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Abstract: In this paper, statistical evidences in lifetimes of sequential r-out-of-n sys-
tems, which are modelled by the concept of sequential order statistics (SOS), coming
from homogeneous exponential populations are considered. Weak and misleading evi-
dences in SOS for hypotheses about the population parameter are derived in explicit
expressions and their behaviours with respect to the model parameters are studied in
details. Optimal sample sizes given a minimum desired level for the decisive and the
correct probabilities are provided. It is shown that the optimal sample size does not
depend on some model parameters.
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1 Introduction
The concept of sequential order statistics (SOSs), introduced by Kamps (1995), is
an extension of the usual order statistics (OSs) and used for modelling lifetimes of
sequential r-out-of-n systems. Specifically, consider a given r-out-of-n system consisting
of n components and X1, · · · , Xn denote the corresponding component lifetimes. Then,
the system lifetime (T ) coincide to the r-th order statistics among X1, · · · , Xn, denoted
by Xr:n. In the usual r-out-of-n systems, it is assumed that the lifetimes X1, · · · , Xn are
independent and identically distributed (i.i.d.) with a common cumulative distribution
function (CDF), say F . Notice that in these systems failing a component does not
change distributions of lifetimes of surviving components.

Motivated by Cramer and Kamps (1996, 2001a), in practice, the failure of a com-
ponent may result in a higher load on the remaining components and hence causes the
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distribution of the surviving components change. Examples of such phenomena include
automobile industries, gas and oil transmission pipelines, etc. In these cases, the system
lifetimes are usually modelled by SOSs. To see this, suppose that Fj , for j = 1, · · ·n,
denotes the common CDF of the i.i.d lifetime components when n− j +1 components
are working. The components begin to work at time t = 0 independently with the com-
mon CDF F1. When at time x1, the first failure occurs, the remaining n−1 components
work independently with the common CDF F2. This process continues to n − r + 1
components independently with the common CDF Fr work until the r-th failure occurs
at time xr and hence the whole system fails. The mentioned system is called dynamic
system or sequential r-out-of-n system and the system lifetime coincides to r-th com-
ponent failure time, denoted by X⋆

(r). In the literature, (X⋆
(1), · · · , X

⋆
(n)) is called SOSs

from F1, F2, · · · , Fn and denoted by (X⋆
(1), · · · , X

⋆
(n)) ∼ SOS(F1, F2, · · · , Fn); For other

formal definitions and properties of SOS, see, e.g., Cramer and Kamps (1996, 2001a,b,
2003).

The problem of estimating parameters on the basis of SOS has been considered
in the literature. For example, Cramer and Kamps (1996) considered the problem of
estimating the parameters on the basis of s independent multiple SOSs samples under
a conditional proportional hazard rates (CPHR) model, defined by F̄j(t) = F̄

αj

0 (t) for
j = 1, · · · , r, where the underlying CDF F0(t) is the exponential distribution, i.e.

F0(x;σ) = 1− exp
{
−
(x
σ

)}
, x > 0, σ > 0. (1)

In this case, the hazard rate function of the CDF Fj , defined by hj(t) = fj(t)/F̄j(t)
for positive real numbers α1, · · · , αr, t > 0 and j = 1, · · · , n, is proportional to the
hazard rate function of the baseline CDF F0, i.e. hj(t) = αjh0(t). Following Cramer
and Kamps (1996), the available data may be represented as

x =

 x11 . . . x1r

... . . . ...
xs1 . . . xsr

 , (2)

where the i-th row of the matrix x in (2) denotes the SOS sample coming from the
i-th population. Statistical inference on the basis of SOS has been considered in
literature; see, e.g, Balakrishnan et al. (2012), Bedbur (2010), Beutner and Kamps
(2009), Burkschat and Navarro (2011), Cramer and Kamps (2001a), Esmailian and
Doostparast (2014), Hashempour and Doostparast (2016, 2017), Schenk et al. (2011),
Shafay et al. (2014) and references therein. Notice that for the special case r = n and
α1 = · · · = αn, the SOS reduce to ordinary order statistics based on a random sample
from the CDF F1. See also Table 1 of Cramer and Kamps (2001a).

In this paper, we consider evidences in independent multiple SOS samples coming
from homogeneous exponential populations given by (2) under the above-mentioned
CPHR model. Therefore, the rest of this paper is organized as follow: In Section 2 , a
review on statistical evidence is given. In Section 3, statistical evidences in SOS from
exponential populations are derived in explicit expressions and their behaviours with
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respect to the model parameters are studied in details. In Section 4, optimal sample
sizes given a minimum desired level for the decisive and the correct probabilities are
provided. Section 5 concludes.

