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Abstract: In this paper, we obtain the usual stochastic order of series and paral-
lel systems comprising heterogeneous discrete Weibull (DW) components. Suppose
X1, . . . , Xn and Y1, . . . , Yn denote the independent component’s lifetimes of two sys-
tems such that Xi ∼ DW (βi, pi) and Yi ∼ DW (β∗

i , p
∗
i ), i = 1, . . . , n. We obtain the

usual stochastic order between series systems when the vector β is switched to the
vector β∗ with respect to the majorization order, and when the vector − log (1− p)
is switched to the vector − log (1 − p∗) in the sense of the weak supermajorization
order. We also discuss the usual stochastic order between series systems by using the
unordered majorization between the vectors − log (1−p) and − log (1−p∗), and the
p-majorization order between the parameters β and β∗. It is also shown that the usual
stochastic order between parallel systems comprising heterogeneous discrete Weibull
components when the vector − log p is switched to the vector − log p∗ in the sense of
the weak supermajorization order. These results enable us to find some lower bounds
for the survival functions of a series and parallel systems consisting of independent
heterogeneous discrete Weibull components.

Keywords: Discrete Weibull distribution; P -majorization order; Unordered majoriza-
tion order; Weak submajorization order; Weak supermajorization order.
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1 Introduction
A random variable X is said to have geometric distribution with parameter p (denoted
by X ∼ Ge(p)) if its probability mass function is

P (X = x) = p (1− p)x−1, x = 1, 2, . . . . (1)
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The survival function of this distribution is given by:
F̄ (x) = P (X > x) = (1− p)x, x = 1, 2, . . . . (2)

The geometric distribution is one of the most fundamental distributions in statistics
and has found widely applications in engineering, game theory, regression, population
selection, and reliability theory. It is also closely related to many well-known distri-
butions such as binomial, Poisson and Gamma distributions. Margolin and Winokur
(1967) studied the order statistics from geometric distribution in the context of inverse
sampling. Jeske and Blessinger (2004) analyzed the maximum order statistics from
heterogeneous geometric distributions and gave approximation formulas for expected
value and variance of the maximum order statistics for the large sample size. They
also pointed out that the maximum order statistics could be used in the real-world
engineering models, such as wireless broadcast transmission systems.

In practice, we come across situations where lifetimes are recorded on a discrete
scale. For example, the on/off switching devices, bulb of photocopier machine, to and
fro motion of spring devices, etc. are some obvious such situations. In the last two
decades, several discrete distributions such as the geometric, negative binomial (NB),
generalized Poisson (GP) and Poisson-inverse Gaussian (PIG) have been employed to
model lifetime data. However, there is a need to find more flexible discrete distribu-
tions to fit various types of data because some available discrete distributions are only
appropriate for modelling over-or under-dispersed data.

The failure-time distribution is use to describe mathematically the life of a device, a
material, or a structure. The exponential, gamma, Weibull and lognormal distributions
are well-known in failure analysis. All these distributions have a continuous-time ran-
dom variable. In failure studies, the time to failure is often measured in the number of
cycles to failure and theretofore becomes a discrete random variable. It is well-known
that the geometric and negative binomial distributions (with discrete random variables)
correspond to the exponential and gamma distributions (with continuous random vari-
ables) respectively. As a discrete alternative to the Weibull distribution, Nakagawa
and Osaki (1975) introduced a discrete Weibull distribution which it is useful in the
failure data in failure studies such as cycles, blows, shocks, or revolutions.

A random variable X is said to have discrete Weibull distribution with parameters
β and p (denoted by X ∼ DW (β, p)) if its survival function is

F̄ (x) = P (X > x) = (1− p)x
β

, β > 0 , x = 1, 2, . . . . (3)
The probability mass function and hazard rate function of this distribution are, respec-
tively, as follow:

P (X = x) = (1− p)(x−1)β − (1− p)x
β

, β > 0 , x = 1, 2, . . . ,

rX(x) =
P (X = x)

P (X ≥ x)
= 1− (1− p)x

β−(x−1)β , β > 0 , x = 1, 2, . . . .

