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Abstract: This article deals with the problem of characterizing the parent distribu-
tion on the basis of the cumulative residual entropy of sequential order statistics under
a conditional proportional hazard rates model. It is shown that the equality of the
cumulative residual entropy in the first sequential order statistics determines uniquely
the parent distribution. Subsequently, we characterize the Weibull distribution on the
basis of the ratio of the cumulative residual entropy of first sequential order statistics
to the corresponding mean. Also, we consider characterizations based on the dynamic
cumulative residual entropy and derive some bounds for the cumulative residual en-
tropy of residual lifetime of the sequential order statistics.
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1 Introduction
Let X1, · · · , Xn be independent and identically distributed (IID) random variables
coming from the cumulative density function (CDF) F (x) and the probability density
function (PDF) f(x) . The order statistics of the sample is defined by the arrange-
ment of X1, · · · , Xn by magnitude from the smallest to the largest, and denoted by
X1:n ≤ X2:n ≤ · · · ≤ Xn:n. These statistics are applied in a wide range of problems,
including characterization of probability distributions, entropy estimation, detection
of outliers, analysis of censored samples, quality control and strength of materials; For
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more details, see Arnold et al. (2008) and references therein. In reliability theory, se-
quential order statistics are used for statistical modelling. The sequential k-th order
statistics in a sample of size n represents the lifetime of a sequential (n−k+1)-out-of-n
system. Several entropy and information indices were developed and used in various
disciplines and contexts. Sunoj and Linu (2012) defined cumulative residual Renyi en-
tropy of order statistics and its dynamic version. Baratpour et al. (2007); Baratpour
et al. (2008) considered Shannon entropy and Renyi entropy of order statistics and
record values. Recently, Kumar and Taneja (2011) defined generalized cumulative
residual information measure and its dynamic version based on Varma’s entropy func-
tion. Ebrahimi (1996) defined the concept of dynamic Shannon entropy and obtained
some its properties.

In the probabilistic modelling and analysis of engineering systems, an important
method for improving the system reliability is to use redundants. A common scheme
for redundancy is the r-out-of-n systems. A r-out-of-n system consists of n compo-
nents which start working simultaneously. The system operates if at least n − r + 1
components function, and then it falls if r or more components fall. Hence, there are
some redundants in order to raise the system reliability.

Kamps (1995b) introduced the concept of “sequential order statistics” (SOS) as an
extension of order statistics and used for modelling lifetimes of (sequential) r-out-of-n
systems. Specifically, consider a given r-out-of-n system consisting of n components
and X1, · · · , Xn denote component lifetimes. Then, the system lifetime (T ) coincides
to the r-th order statistics among X1, · · · , Xn, that is T = Xr:n. In (usual) r-out-of-n
systems, it is assumed that X1, · · · , Xn are IID with a CDF, say F . Notice that fail-
ing a component does not change lifetimes of surviving components; For more details,
see, David and Nagaraja (2003), Arnold et al. (2008), Hashempour and Doostparast
(2016a) and references therein. Motivated by Cramer and Kamps (1996, 2001a), in
practice, the failure of a component may results in a higher load on remaining compo-
nents and hence causes the distribution of the surviving components change. In these
cases, system lifetimes may be modelled by SOSs. To see this, suppose that Fj , for
j = 1, · · · , n, denotes the common CDF of the lifetime components when n − j + 1
components are working. Components begin to work at time t = 0 independently with
the common CDF F1. When at time x1, the first failure occurs, the remaining n − 1
components work independently with the common CDF F2. This process continues to
n − r + 1 components independently work with the common CDF Fr until the r-th
failure occurs at time xr and hence the whole system fails. The mentioned system
is called “sequential r-out-of-n system” and the system lifetime coincides to the r-th
component failure time, denoted by X⋆

(r). In the literature, (X⋆
(1), · · · , X

⋆
(n)) is called

SOSs; See, Kamps (1995a,b), Hashempour and Doostparast (2016b) and references
therein. The problem of estimating parameters on the basis of SOS has been consid-
ered in the literature. For example, Cramer and Kamps (1996) considered the problem
of estimating the parameters on the basis of s independent SOSs samples under a
conditional proportional hazard rates (CPHR) model, defined by F̄j(t) = F̄

