

Model µ σ a b -log(L) W∗ A∗ K-S p-value
EOLLLN 99.766 5.175 0.129 1.946 132.203 0.048 0.299 0.085 0.974

(0.002) (0.002) (0.017) (0.344)
OLL-N 106.197 4.387 0.126 134.786 0.097 0.552 0.216 0.099

(0.002) ( 0.002) ( 0.018)
Normal 111.753 17.907 137.733 0.188 1.083 0.143 0.523

(3.165) (2.238)
EN 142.527 2.704 0.011 135.613 0.101 0.623 0.112 0.816

(4.026) (1.780) ( 0.015)
BN 161.943 14.879 0.202 29.070 135.010 0.061 0.425 0.092 0.947

(48.866) (14.368) (0.236) (127.584)
GN 145.939 9.060 0.102 3.932 134.915 0.020 0.182 0.056 0.998

(0.002) (0.002) (0.018) (2.288)
KN 118.390 3.596 0.0208 0.188 134.282 0.036 0.292 0.097 0.920

(0.174) (0.147) (0.008) (0.036)

15.3 Application 3
Data 3 The third data set, denoted by D3, from Nichols and Padgett (2006) on the
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Figure 7: Histogram plots for D2 data set. (a) Plots for sub-models (b) Plots for the others models.

breaking stress of carbon fibers of 50 mm in length.These data are:
3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22

,1.69, 3.28, 3.09, 1.87, 3.15 ,4.90, 1.57, 2.67 ,2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31,
3.31, 2.85, 1.25, 4.38, 1.84, 0.39, 3.68 ,2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88, 2.82,
2.05, 3.65, 3.75 ,2.43, 2.95, 2.97, 3.39 ,2.96, 2.35 ,2.55, 2.59,2.03, 1.61 ,2.12, 3.15, 1.08,
2.56, 1.80, 2.53.

The MLEs of the parameters and SEs in parentheses and the goodness-of-fit statis-
tics for D3 are presented in Table 4. We can see that the OLLLN model outperforms
all the fitted competitive models.

Table 4: The MLEs of the parameters and SE in the parentheses and the goodness-of-fit test
statistics for D3.

Model µ σ a b -log(L) W∗ A∗ K-S p-value
EOLLLN 3.075 1.303 1.872 0.652 85.012 0.039 0.266 0.060 0.967

(0.385) (1.123) (1.623) (0.372)
Normal 2.759 0.884 85.562 0.073 0.416 0.073 0.866

(0.108) (0.077)
EN 3.061 0.781 0.669 85.513 0.068 0.398 0.073 0.863

(0.901) (0.320) (0.844)
BN 3.469 1.277 1.336 2.780 85.439 0.062 0.374 0.073 0.870

(2.879) (3.626) (6.073) (15.936)
GN 3.348 0.976 0.848 1.664 85.439 0.061 0.374 0.073 0.866

(3.210) 2.257) (3.428) (7.867)
KN 2.672 1.712 2.699 3.587 85.405 0.060 0.365 0.072 0.881

(4.622) (3.073) (10.916) (8.805)
OLL-N 2.772 1.465 1.787 85.272 0.06 0.341 0.062 0.957

(0.107) (1.460) (1.923)

The density and histogram plots are given in Figure 8. For D3, we see that the
fitted OLLLN distribution best captures the empirical histogram.

We note that the OLLLN model outperforms all the fitted competitive models under
the selected critrion for D1, D2 and D3. For all three data sets, we note that the fitted
OLLLN distribution best captures the empirical histograms, especially for the third
data set, which indicates the outstanding performance of the OLLLN distribution.
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Figure 8: Histogram and density plots for D3. (a) Plots for sub-models (b) Plots for the others
models.

16 Conclusions
We study a class of distributions so-called the exponentiated odd log-logistic (EOLL)
family to extend several common distributions such as the normal, Weibull, gamma
and beta distributions. For each distribution G, we can easily define the associated
EOLL-G distribution. The density function of the proposed family can be expressed
as a linear combination of exponentiated-G (exp-G) density functions. This mixture
representation is important to derive several properties of the proposed family. Some
of its characteristics have tractable mathematical properties such as the ordinary and
incomplete moments, quantile function and order statistics. The formulae derived are
manageable by using modern computer resources with analytic and numerical capabil-
ities. The estimation of the model parameters is approached by the method of maxi-
mum likelihood and the observed information matrix is derived. We fit some OLL-G
distributions to two real data sets to show the potentiality of the proposed family.

Appendix
We present four power series for the proof of the linear representation in Section 4.
First, for a > 0 real non-integer and |u| < 1, we have the binomial expansion

(1− u)a =

∞∑
j=0

(−1)j
(
a

j

)
uj , (33)

where the binomial coefficient is defined for any real.
Second, the following expansion holds for any α > 0 real non-integer

G(x)α =

∞∑
r=0

sr(α)G(x)r, (34)

where sr(α) =
∑∞

j=r(−1)r+j
(
α
j

) (
j
r

)
.
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Third, by expanding zλ in Taylor series, we have

zλ =

∞∑
k=0

(λ)k (z − 1)k/k! =

∞∑
i=0

fi z
i (35)

fi = fi(λ) =

∞∑
k=i

(−1)k−i

k!

(
k

i

)
(λ)k

and (λ)k = λ(λ− 1) . . . (λ− k + 1) is the descending factorial.
Fourth, we use throughout an equation of Gradshteyn and Ryzhik (2000), for a

power series raised to a positive integer j given by ∞∑
j=0

aj v
j

i

=

∞∑
j=0

ci,j v
j , (36)

where the coefficients ci,j (for j = 1, 2, . . .) are easily obtained from the recurrence
equation (for j ≥ 1)

ci,j = (ja0)
−1

j∑
m=1

[m(j + 1)− j] am ci,j−m

and ci,0 = ai0. Hence, the coefficients ci,j can be calculated directly from ci,0, . . . , ci,j−1

and, therefore, from a0, . . . , aj . They can be given explicitly in terms of the aj ’s, al-
though it is not necessary for programming numerically our expansions in any algebraic
or numerical software.

We now obtain an expansion for [G(x)a + Ḡ(x)a]c. We can write from equations
(33) and (34)

[G(x)a + Ḡ(x)a] =

∞∑
j=0

tj G(x)j ,

where tj = tj(a) = sj(a) + (−1)j
(
a
j

)
. Then, using (35), we can write

[G(x)a + Ḡ(x)a]c =

∞∑
i=0

fi

 ∞∑
j=0

tj G(x)j

i

,

where fi = fi(c). Finally, using equations (36) and (14), we obtain

[G(x)a + Ḡ(x)a]c =

∞∑
j=0

hj G(x)j , (37)

where hj = hj(a, c) =
∑∞

i=0 fi mi,j and mi,j = (j t0)
−1
∑j

m=1[m(j + 1)− j] tm mi,j−m

(for j ≥ 1) and mi,0 = ti0.
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