2 A review on statistical evidence

In this section, we provide a brief review on the topic of statistical evidence due to
Royall (1997). Some non-statistical scientists misuse statistical methods which lead
to the misinterpretation of observations. For example, the decision-making paradigms
since the work of Neyman and Pearson in the 1930s, have been formulated not in terms
of interpreting data as evidence, but in terms of choosing between alternative course of
actions. This lead to the current situation in which the Neyman-Pearson theory view
common statistical procedures as decision-making tools, while much of statistical prac-
tice consists of using the same procedures for a different purpose, namely, interpreting
data as evidence. In the Neyman-Pearson theory, a test of two hypotheses H1 and H2

is represented as a procedure for choosing between two actions. But in applications,
when an optimal test chooses H2, it is often taken to mean that data are evidence
favoring H2 over H1. This interpretation can be quite wrong. For more details, see
Blume (2002, 2011) and Royall (1997, 2000).

As mentioned above, the errors are usually quantitative, as when statistical evidence
is judged to be weaker or stronger than it really is. So evidence is judged to support
one hypothesis over another when the opposite is true. A key question is “when a
certain hypothesis is preferred to others”. In other words, when is it right to say
that the observations are evidence in favour of one hypothesis vis-a-vis another? The
answer to this fundamental question can be answered by Bayesian methods. But, the
Bayesian methods need prior knowledge on the hypotheses. To avoid this problem,
one may use non-informative priors or references analysis which are solely based on the
observed data. In other words, one may consider the objective priors and then derive
the posterior distributions of the hypotheses. Then the mentioned question can be
answered by the posteriors; see, e.g., Berger (1985) and references therein. This paper
considers an alternative approach called evidential statistics which is also solely based
on data.

Following Royall (1997), let λ(> 0) be any data-based measure of support of H1

against H2. Large (Small) values of λ are interpreted as evidence given by data in
favor of H1(H2). The probabilities of observing strong misleading evidence under Hi

(i = 1, 2) is

M⋆
1 = P

(
λ <

1

k

∣∣∣∣H1 is correct
)
, (3)

M⋆
2 = P

(
λ > k

∣∣∣∣H2 is correct
)
, (4)

respectively, where k is a known constant greater than unity. The probability of weak
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evidence under Hi (i = 1, 2) is

W ⋆
i = P

(
1

k
≤ λ ≤ k

∣∣∣∣Hi is correct
)
. (5)

3 SOS-based evidences
Let X⋆

(1), · · · , X
⋆
(r) be the first r SOS. The joint probability density function of

(X⋆
(1), · · · , X

⋆
(r)) is (Cramer and Kamps (2001a))

f(y1, · · · , yr) = A

r−1∏
j=1

[
fj(yj)

(
F̄j(yj)

F̄j+1(yj)

)n−j
]
fr(yr)F̄r(yr)

n−r, (6)

for y1 < y2 < · · · < yr, r = 1, · · · , n, where A := n(n − 1) · · · (n − r + 1) and
F̄j(.) = 1− Fj(.), j = 1, · · · , n. From (6), the LF of the data given by (2) reads

L(F1, · · · , Fr;x) = As
s∏

i=1

r−1∏
j=1

[
fj(xij)

(
F̄j(xij)

F̄j+1(xij)

)n−j
]
fr(xir)F̄r(xir)

n−r

 . (7)

Under the CPHR modelin section 1 and assuming that the baseline CDF in the i-th
parent population, for i = 1, · · · , s, follows the exponential distribution with mean σi,
the likelihood function ( LF) of the available data is (Cramer and Kamps (1996))

L(σ1, · · · , σs,α;x) = As

 r∏
j=1

αj

s(
s∏

i=1

1

σi

)r

exp
{
−

s∑
i=1

r∑
j=1

(xijmj

σi

)}
, (8)

where α= (α1, · · · , αr) and mj = (n − j + 1)αj − (n − j)αj+1, for j = 1, · · · , r, with
convention αr+1 ≡ 0. When the baseline exponential populations are homogeneous,
the LF (8) reduces to

L(σ,α;x) = As

 r∏
j=1

αj

s(
1

σ

)sr

exp

{
−

(∑s
i=1

∑r
j=1 xijmj

σ

)}
, (9)

where σ is the common mean of the baseline CDFs.