It is important to note that discrete Weibull random variable has DFR property if
β ≤ 1 and has IFR property if β ≥ 1 (Nakagawa and Osaki, 1975).

A random variable X is said to have Weibull distribution with shape parameter β
and scale parameter λ (denoted by X ∼W (β, λ)) if its survival function is given by

F̄ (x;β, λ) = e−(λx)β , x ∈ R+, β ∈ R+, λ ∈ R+.
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It is well-known that the hazard rate of Weibull distribution is decreasing for β < 1,
constant for β = 1, and increasing for β > 1. One may refer to Johnson et al. (1994)
and Murthy et al. (2004) for comprehensive discussions on various properties and
applications of the Weibull distribution. It is of interest to note that if we make the
transformation − log(1− p) = λβ in (3), thus the survival function changes to survival
function of Weibull distribution.

The Weibull distribution has been used to analyze failure in electronic components,
ball bearings, etc. Failures of some devices often depend more on the total number of
cycles than on the total time that they have been used. Such examples are switching
devices, railroad tracks, and tires of automobiles. In this case, the discrete Weibull
distribution will be a good approximation for such devices, materials, or structures
(see Nakagawa and Osaki, 1975).

Since discrete Weibull variable is the discrete counterpart of Weibull variable, thus
it is natural to investigate whether some typical stochastic comparison results with
Weibull variables can be extended to the cases of discrete Weibull variables. For a
comprehensive discussion on various stochastic orderings with Weibull variables, one
may refer to Fang and Zhang (2012), Zhao et al. (2016) and Balakrishnan et al. (2018).

Various ordering results have been established for some classical discrete distribu-
tions such as Bernoulli, binomial, Poisson, geometric and negative binomial. Elaborate
reviews of the available results dealing with many different forms of ordering can be
found in the books by Müller and Stoyan (2002), Lai and Xie (2006), and Shaked and
Shanthikumar (2007).

One of the most commonly used systems in reliability is an r-out-of-n system.
This system comprising of n components, works iff at least r components work, and
it includes parallel and series systems all as special cases corresponding to r = 1 and
r = n, respectively. Let X1, . . . , Xn denote the lifetimes of components of a system
and X1:n ≤ · · · ≤ Xn:n represent the corresponding order statistics. Then, Xn−r+1:n

corresponds to the lifetime of a r-out-of-n system. Due to this direct connection,
the theory of order statistics becomes quite important in studying (n − r + 1)-out-
of-n systems and in characterizing their important properties. The comparison of
important characteristics associated with lifetimes of technical systems is an interesting
topic in reliability theory, since it usually enables us to approximate complex systems
with simpler systems and subsequently obtaining various bounds for important ageing
characteristics of the complex system. A convenient tool for this purpose is the theory
of stochastic orderings.

In this paper, we focus on the series and parallel systems with their component’s
lifetimes follow the discrete Weibull distribution and obtain some ordering results.
Suppose X1, . . . , Xn and Y1, . . . , Yn denote the independent component’s lifetimes of
two systems such that Xi ∼ DW (βi, pi) and Yi ∼ DW (β∗

i , p
∗
i ), i = 1, . . . , n. The

lifetimes of the two series systems are X1:n and Y1:n, respectively. Let us set β =
(β1, . . . , βn), β

∗ = (β∗
1 , . . . , β

∗
n), − log (1 − p) = (− log(1 − p1), . . . ,− log(1 − pn))

and − log (1 − p∗) = (− log(1 − p∗1), . . . ,− log(1 − p∗n)). We will show under some
restrictions on the involved parameters that X1:n is greater than Y1:n with respect to
the usual stochastic order, when the vector β is switched to the vector β∗ with re-
spect to the majorization order, and the vector − log (1−p) is switched to the vector
− log (1 − p∗) in the sense of the weak supermajorization order. We also establish
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the usual stochastic order between X1:n and Y1:n by using the unordered majoriza-
tion between the vectors − log (1 − p) and − log (1 − p∗), and the p-majorization
order between the parameters β and β∗. It is also shown that the usual stochastic
order between parallel systems comprising heterogeneous discrete Weibull components
when the vector − log p is switched to the vector − log p∗ in the sense of the weak
supermajorization order.

