Point prediction for the proportional hazards family based on progressive Type-II censoring with binomial removals

RahmatSadat Meshkat*, Naeimeh Dehqani
Department of Statistics, Yazd University, 89175-741, Yazd, IRAN

Received: August 21, 2018/ Revised: September 13, 2018/ Accepted: September 14, 2018

In this paper, some different predictors are presented for failure times of units censored in a progressively censored sample from proportional hazard rate models, where the number of units removed at each failure time follows a binomial distribution. The maximum likelihood predictors, best unbiased predictors and conditional median predictors are derived. Also, the Bayesian point predictors are investigated for the failure times of units with the three common loss function. Finally, a numerical example and a Monte Carlo simulation study are carried out to compare all the prediction methods discussed in this paper.

Keywords: Bayesian point predictor; Best unbiased predictor; Binomial removal; Conditional median predictor; Maximum likelihood predictor; Monte Carlo simulation; Progressive Type-II censoring; Proportional hazard rate model.

1 Introduction

In lifetime testing and analysis of reliability data, it is common to use the different censoring scheme in order to reduce costs and time. A censoring scheme, which can balance between (a) total time spent for the experiment; (b) number of units used in the experiment; and (c) the efficiency of statistical inference based on the results of the experiment, is desirable; see Ng et al. (2009). In some life-testing experiments, the experimenter seeks to remove units at different stages in the study for various reasons. This would lead to progressive censoring. In particular, a progressive Type-II censoring scheme is taken account of an important scheme in life-testing experiments. The progressive Type-II censoring can be described as follows: Suppose \(n \) independent units are placed on a life test. Immediately following the first failure, \(r_1 \) surviving units
are removed from the test at random. Then, immediately following the second failure,

r_2 surviving units are removed from the test at random. This process continues until,

at the time of the m-th failure, all the remaining $r_m = n - r_1 - r_2 - \cdots - r_{m-1} - m$

units are removed from the experiment. Suppose X_1, \cdots, X_n are the corresponding

failure times of these units that are identically distributed with Probability Density

Function (PDF) $f(\cdot)$ and Cumulative Distribution Function (CDF) $F(\cdot)$. Therefore,

the joint density function $X_{1:m:n}, \cdots, X_{m:m:n}$, a progressively Type-II censored order

statistics with the censoring scheme (r_1, \cdots, r_m) is given by

$$f(x_{1:m:n}, \cdots, x_{m:m:n}) = A \prod_{i=1}^{m} f(x_{i:m:n})[1 - F(x_{i:m:n})]^{r_i},$$

where $x_{1:m:n} < \cdots < x_{m:m:n}$ and $A(n, m - 1) = n(n - 1 - r_1)(n - 2 - r_1 - r_2) \cdots (n - m + 1 - r_1 \cdots - r_{m-1})$. Note that $\sum_{i=1}^{m} r_i = n - m$, $r_i \geq 0$, $i = 1, \cdots, m$; see Balakrishnan

and Aggarwala (2000). In this scheme, r_1, r_2, \cdots, r_m are all pre-fixed. However, these

numbers may occur at random in some practical situations. In some reliability exper-
iments, an experimenter may distinguish that it is inappropriate or too dangerous to

continue the testing on some of the tested units even though these units have not failed;

Yuen and Tse (1996) and Zeinab (2008). In such cases, the pattern of removal at each

failure is random. This leads to progressive censoring with random removals (PCR);

see Table 1. The statistical inference on lifetime distributions under progressive censor-

<table>
<thead>
<tr>
<th>The numbers in life testing</th>
<th>Binomial removals</th>
<th>Remains</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$R_1 \sim B(n - m, p)$</td>
<td>$n - 1 - r_1$</td>
</tr>
<tr>
<td>$n - 1 - r_1$</td>
<td>$R_2 \sim B(n - m - r_1, p)$</td>
<td>$n - 2 - r_1 - r_2$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$n - (m - 2) - \sum_{j=1}^{m-2} r_j$</td>
<td>$R_{m-1} \sim B(n - m - \sum_{j=1}^{m-2} r_j, p)$</td>
<td>$n - (m - 1) - \sum_{j=1}^{m-1} r_j$</td>
</tr>
<tr>
<td>$n - (m - 1) - \sum_{j=1}^{m-1} r_j$</td>
<td>$R_m = n - m - \sum_{j=1}^{m-1} r_j$</td>
<td>0</td>
</tr>
</tbody>
</table>

ing with random removals is discussed by several authors. Tse et al. (2000) presented

the maximum likelihood estimations of Weibull distribution under progressive censoring

with binomial removals. Wu and Chang (2003) and Wu et al. (2007) discussed

the estimation of the Burr Type-XII distribution and Pareto distribution based on

progressively censored samples with random removals, where the number of removed

units has a discrete uniform removal pattern and binomial distribution. Xiang and

Tse (2005) discussed the maximum likelihood estimation of the model parameters and

derived the corresponding asymptotic variances based on Type-II progressive interval

censoring with binomial removals. Wu et al. (2006) obtained Maximum Likelihood Es-

Table 1: A schematic representation of the progressive Type-II censoring with binomial removals

that each unit leaves with equal probability p.