Remark 3.1. Cramer and Kamps (1996) show that 2σ−1
∑s

i=1

∑r
j=1 xijmj ∼ χ2rs,

where χν stands for the chi-square distribution ν on degrees of freedom.

In sequel, we consider evidences in the available data given by (2) for the problem
of hypotheses testing

H1 : σ = σ1 v.s H2 : σ = σ2 (10)
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where σ1 and σ2 are known positive constants and 0 < σ1 < σ2. To do this, Equation
(9) gives the likelihood ratio (LR) for the null hypothesis H1 against the alternative
H2, i.e.

λ =
L1

L2
=

(
σ2

σ1

)sr

exp

−
(

1

σ1
− 1

σ2

) s∑
i=1

r∑
j=1

xijmj

 . (11)

From Remark 3.1 and Equations (3) and (11), the misleading probability is then
derived as

M⋆
1 = P

(σ2

σ1

)sr

exp

−
(

1

σ1
− 1

σ2

) s∑
i=1

r∑
j=1

xijmj

 <
1

k

∣∣∣∣∣∣σ = σ1


= 1− P

 s∑
i=1

r∑
j=1

xijmj <

 ln
(
k
(

σ2

σ1

)sr)
1
σ1

− 1
σ2

∣∣∣∣∣∣σ = σ1


= 1− P

χ2rs <

2 ln
(
k
(

σ2

σ1

)sr)
σ1

(
1
σ1

− 1
σ2

)
∣∣∣∣∣∣σ = σ1


= 1− Fχ2rs

2 ln
(
k
(

σ2

σ1

)sr)
1− σ1

σ2

 ,

where Fχν is the CDF of the χν-distribution and “ln” calls for the natural logarithm.
Similar procedures yield the following proposition. The details are given in the ap-
pendix.

Proposition 3.2. Let τ = σ2/σ1 ≥ 1. The misleading and weak evidences based on
independent s SOS samples from homogeneous exponential population under the CPHR
model are

M⋆
1 = 1− Fχ2rs

(
2 ln (kτ sr)

1− τ−1

)
, (12)

M⋆
2 = Fχ2rs

(
2 ln ( τ sr/k)

τ − 1

)
, (13)

W ⋆
1 = Fχ2rs

(
2 ln (kτ sr)

1− τ−1

)
− Fχ2rs

(
2 ln (τ sr/k)

1− τ−1

)
, (14)

W ⋆
2 = Fχ2rs

(
2 ln (kτ sr)

τ − 1

)
− Fχ2rs

(
2 ln (τ sr/k)

τ − 1

)
. (15)

In particular, the probabilities in Equations (12)-(15) are free of the size n of the system
and the parameter vector α= (α1, · · · , αr) of the CPHR model.

Remark 3.3. Applying the well-known L’ Hopital rule, one can prove that

• limτ→+∞ M⋆
i = limτ→+∞ W ⋆

i = 0. It may be noticed that when σ2 tends to
infinity, the distance between the means of two populations will be increasing as
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much as possible. Thus, the probabilities of misleading and weak evidences tend
to zero. So, even with few data we can make the decision about true hypothesis.

• limτ→1+ M⋆
i = limτ→1+ (1−W ⋆

i ) = 0. Note that when σ2 tends to σ1, the
distance between the means of two populations will be decreasing as much as
possible. So, M⋆

1 and M⋆
2 vanish and W ⋆

1 and W ⋆
2 tend to one. Hence, one can

not make decision based on the available data and needs more SOS samples.

An interesting topic in statistical evidence is determination of the global maximum
of the misleading evidences. Here, the maximization of M⋆

1 in Equation (12) is equiv-
alent to minimization of h(τ) := ln (kτ sr)/(1− τ−1) with respect to τ ≥ 1. After some
algebraic manipulations, one can see that the global minimum of h(τ) is derived by
solving the non-linear equation ∂h(τ)/∂τ = 0, or equivalently τ − ln (τ) = 1+ln(k)/sr.
Note that the function h(τ) is convex and therefore the solution of the mentioned
equation is unique. Similar arguments for the misleading M⋆

2 in Equation (13) imply
the next proposition.
Proposition 3.4. Let u(t) := t− ln(t)− ln(k)/(sr)− 1, for t ≥ 1. The points of global
maximum of M⋆

1 and M⋆
2 , as a function of τ , are derived as the unique solutions of

the non linear equations u(τ) = 0 and u(1/τ) = 0, respectively.