2 Preliminaries
In this section, we review some concepts on stochastic orders and majorization principle
that will be used in the sequel. Throughout, the terms “increasing” and “decreasing”
are used for “non-decreasing” and “non-increasing”, respectively.
Definition 2.1. Suppose X and Y are two positive discrete random variables with
probability mass functions P (X = x) and P (Y = y), distribution functions FX(x) =
P (X ≤ x) and FY (y) = P (Y ≤ y), survival functions F̄X(x) and F̄Y (y), respectively.
Then, it is said that X is greater than Y in the usual stochastic order (denoted by
X ≥st Y ) if F̄X(x) ≥ F̄Y (x) for all x ∈ N = {1, 2, . . . }.

See Müller and Stoyan (2002), Shaked and Shanthikumar (2007), and Belzunce
et al. (2016) for elaborate discussions on the theory of stochastic orders and their
applications.

Next, we present some notions of vector majorization and the other related orders,
which have found significant applications in different branches of mathematics such as
matrix analysis, operator theory, probability theory and statistics.
Definition 2.2. For two vectors a = (a1, . . . , an) and b = (b1, . . . , bn), suppose a(1) ≤
· · · ≤ a(n) and b(1) ≤ · · · ≤ b(n) denote, respectively, the components of a and b in
increasing order.

(i) a is said to majorize b (denoted as a
m
≻ b) if

∑i
j=1 a(j) ≤

∑i
j=1 b(j) for i =

1, . . . , n− 1, and
∑n

j=1 a(j) =
∑n

j=1 b(j);

(ii) a is said to weakly supermajorizes b (denoted as a
w
≻ b) if

∑i
j=1 a(j) ≤

∑i
j=1 b(j)

for i = 1, . . . , n;

(iii) a is said to weakly submajorize b ( denoted as a ≻w b) if
∑n

j=i a(j) ≥
∑n

j=i b(j)
for i = 1, . . . , n;

Clearly, the majorization order implies both the weak sumbajorization and super-
majroization orders. Interested readers may refer to Marshall et al. (2011) for com-
prehensive discussions on the theoretical properties as well as the applications of the
above vector orders.

Let us define

Dn = {(x1, . . . , xn) ∈ Rn : x1 ≥ · · · ≥ xn},
D+

n = {(x1, . . . , xn) ∈ Rn : x1 ≥ · · · ≥ xn > 0},
En = {(x1, . . . , xn) ∈ Rn : x1 ≤ · · · ≤ xn},
E+
n = {(x1, . . . , xn) ∈ Rn : 0 < x1 ≤ · · · ≤ xn}.
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Definition 2.3. A function ϕ : A → R is said to be Schur-convex on A ⊂ Rn if for
all a, b ∈ A such that a

m
≻ b, it holds that ϕ(a) ≥ ϕ(b). Further, a function ϕ : A → R

is said to be Schur-concave on A if −ϕ is Schur-convex on A.

The next lemma gives the necessary and sufficient conditions for determining Schur-
convex and Schur-concave functions on the spaces Dn and En.

Lemma 2.4.