αj

0 (t) for
t > 0 and j = 1, · · · , r. In this case, the hazard rate function of the CDF Fj , defined
by hj(t) = fj(t)/F̄j(t) for t > 0 and j = 1, · · · , n, is proportional to the hazard rate
function of the baseline CDF F0, i.e. hj(t) = αjh0(t) where αj > 0; See, also Bal-
akrishnan et al. (2012) and Hashempour and Doostparast (2016a,b), Hashempour
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(2017), Esmailian and Doostparast (2014).

A series system is particular case of r-out-of-n systems corresponding to r = 1.
We consider series systems in this paper. Specifically, suppose X1, · · · , Xn denote
lifetimes of n components of a given series system. We assume that Xis are IID random
variables with the common CDF F and the survival function (SF) F̄ . Also, suppose that
X⋆

1:n, · · · , X⋆
n:n be the corresponding SOS of the lifetimes of the components. Then,

X⋆
1:n represents the lifetime of the series system with the SF F̄X⋆

1:n
(x) = F̄nα1(x),

x > 0 and positive real number α1. The SF of X⋆
1:n− t given X⋆

1:n > t, is F̄X⋆
1:n,t

(x) =(
F̄ (t+ x)/F̄ (t)

)nα1 , where X⋆
1:n − t is called the “residual lifetime of system”. In this

article, we consider the problem of characterizing the parent distributions based on the
cumulative residual entropy (CRE) of first SOS under the above-mentioned conditional
proportional hazard rates model. It is shown that the equality of the CRE in the first
SOS determines uniquely the baseline distribution. Therefore, the rest of this article is
organized as follows. Section 2 contains a review on the concept of entropy. In Section
3, we provide some characterizations based on the first-SOS X⋆

1:n. Also, the Weibull
distribution is determined on the basis of the CRE of X⋆

1:n divided by E(X⋆
1:n), the

expectation of the first-SOS. We construct some bounds for the CRE of the residual
lifetimes of series systems. Moreover, characterizations based on the CRE of residual
lifetimes of series systems are studied in Section 4. Section 5 concludes.

2 Entropy
Shannon (1948) introduced the concept of entropy which is widely used in the fields of
physics, probability, statistics, communication theory, information theory, economics,
and so forth. In information theory, entropy is a measure of the uncertainty associated
with a random variable. Shannon entropy represents the absolute limit on the best
possible lossless compression of any communication; For more details, see Cover and
Thomas (2006). Shannon entropy of a continuous random variable X with the PDF
f(x) is defined as

H(X) = −E(log f(X)) = −
∫ +∞

−∞
f(x) log f(x)dx,

where “ log ” means the natural logarithm. In this paper, we suppose that X is a
positive and continuous random variable. We focus on the CRE, introduced by Rao et
al. (2004), as

CRE(X) = −
∫ +∞

0

F̄ (x) log F̄ (x)dx

= −
∫ 1

0

u log u

f
(
F−1(1− u)

)du, (1)

where F̄ (x) = 1−F (x) is the SF of X. Rao et al. (2004) showed that it is more general
than Shannon entropy and possesses more general mathematical properties. The CRE
(1) can be easily estimated, see Rao (2005). Its estimator converges asymptotically
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to the true value. The CRE has applications in reliability engineering and computer
vision; For more details, see Rao (2005). Asadi and Zohrevand (2007) defined the
dynamic measure of CRE and obtained some of its properties. The dynamic CRE
(DCRE) for the residual lifetime distribution of a system is

DCRE(Xt) = −
∫ ∞

t

F̄t(x) log F̄t(x)dx, (2)

where F̄t(x) = P (X−t > x
∣∣X > t) = F̄ (x+ t)/F̄ (t) for t > 0. The DCRE is a measure

of the information in the residual life distribution. They showed that the CRE and
the DCRE are connected with some well-known reliability measures such as the mean
residual lifetime and the hazard rate function. Also, they proved that if the DCRE
(2) is a non-decreasing function on t, then it characterizes the underlying distribution
function. For more details, see Navarro et al. (2010) and references therein. Note that
CRE(X) = DCRE(X0).