Table 1: Optimal sample size for some selected values of r, k, τ and ξ.
ξ

r k τ 0.7 0.8 0.9 0.95 0.99
3 3 2 4 5 8 11 19

5 1 1 2 3 4
8 1 1 1 2 3

8 2 6 7 10 13 21
5 2 2 2 3 4
8 1 1 2 2 3

5 3 2 2 3 5 7 11
5 1 1 1 2 3
8 1 1 1 1 2

8 2 4 5 6 8 13
5 1 1 2 2 3
8 1 1 1 1 2

15 3 2 1 1 2 3 4
5 1 1 1 1 1
8 1 1 1 1 1

8 2 2 2 2 3 5
5 1 1 1 1 1
8 1 1 1 1 1

4 Optimal sample size
Here, we seek an optimal value for s by minimizing P ⋆ = max{M⋆

1 ,M
⋆
2 } with a con-

straint on the PD = min{D1, D2} where D1 and D2 are called decisive and correct ev-
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idences, defined by D1 = P (λ > k|H1 is correct) and D2 = P (λ < 1/k|H2 is correct),
respectively.
Notice that, Di +Mi +Wi = 1, for i = 1, 2. Based on the available data (2) and under
the CPHR model, the decisive and correct evidences are given by, respectively

D1 = Fχ2rs

(
2 ln (τ sr/k)

1− τ−1

)
, (16)

D2 = 1− Fχ2rs

(
2 ln (kτ sr)

τ − 1

)
. (17)

Notice that PD is free of the sample size (n) and the parameter vector α= (α1, · · · , αr)
in the CPHR model.

As mentioned by De Santis (2004), a sample size that guarantees PD reaches a
desired level ξ, is often enough to also bound the probabilities of weak and mislead-
ing evidences. Hence, for chosen ξ(0, 1) and k, we then need to solve the following
optimization problem:

s⋆ = min{s ≥ 1 : PD ≥ ξ}. (18)

Table 1 presents the values of the optimal sample size s⋆ given by (18) for some selected
values of n, r, k, τ and ξ. From Table 1, one can empirically see that the optimal value
s⋆ is non-decreasing (non-increasing) in ξ and k (in τ and r), as we expected.

5 Conclusions and further remarks
Here, we considered statistical evidences in independent SOS arising from exponential
populations. Weak and misleading evidences for simple hypotheses about the pop-
ulation parameter were derived in explicit expressions under the CPHR model. We
assumed that the parameter vector α= (α1, · · · , αr) of the CPHR model is known.
One can see that the measure λ given by (11) does not depend on the vector α. Hence,
our findings in the preceding sections hold for the cases when the vector α in the CPHR
model is unknown. Also, we show that the optimal sample size s⋆ given by (18) is free
of the vector α in the CPHR model and n. The results of this paper may be extended
in some directions. For example, one may consider statistical evidence for composite
hypotheses. To do this, new measure of supports needs to be developed. Also, one
may consider other lifetime distributions such as Pareto and Log-normal distributions.
Works in theses directions are currently studied by the authors and we hope to report
findings in a future paper.

References
Balakrishnan, N. Kamps, U. and Kateri, M. (2012). A Sequential Order Statistics

Approach to Step-Stress Testing. Annals of the Institute of Statistical Mathematics,
64(2), 302–318.

Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis. Springer-Verlag,
New York.



Mathematics of evidences in dynamic systems 98

Bedbur, S. (2010). UMPU Tests based on Sequential order statistics. Journal of
Statistical Planning and Inference, 140, 2520–-2530.

Beutner, E. and Kamps, U. (2009). Order restricted statistical inference for scale
parameters based on sequential order statistics. Journal of Statistical Planning and
Inference, 139, 2963–2969.

Blume, J.D. (2002). Likelihood methods for measuring statistical evidence. Statistics
in Medicine, 21(17), 2563–2599.

Blume, J.D. (2011). Likelihood and its evidential framework. In: Gabbay DM, Woods J
(eds) Handbook of the philosophy of science: philosophy of statistics. North Holland,
San Diego, 493–511.

Burkschat, M. and Navarro, J. (2011). Aging properties of sequential order statistics.
Probability in the Engineering and Informational Science, 25, 449–467.