(i) Suppose the function ϕ : Dn → R is continuous on Dn and continuously differen-
tiable on the interior of Dn. Then, ϕ is Schur-convex on Dn iff ϕ(k)(x) is decreas-
ing in k ∈ {1, . . . , n}, for all x in the interior of Dn, where ϕ(k)(x) = ∂ϕ(x)/∂ak
(Marshall et al., 2011, p. 83);

(ii) Suppose the function φ : En → R is continuous on En and continuously dif-
ferentiable on the interior of En. Then, φ is Schur-convex on En iff φ(k)(x) is
increasing in k ∈ {1, . . . , n}, for all x in the interior of En (Kundu et al., 2016).

Remark 2.5. In view of the proof of Lemma 2.4, it follows that its results remain true
if the spaces Dn and En replace by the spaces D+

n and E+
n , respectively.

The next lemma given by Haidari et al. (2019) characterizes the functions that
preserve the weak submajorization and supermajorization orders on the spaces D+

n

and E+
n .

Lemma 2.6. Suppose the function ϕ : D+
n (E+

n ) → R is continuous on D+
n (E+

n ) and
continuously differentiable on the interior of D+

n (E+
n ). Then,

(i) ϕ preserves the weak submajorization order on D+
n (E+

n ) iff ϕ(k)(x) is a non-
negative decreasing (non-negative increasing) function in k ∈ {1, . . . , n}, for all
x in the interior of D+

n (E+
n );

(ii) ϕ preserves the weak supermajorization order on D+
n (E+

n ) iff ϕ(k)(x) is a non-
positive decreasing (non-positive increasing) function of k ∈ {1, . . . , n}, for all x
in the interior of D+

n (E+
n ).

Suppose π = (π1, . . . , πn) is an element of the set P , the set of all permutation of
{1, 2, . . . , n}. Let us define

Dπ
n = {(x1, . . . , xn) ∈ Rn : xπ1

≥ · · · ≥ xπn
},

D+π
n = {(x1, . . . , xn) ∈ Rn : xπ1 ≥ · · · ≥ xπn > 0}.

Definition 2.7. Consider vectors u = (u1, . . . , un) and v = (v1, . . . , vn) in Rn and
suppose that p = (p1, . . . , pn) is a vector with positive components. Then, u is said
to be p-majorize v on Dπ

n , denoted by u≻m
pv on Dπ

n , if u,v ∈ Dπ
n ,

∑k
i=1 pπi

uπi
≥∑k

i=1 pπi
vπi

for k = 1, . . . , n− 1, and
∑n

i=1 pπi
uπi

=
∑n

i=1 pπi
vπi

.

Interested readers may refer to Cheng (1977) for a comprehensive discussion on the
p-majorization orders and their properties.
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It is interesting to find specific conditions under which the functions preserving
the weighted majorization order can be determined. In the following, we discuss this
problem by recalling a general statement. Consider function ϕ : Rn × R+n → R such
that

ϕ(u;p) = ϕ(uπ ;pπ) for all u ∈ Rn,p ∈ R+n
and π ∈ P, (4)

and

u≺pv on Dn ⇒ ϕ(u;p) ≤ ϕ(v;p). (5)

If u≺pv on Dπ
n , it then easily follows that uπ≺pπvπ on Dn, and hence by (4) and

(5) we have

ϕ(u;p) = ϕ(uπ ;pπ) ≤ ϕ(vπ ;pπ) = ϕ(v;p).

Thus, if the function ϕ is permutation invariant (the property given in (4)) and
preserves the p-majorization order on Dn, then it also preserves the p-majorization
order on Dπ

n for all π ∈ P. This statement implies the preserving property of the
permutation invariant’s functions only on the space Dn.

It should be noted here that the p-majorization order compares only the similarly
ordered vectors. When the two vectors are ordered in different direction, then there
exists a class of functions that do not preserve the p-majorization order; see page 17 of
Cheng (1977) for more details. In p-majorization, the parameters vector are compared
in weight, whereas this is not the case in the majorization. Also, in the p-majorization
order, we can enter another additional parameter from the parameters into calculation.

In the case of differentiable functions, we have the following lemma to check the
preservation property of the weighted majorization order.