3 CRE and CPHR model
Let X⋆

1:n be the first SOS under the CPHR model with the baseline CDF F and the
corresponding PDF f . Then, the CDF of X⋆

1:n is

FX⋆
1:n

(x) = 1− F̄nα1(x), ∀x ∈ R. (3)
Equations (1) and (3) yield

CRE(X⋆
1:n) = −nα1

∫ ∞

0

F̄nα1(x) log F̄ (x)dx

= −nα1

∫ 1

0

unα1 log u dF−1(u)du

= −nα1

∫ 1

0

unα1 log u

f(F−1(1− u))
du, (4)

since dF−1(u)/du = [f(F−1(u))]−1. Now we consider three well-known distributions.

3.1 Exponential model
A random variable X follows the exponential distribution, if

F (x) = 1− exp {−λx} , x > 0, λ > 0, (5)

where λ is the scale parameter. Notice that E(X) = λ−1 and CRE(X) = λ−1. Thus,

Λ1 =
CRE(X)

E(X)
= 1. (6)

Substituting Equation (5) into Equation (4), we have

CRE(X⋆
1:n) =

nα1

λ

∫ 1

0

unα1−1(− log u)du
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= (nα1λ)
−1

. (7)

By E(X⋆
1:n) = (nα1λ)

−1, and Equation (7), we obtain

Λ⋆
1 =

CRE(X⋆
1:n)

E(X⋆
1:n)

= 1. (8)

For all n, the ratio (8) is constant under the CPHR model with a baseline exponential
distribution. Since uncertainty of X is greater than X⋆

1:n, then Φ1 = CRE(X) −
CRE(X⋆

1:n) > 0, for nα1 > 0 . Notice that

CRE(X)

CRE(X⋆
1:n)

= nα1, (9)

does not depend on λ.

3.2 Pareto model
Suppose that X has the Pareto distribution, with shape parameter γ > 0 and scale
parameter β > 0; that is, F (x) = 1 − (β/x)

γ for x ≥ β. From Equations (1) and (4),
the CRE(X) and the CRE(X⋆

1:n) are

CRE(X) =
γβ

(γ − 1)2
, γ > 1,

and

CRE(X⋆
1:n) =

nα1γβ

(nα1γ − 1)2
, γ >

1

nα1
,

and otherwise CREs are infinity. For γ > 1, Φ2 = CRE(X) − CRE(X⋆
1:n) ≥ 0, then

uncertainty of X is more than X⋆
1:n. Also, Φ2 is an increasing function of n for n >

(γα1)
−1. Notice that

CRE(X)

CRE(X⋆
1:n)

=
(nα1γ − 1)2

nα1(γ − 1)2
, (10)

does not depend on β.

3.3 Weibull model
A random variable X follows the Weibull distributed, if its CDF is

F (x) = 1− exp {−(xλ)q} , x > 0, q > 0, λ > 0,

where q and λ are shape and scale parameters, respectively. One can show that E(X) =

λ−1Γ
(
1 + q−1

)
and CRE(X) = (λq)

−1
Γ
(
1 + q−1

)
, where Γ(x) =

∫∞
0

tx−1 exp {−t} dt
stands for the complete gamma function. Thus, CRE(X)/E(X) = q−1. The following
lemma is used in the proof of Theorem 3.2.
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Lemma 3.1. ( Kamps, 1998) For any increasing sequence of positive integers {mi, i ≥
1},

∑∞
i=1 mi

−1 is infinite, if and only if the sequence of polynomials {xmi} is complete
on L(0, 1).
Theorem 3.2. Suppose that X1, · · · , Xn are independent and identically distributed
observations from an absolutely continuous CDF F (x) and PDF f(x). Then F belongs
to the Weibull family, if and only if CRE(X⋆

1:n)/E(X⋆
1:n) = k, for all n = nj , j ≥ 1,

such that
∑+∞

j=1 nj
−1 is infinite.