Cramer, E. and Kamps, E. (1996). Sequential order statistics and k-out-of-n systems
with sequentially adjusted failure rates. Annals of the Institute of Statistical Math-
ematics, 48(3), 535–549.

Cramer, E. and Kamps, U. (2001a). Estimation with sequential order Statistics from
exponential distributions. Annals of the Institute of Statistical Mathematics, 53(2),
307–324.

Cramer, E. and Kamps, U. (2001b). Sequential k-out-of-n systems. In Balakrishnan, N.
and Rao, E. editors, Handbook of Statistics, Advances in Reliability, 20(12), 301–372.

Cramer, E. and Kamps, U. (2003). Marginal distributions of sequential and generalized
order statistics. Metrika, 58, 293–310.

De Santis, F. (2004). Statistical evidence and sample size determination for Bayesian
hypothesis testing. Journal of Statistical Planning and Inference, 34(124), 121–144.

Doostparast, M. and Emadi, M. (2006). Statistical evidence methodology for model
acceptance based on record values. Journal of the Korean Statistical Society, 35(2),
167–177.

Doostparast, M. and Emadi, M. (2014). Evidential inference and optimal sample size
determination on the basis of record values and record times under random sampling
scheme. Statistical Methods and Applications, 23, 41–50.

Esmailian, M. and Doostparast, M. (2014). Estimation based on sequential order
statistics with random removals. Probability and Mathematical Statistics, 34(1),
81–95.

Hashempour, M. and Doostparast, M. (2016). Statistical evidences in sequential or-
der statistics arising from a general family of lifetime distributions. ISTATISTIK,
Journal of the Turkish Statistical Association, 9(1), 29–41.



99 M. Hashempour and M. Doostparast

Hashempour, M. and Doostparast, M. (2017). Bayesian inference on multiply sequen-
tial order statistics from heterogeneous exponential populations with GLR test for
homogeneity. Communications in Statistics-Theory and Methods, 46(16), 8086-8100.

Kamps, U. (1995). A concept of generalized order statistics. Journal of Statistical
Planning and Inference, 48, 1–23.

Royall, R. (1997). Statistical Evidence: A Likelihood Paradigm. Chapman and Hall,
New York.

Royall, R. (2000). On the probability of observing misleading statistical evidence,
Journal of the American Statistical Association, 95, 760–780.

Schenk, N., Burkschat, M., Cramer, E. and Kamps, U. (2011). Bayesian Estimation
and Prediction with Multiply Type-II Censored Samples of Sequential Order statis-
tics from one- and two-Parameter Exponential Distributions. Journal of Statistical
Planning and Inference, 141, 1575–1587.

Shafay, A.R., Balakrishnan, N. and Sultan, K.S. (2014). Two-sample Bayesian predic-
tion for sequential order statistics from exponential distribution based on multiply
Type-II censored samples. Journal of Statistical Computation and Simulation, 84(3),
526–544.

Appendix

Proof of Proposition 3.2: By Remark 3.1 and Equations (4), (5) and (11), we have

M⋆
2 = P

(σ2

σ1

)sr

exp

−
(

1

σ1
− 1

σ2

) s∑
i=1

r∑
j=1

xijmj

 > k

∣∣∣∣∣∣σ = σ2


= P

 s∑
i=1

r∑
j=1

xijmj <

 ln
((

σ2

σ1

)sr
/k
)

1
σ1

− 1
σ2

∣∣∣∣∣∣σ = σ2


= P

χ
2rs

<

2 ln
((

σ2

σ1

)sr
/k
)

σ2

(
1
σ1

− 1
σ2

)
∣∣∣∣∣∣σ = σ2


= Fχ

2rs

2 ln
((

σ2

σ1

)sr
/k
)

σ2

σ1
− 1


= Fχ2rs

(
2 ln ( τ sr/k)

τ − 1

)
,
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Similarly

W ⋆
1 = P

(
1

k
< λ < k | H1

)
= Fχ2rs

2 ln
(
k
(

σ2

σ1

)sr)
1− σ1

σ2

− Fχ2rs


2 ln

((
σ2
σ1

)
k

sr
)

1− σ1

σ2

 ,

W ⋆
2 = P

(
1

k
< λ < k | H2

)
= Fχ2rs

2 ln
(
k
(

σ2

σ1

)sr)
σ2

σ1
− 1

− Fχ2rs


2 ln

((
σ2
σ1

)
k

sr
)

σ2

σ1
− 1

 .