Lemma 2.8. (Cheng, 1977, p. 25) Consider differentiable function ϕ : Rn×R+n → R
satisfying (4). Then, (5) is satisfied iff for all u ∈ Rn and all i, j = 1, . . . , n

(ui − uj)

(
1

pi

∂ϕ(u,p)

∂ui
− 1

pj

∂ϕ(u,p)

∂uj

)
≥ 0. (6)

Definition 2.9. u is said to be unordered majorize v, denoted by u
uo
≻ v, if

∑k
i=1 ui ≥∑k

i=1 vi for k = 1, . . . , n− 1, and
∑n

i=1 ui =
∑n

i=1 vi.

It is of important to note that in general, there is no correspondence between
majorization and unordered majorization. But checking the condition of unordered is
easier than majorization.

For more details on the unordered majorization and its applications, see Parker and
Ram (1977). In the case of differentiable functions, we have the following lemma to
check the preservation property of the unordered majorization order.

Lemma 2.10. (Parker and Ram, 1977) Suppose J ⊂ R+n and ϕ : R+n → R+ is a
differentiable function. Then,

x
uo
≼ y on J ⇐⇒ ϕ(x) ≤ ϕ(y)

iff ϕ(k)(z) = ∂ϕ(z)/∂zk is decreasing in k ∈ {1, . . . , n}.
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3 Stochastic comparisons for series systems
In this section, the usual stochastic order between series systems with discrete Weibull
components is discussed. Let us define

Sn =

{
(a, b) =

(
a1, . . . , an
b1, . . . , bn

)
: ai, bj > 0 and (ai − aj)(bi − bj) ≤ 0, i, j = 1, . . . , n

}
.

The next theorem provides the usual stochastic between two series systems when
components follow discrete Weibull distribution.
Theorem 3.1. Suppose X1, . . . , Xn and Y1, . . . , Yn are two sets of independent non-
negative random variables with Xi ∼ DW (βi, pi) and Yi ∼ DW (β∗

i , p
∗
i ), i = 1, . . . , n. If

β
m
≻ β∗ on D+

n and − log (1−p)
w
≻ − log (1−p∗) on E+

n , then we have X1:n ≥st Y1:n.

Proof. Suppose Z1, . . . , Zn is another set of independent non-negative random variables
with Zi ∼ DW (β∗

i , pi), i = 1, . . . , n. First, we establish X1:n ≥st Z1:n when β
m
≻ β∗.

The survival function of X1:n is as follows:

F̄X1:n
(x;β,p) = P (X1:n > x) =

n∏
i=1

(1− pi)
xβi

, x = 1, 2, . . . .

In order to obtain the required result, it suffices to show that F̄X1:n(x;β,p) is Schur-
convex when β belongs to D+

n and − log (1− p) in E+
n . For this purpose, we have

∂F̄X1:n
(x;β,p)

∂βi
= log(x)xβi log(1− pi) F̄X1:n

(x;β,p),

and then
∂F̄X1:n

(x;β,p)

∂βi
= log(x)xβi log(1− pi) F̄X1:n(x;β,p)

≥ log(x)xβi+1 log(1− pi)F̄X1:n
(x;β,p), (sinceβ ∈ D+

n )

≥ log(x)xβi+1 log(1− pi+1)F̄X1:n
(x;β,p), (since − log (1− p) ∈ E+

n )

=
∂F̄X1:n

(x;β,p)

∂βi+1
.