Proof. By (4), we have

CRE(X⋆
1:n) =

nα1

λq

∫ 1

0

unα1−1(− log u)
1
q du =

1

λq q
√
nα1

Γ
(
1 + q−1

)
.

Also E(X⋆
1:n) = λ−1(nα1)

−1
q Γ

(
1+ q−1

)
. Thus, CRE(X⋆

1:n)/E(X⋆
1:n) = q−1. This result

shows that for all n, in the Weibull family, the ratio CRE(X⋆
1:n)/E(X⋆

1:n) is constant.
Thus, the prove of the necessity part is completed. To prove the sufficiency part, note
that

E(X⋆
1:n) =

∫ ∞

0

nα1xf(x)F̄
nα1−1(x)dx = nα1

∫ 1

0

unα1−1F−1(1− u)du, (11)

by changing variable u = 1−F (x). Using Equations (4) and (11), and by the assump-
tion we have

k =
CRE(X⋆

1:n)

E(X⋆
1:n)

= −

∫ 1

0
unα1 log u

f(F−1(1−u))du∫ 1

0
unα1−1F−1(1− u)du

, (12)

holds for j ≥ 1, n = nj , such that
∑+∞

j=1 nj
−1 is infinite or equivalently∫ 1

0

[
kF−1(1− u) +

u log u

f(F−1(1− u))

]
unα1−1du = 0. (13)

By Lemma (3.1) and Equation (13), we have

kF−1(v) +
(1− v) log(1− v)

f(F−1(v))
= 0 a.e, v ∈ (0, 1).

Since dF−1(v)/dv =
(
(F−1(v))

)−1, it follow that

kF−1(v) + (1− v) log(1− v)
d

dv
F−1(v) = 0 a.e, v ∈ (0, 1).

After some algebraic manipulations, we conclude that F−1(v) = k1[− log(1 − v)]k,
v ∈ (0, 1), and then F (x) = 1 − exp

(
− (x/k1)

1
k

)
, x > 0. This means that F belongs

to the Weibull family of distribution.

Remark 3.3. For all n,
Φ3 = CRE(X)−CRE(X⋆

1:n) =
(
1− (nα1)

−1
q
)
(λq)−1Γ

(
1+ q−1

)
≥ 0. Then uncertainty

of X is more than X⋆
1:n and is increasing in n. Notice that

CRE(X)

CRE(X⋆
1:n)

= (nα1)
1
q , (14)

does not depend on λ.
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Theorem 3.4. Suppose Y and Z be two positive random variables with PDFs f(x) and
g(x) and absolutely continuous CDFs F (x) and G(x), respectively. Then CRE(Y ⋆

1:n) =
CRE(Z⋆

1:n), for j ≥ 1, n = nj, such that
∑+∞

j=1 nj
−1 = ∞, if and only if F and G

belong to the same family of distributions, but for a possible location shift.

Proof. First assume that CRE(Y ⋆
1:n) = CRE(Z⋆

1:n). Then Equation (4) implies that∫ 1

0

unα1 log(u)

(
1

f(F−1(1− u))
− 1

g(G−1(1− u))

)
du = 0, (15)

holds for j ≥ 1, n = nj , such that
∑+∞

j=1 n
−1
j = ∞. Lemma (3.1) concludes that

f(F−1(t)) = g(G−1(t)), for t ∈ (0, 1). On the other hand, since dF−1(t)/dv =
(f(F−1(t)))−1, we have dF−1(t)/dv = dG−1(t)/dv, t ∈ (0, 1). It then follows that
F−1(t) = G−1(t) + k, t ∈ (0, 1). This means that F and G belong to the same family
of distributions, but for a possible change in location. The necessity is trivial.