Then, this observation, it readily follows that F̄X1:n
(x;β,p) is Schur-convex with re-

spect to β.
Now, we prove that Z1:n ≥st Y1:n when − log (1 − p)

w
≻ − log (1 − p∗). Let us

define the function ϕ : R+n × R+n → R+ as

ϕ(β∗, s) = F̄Z1:n(x) =

n∏
i=1

e−si x
β∗
i ,

where s = − log(1 − pi), i = 1, . . . , n. For obtaining the desired result, according to
Part (ii) of Lemma 2 , we must show that ∂ϕ(β∗, s)/∂sk is non-positive and increasing
on E+

n . Therefore, we have
∂ϕ(β∗, s)

∂sk
= −xβ

∗
k ϕ(β∗, s),
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which shows that ϕ(β∗, s) is decreasing. On the other hand,

∂ϕ(β∗, s)

∂sk
= −xβ

∗
k ϕ(β∗, s) ≤ −xβ

∗
k+1 ϕ(β∗, s) =

∂ϕ(β∗, s)

∂sk+1

which shows that ∂ϕ(β∗, s)/∂sk is increasing on E+
n . Now, by combining X1:n ≥st Z1:n

and then Z1:n ≥st Y1:n, we conclude X1:n ≥st Y1:n.

It is important to note that when β1 = · · · = βn = 1 and β∗
1 = · · · = β∗

n = 1,
the DW distribution becomes the geometric distribution with parameters pi and p∗i .
Therefore, the next corollary follows immediately from Theorem 3.1, which has been
verified by Zu and Hu (2011).

Corollary 3.1. Suppose X1, . . . , Xn and Y1, . . . , Yn are two sets of independent non-
negative random variables with Xi ∼ Ge(pi) and Yi ∼ Ge(p∗i ), i = 1, . . . , n. If
− log (1− p)

w
≻ − log (1− p∗) then, we have X1:n ≥st Y1:n.

Remark 3.2. Theorem 3.1 can be used to compute a lower bound for the survival
function of series systems based on a heterogeneous sample in terms of the survival
function of series systems based on a homogeneous sample. More precisely, setting
β̄ = 1

n

∑n
i=1 βi and p̃ = 1− (

∏n
i=1(1− pi))

1/n. Then it can be easily seen that

β
m
≻ β̄ and − log (1− p)

w
≻ − log (1− p̃).

Thus, by using these observations and Theorem 3.1, we can obtain the following lower
bound for the distribution function of X1:n based on that of Y1:n:

F̄X1:n
(x;β,p) ≥ (1− p̃)

nxβ̄

, x = 1, 2, . . . .

We may question whether the result of Theorem 3.1 could hold if (β,− log (1 −
p)) ̸∈ Sn and (β∗,− log (1 − p∗)) ̸∈ Sn. The following discussion provides a coun-
terexample.

Example 3.3. Suppose X1, X2, X3 and Y1, Y2, Y3 are two sets of independent non-
negative random variables with Xi ∼ DW (βi, pi) and Yi ∼ DW (β∗

i , p
∗
i ), i = 1, 2, 3.

Assume that (β1, β2, β3) = (1, 2, 3), (β∗
1 , β

∗
2 , β

∗
3) = (1.1, 2, 2.9), (p1, p2, p3) = (1 −

e−1, 1 − e−2, 1 − e−3) and (p∗1, p
∗
2, p

∗
3) = (1 − e−1, 1 − e−2.1, 1 − e−3.2). It is obvious

to observe that β
m
≻ β∗, − log (1 − p)

w
≻ − log (1 − p∗), but (β,− log (1 − p))

and (β∗,− log (1− p∗)) are not in Sn. Now, by using the above matrices in survival
function of X1:3 and Y1:3, we observe that

F̄X1:3
(1,β,− log (1− p)) ≃ 0.0024787

> F̄Y1:3
(1,β∗,− log (1− p∗)) ≃ 0.001863

F̄X1:3(3,β,− log (1− p)) ≃ 5.03× 10−45

< F̄Y1:3
(3,β∗,− log (1− p∗)) ≃ 5.23× 10−44

Thus, these distribution functions cross, which means that X1:3 ̸≥st Y1:3.
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Theorem 3.2. Suppose X1, . . . , Xn and Y1, . . . , Yn are two sets of independent non-
negative random variables with Xi ∼ DW (βi, pi) and Yi ∼ DW (β∗

i , p
∗
i ), i = 1, . . . , n. If

(β1, . . . , βn) ≻m
− log (1−p) (β

∗
1 , . . . , β

∗
n) on the Dπ

n and − log (1− p)
uo
≻ − log (1− p∗)

then we have X1:n ≤st Y1:n.

Proof. Suppose Z1, . . . , Zn is another set of independent non-negative random variables
with Zi ∼ DW (β∗

i , pi), i = 1, . . . , n. Setting si = − log(1− pi), for i = 1, . . . , n. Then,
the survival function of X1:n is as follows:

F̄X1:n(x; s,β) = P (X1:n > x) =

n∏
i=1

e− si x
βi
, x = 1, 2, . . . .

It is evident to observe that for all s ∈ R+n
,β ∈ R+n and π ∈ P ,

F̄X1:n
(x; s,β) = F̄X1:n

(x; sπ ;βπ).

Now, we must be check the (5). The partial derivative of F̄X1:n(x; s,β) with respect
to βi is as follows:

∂F̄X1:n(x; s,β)

∂βi
= − si log(x)x

βi F̄X1:n(x; s,β),

then we have

I = (βi − βj)

(
1

si

∂F̄X1:n(x; s,β)

∂βi
− 1

sj

∂F̄X1:n(x; s,β)

∂βj

)
= (βi − βj) log(x) F̄X1:n

(x; s,β)
{
xβj − xβi

}
It is easy to observe that I ≤ 0, and then we can conclude that X1:n ≤st Z1:n.

Now, suppose that Zi ∼ DW (β∗
i , pi) and Yi ∼ DW (β∗

i , p
∗
i ), i = 1, . . . , n. Assume

that − log (1− p)
uo
≻ − log (1− p∗) or equivalently s

uo
≻ s∗. The survival function of

Z1:n is as follows:

F̄Z1:n(x; s,β
∗) =

n∏
i=1

e− si x
β∗
i , x = 1, 2, . . . .

The partial derivative of F̄Z1:n
(x; s,β∗) with respect to si is as follows:

∂F̄Z1:n(x; s,β
∗)

∂si
= −xβ

∗
i F̄Z1:n

(x; s,β∗).

Since β∗ ∈ Dn, then β∗
i ≥ −β∗

i+1 and we do get

∂F̄Z1:n
(x; s,β∗)

∂si
= −xβ

∗
i F̄Z1:n

(x; s,β∗) ≤ −xβ
∗
i+1 F̄Z1:n

(x; s,β∗) =
∂F̄Z1:n

(x; s,β∗)

∂si+1
,

which according to Lemma 4, it shows that Z1:n ≤st Y1:n. Now, by combining X1:n ≤st

Z1:n and Z1:n ≤st Y1:n hence the theorem.
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The following example highlights the difference between Theorem 3.1 and Theorem
3.2.

Example 3.4. Suppose X1, . . . , X4 and Y1, . . . , Y4 are two sets of independent non-
negative random variables with Xi ∼ DW (βi, pi) and Yi ∼ DW (β∗

i , p
∗
i ), i = 1, . . . , 4.

Assume that (β1, β2, β3, β4) = (1, 4, 5, 7), (β∗
1 , β

∗
2 , β

∗
3 , β

∗
4) = (1.1, 3.9, 4.9, 6.3), (p1, p2,

p3, p4) = (1 − e−5.7, 1 − e−6, 1 − e−8.5, 1 − e−0.5) and (p∗1, p
∗
2, p

∗
3, p

∗
4) = (1 − e−4.5, 1 −

e−6.5, 1 − e−7.5, 1 − e−2). It is obvious to observe that β
m
≻ β∗, − log (1 − p)

w
≻

− log (1 − p∗), (β,− log (1 − p)) ∈ Sn, and (β∗,− log (1 − p∗)) ∈ Sn. Thus, ac-
cording to Theorem 3.1, we conclude that X1:4 ≥st Y1:4. On the other hand, since
(β1, . . . , βn) ̸≻m

− log (1−p) (β∗
1 , . . . , β

∗
n) on the Dπ

n , therefore Theorem 3.2 is not appli-
cable in this case.