4 DCRE in CPHR model
The CRE for the residual lifetime distribution of X⋆

1:n, that is DCRE(X⋆
1:n,t), is

CRE(X⋆
1:n,t) = −

(
F̄ (t)

)−nα1

∫ ∞

t

(
F̄ (x)

)nα1
log

(
F̄ (x)

)nα1
dx

+ nα1MX⋆
1:n

(t) log F̄ (t), (16)

where MX⋆
1:n

(t) = E(X⋆
1:n− t

∣∣X⋆
1:n > t) is the mean residual lifetime of the system. To

see this, note that

CRE(X⋆
1:n,t) = −

∫ ∞

0

F̄X⋆
1:n,t

(x) log F̄X⋆
1:n,t

(x)dx

= −
∫ ∞

t

(
F̄ (x)

F̄ (t)

)nα1

log

(
F̄ (x)

F̄ (t)

)nα1

dx

= −(F̄ (t))−nα1

∫ ∞

t

(
F̄ (x)

)nα1
log

(
F̄ (x)

)nα1
dx

+ nα1 log F̄ (t)

∫ ∞

t

( F̄ (x)

F̄ (t)

)nα1
dx

= −
(
F̄ (t)

)−nα1

∫ ∞

t

(
F̄ (x)

)nα1
log

(
F̄ (x)

)nα1
dx

+ nα1MX⋆
1:n

(t) log F̄ (t).

Remark 4.1. For t = 0, CRE(X⋆
1:n,0) = CRE(X⋆

1:n).

In sequel, we provide a lower bound for the DCRE(X⋆
1:n,t).
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Proposition 4.2. For all t,

nα1MX⋆
1:n

(t)| log F̄ (t)|
(
F̄ (t)

)nα1 ≤ CRE(X⋆
1:n). (17)

Proof. By Equation (16) and noting that log(1− F (t)) ≤ 0, we conclude

CRE(X⋆
1:n,t) ≤ −

(
F̄ (t)

)−nα1

∫ ∞

t

(
F̄ (x)

)nα1
log

(
F̄ (x)

)nα1
dx

≤ −
(
F̄ (t)

)−nα1

∫ ∞

0

(
F̄ (x)

)nα1
log

(
F̄ (x)

)nα1
dx

=
(
F̄ (t)

)−nα1
CRE(X⋆

1:n).

Thus,
CRE(X⋆

1:n,t)
(
F̄ (t)

)nα1 ≤ CRE(X⋆
1:n), ∀t. (18)

Equation (16), concludes that

MX⋆
1:n

(t) ≤ − 1

nα1| log F̄ (t)|
(
F̄ (t)

)nα1

∫ ∞

t

(
F̄ (x)

)nα1
log

(
F̄ (x)

)nα1
dx

≤ − 1

nα1| log F̄ (t)|
(
F̄ (t)

)nα1

∫ ∞

0

(
F̄ (x)

)nα1
log

(
F̄ (x)

)nα1
dx

=
1

nα1 log F̄ (t)|
(
F̄ (t)

)nα1
CRE(X⋆

1:n),

and the proof completes.

Proposition 4.3. Suppose that Y and Z be two positive random variables with PDFs
g(x) and h(x) and absolutely continuous CDFs G(x) and H(x), respectively. Then G
and H belong to the same family of distributions, but for a possible change in location
and scale, if and only if for t > 0, CRE(Y1:n,t) = CRE(Z1:n,t), for n = nj, j ≥ 1 such
that

∑+∞
j=1 n

−1
j is infinite.

Proof. Let ∀ n = nj , j ≥ 1 such that
∑+∞

j=1 n
−1
j is infinite, CRE(Y1:n,t) = CRE(Z1:n,t),

then by Theorem (3.4), Y
∣∣Y > t and Z

∣∣Z > t have the same distribution but many
be differ for a change in location parameter. That is gt(x) = ht(x + c), where gt and
ht are, respectively, PDFs of Y

∣∣Y > t and Z
∣∣Z > t. Thus, g(x) = h(x+ c)Ḡ(t)/H(t).

Therefore, G and H belong to the same family of distributions, but for a possible
change in scale and location parameters.

Discussion and conclusion
In this paper, we considered the problem of characterizing the parent distributions
based on the CRE of first sequential order statistics under a conditional proportional
hazard rate model. It was shown that the equality of the CRE in first sequential order
statistics can determine uniquely the parent baseline distribution. Subsequently, we
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characterized the Weibull distribution based on the ratio of the CRE of first sequential
order statistics to the mean of the first SOS. Also, we considered characterizations
based on the DCRE and derived a lower bound for the CRE of residual lifetime of the
first SOS.
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