4 Stochastic comparisons for parallel systems
In this section, the usual stochastic order between parallel systems with discrete Weibull
components is discussed. For this purpose, we need the following lemma.

Lemma 4.1. (Balakrishnan et al. (2015)) Let the function ψ : (0,∞)×(0, 1) → (0,∞)
be defined as

ψ(α, t) =
α (1− t) tα−1

1− tα
.

Then,

(i) for each 0 < t < 1, ψ(α, t) is decreasing with respect to α;

(ii) for each 0 < α ≤ 1, ψ(α, t) is decreasing with respect to t; and

(iii) for each α ≥ 1, ψ(α, t) is increasing with respect to t.

Theorem 4.1. Suppose X1, . . . , Xn and Y1, . . . , Yn are two sets of independent non-
negative random variables with Xi ∼ DW (βi, pi) and Yi ∼ DW (βi, p

∗
i ), i = 1, . . . , n.

If − log p
w
≻ − log p∗ on D+

n , then for β on D+
n , we have Xn:n ≤st Yn:n.

Proof. The distribution function of Xn:n is as follows:

FXn:n
(x) = P (Xn:n ≤ x) =

n∏
i=1

(
1− (1− pi)

xβi
)
, x = 1, 2, . . . .

Let us define the function ϕ : R+n × R+n → R+ as

ϕ(β, s) = FXn:n(x) =

n∏
i=1

(1− (1− e−si)x
βi
),

where si = − log pi, i = 1, . . . , n. From the assumption − log p ∈ D+
n , we conclude that

s1 ≥ · · · ≥ sn > 0. For obtaining the desired result, according to Part (ii) of Lemma
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2, we must show that (∂/∂sk)ϕ(β, s) is non-positive and decreasing with respect to k,
when s ∈ E+

n and β ∈ E+
n . Therefore, we have

∂ϕ(β, s)

∂sk
= −xβk

e−sk(1− e−sk)x
βk−1

1− (1− e−sk)x
βk

ϕ(β, s) = −ψ(xβk , 1− e−sk),

which ψ is defined in Lemma 4.1 and shows that (∂/∂sk)ϕ(β, s) is non-positive with
respect to k. On the other hand,

∂ϕ(β, s)

∂sk
= −xβk

e−sk(1− e−sk)x
βk−1

1− (1− e−sk)x
βk

ϕ(β, s)

= −ψ(xβk , 1− e−sk)

= −ψ(xβk+1 , 1− e−sk) (Part(i) of Lemma 4.1 and β ∈ D+
n )

= −ψ(xβk+1 , 1− e−sk+1) (Part(iii) of Lemma 4.1)

=
∂ϕ(β, s)

∂sk+1

which shows that (∂/∂sk)ϕ(β, s) is decreasing with respect to k. Now, by combining
these observations, we conclude Xn:n ≤st Yn:n.

Conclusion remarks
In this paper, we obtain the usual stochastic order between series systems comprising
heterogeneous discrete Weibull components when the vector β is switched to the vector
β∗ with respect to the majorization order, and when the vector − log (1 − p) is
switched to the vector − log (1 − p∗) in the sense of the weak supermajorization
order. We also discuss the usual stochastic order between series systems by using the
unordered majorization between the vectors − log (1−p) and − log (1−p∗), and the
p-majorization order between the parameters β and β∗. It is also shown that the usual
stochastic order between parallel systems comprising heterogeneous discrete Weibull
components when the vector − log p is switched to the vector − log p∗ in the sense
of the weak supermajorization order.
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