<table>
<thead>
<tr>
<th>The numbers in life testing</th>
<th>Binomial removals</th>
<th>Remains</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>$R_1 \sim B(n - m, p)$</td>
<td>$n - 1 - r_1$</td>
</tr>
<tr>
<td>$n - 1 - r_1$</td>
<td>$R_2 \sim B(n - m - r_1, p)$</td>
<td>$n - 2 - r_1 - r_2$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$n - (m - 2) - \sum_{j=1}^{m-2} r_j$</td>
<td>$R_{m-1} \sim B(n - m - \sum_{j=1}^{m-2} r_j, p)$</td>
<td>$n - (m - 1) - \sum_{j=1}^{m-1} r_j$</td>
</tr>
<tr>
<td>$n - (m - 1) - \sum_{j=1}^{m-1} r_j$</td>
<td>$R_m = n - m - \sum_{j=1}^{m-1} r_j$</td>
<td>0</td>
</tr>
</tbody>
</table>

imator (MLE) and the estimated expected test time for the two-parameter Gompertz

Point prediction based on progressive Type-II censoring with binomial removals 124
distribution under progressive censoring with binomial removals. Recently, Weian et al. (2011) presented statistical analysis of generalized exponential distribution under progressive censoring with binomial removals. Prediction of future events on the basis of past and present knowledge is a fundamental problem in statistical inference. Viveros and Balakrishnan (1994) used the conditional method of inference to develop a conditional prediction interval for an observation from an independent future sample based on an observed progressively Type-II right censored sample. Some key references about prediction based on a progressively censored sample include Balakrishnan and Lin (2002), Basak et al. (2006) and Raqab et al. (2010). Recently, Asgharzadeh and Valiollahi (2010) discussed point prediction for the proportional hazards family under progressive Type-II censoring with fixed removal. Suppose $F_0(x)$ is a CDF with a corresponding hazard rate function $r_0(x)$. The family of random variables with hazard rate function of the form $\{\theta r_0(x) : \theta > 0\}$ is called PHR family and the CDF $F_0(x)$ is called the baseline CDF of that family. Cox (1972) introduced this model and it has been extensively discussed in the statistical literature. This family of distributions includes several well-known lifetime distributions such as exponential, Pareto (Types I and II), Beta, Burr Type XII and so on. Let X be from proportional hazard family with the baseline CDF $F_0(x)$. The distribution function of X is defined by

$$F(x; \theta) = 1 - \left[\bar{F}_0(x)\right]^{\theta}, \quad -\infty < x < d \leq \infty, \quad \theta > 0. \quad (2)$$

or equivalently

$$\bar{F}(x; \theta) = \left[\bar{F}_0(x)\right]^{\theta}, \quad -\infty < x < d \leq \infty, \quad \theta > 0,$$

where $\bar{F}_0(.) = 1 - F_0(.)$ is the baseline survival function and $F_0(c) = 0$ and $F_0(d) = 1$. The corresponding probability density function is as following

$$f(x; \theta) = \theta f_0(x)[\bar{F}_0(x)]^{\theta-1}, \quad -\infty < x < d \leq \infty, \quad \theta > 0, \quad (3)$$

where $f_0(.)$ is the PDF of $F_0(.)$. Lawless (2003), Ahmadi et al. (2009a,b) and Asgharzadeh and Valiollahi (2009, 2010) have extensively discussed the PHR model. Consider $X_{1;m:n}, \ldots, X_{m;m:n}$ indicate the progressively Type-II order statistics from the PHR model given in (2) or (3) obtained from a sample of size n with the censoring scheme (r_1, \ldots, r_m). To simplify the notation, we will use X_i in place of $X_{i;m:n}$. The purpose of this paper is to obtain the prediction of the life-lengths $Y = X_{i,(s)}$ $(s = 1, 2, \ldots, r_i, \ i = 1, 2, \ldots, m)$ of all censored units in all m stages of censoring based on observed data $x = (x_1, \ldots, x_m)$, where $X_{i,(s)}$ indicates the s-th order statistic out of r_i removed units at stage i $(i = 1, 2, \ldots, m)$. In Section 2, we derive some different point predictors for failure times of units censored (non-Bayesian and Bayesian approaches). A numerical example and a Monte Carlo simulation study are carried out in Section 3 to compare all the prediction methods mentioned in this paper. Finally, some results is presented in Section 3.2.

2 Different Methods for Point Prediction

Consider $X_{1;m:n}, \ldots, X_{m;m:n}$ indicate the progressively Type-II order statistics from the PHR model given in (2) or (3) obtained from a sample of size n with the censoring
scheme \((r_1, \cdots, r_m)\). To simplify the notation, we will use \(X_i\) in place of \(X_{i:m:n}\). Our interest is to obtain the prediction of the life-lengths \(Y = X_{i,(s)}\) \((s = 1, 2, \cdots, r_i, i = 1, 2, \cdots, m)\) of all censored units in all \(m\) stages of censoring based on observed data \(x = (x_1, \ldots, x_m)\), where \(X_{i,(s)}\) indicates the \(s\)-th order statistic out of \(r_i\) removed units at stage \(i, i = 1, 2, \cdots, m\).

2.1 Maximum Likelihood Predictor

The maximum likelihood is one of the most important and widely used methods in statistics. Kaminsky and Rhodin (1985), Basak et al. (2006), and Asgharzadeh and Valiollahi (2010) have used maximum likelihood prediction for predicting future observations. Our interest is to predict the unobservable future value of \(Y\), having observed \(x\). Consider \(X = (X_1, \ldots, X_m)\) and \(Y\) have the joint PDF \(f(x, y, r; \theta, p)\) indexed by the parameters \(\theta\) and \(p\). Thus, we can define

\[
L(y, \theta, p; x, r) = f(x, y, r; \theta, p) = f_Y|X(y|x; \theta) f(x|r; \theta) f(r;p),
\]

as the Predictive Likelihood Function (PLF) of \(y\) and \(\theta\) and \(p\), where the joint density function \((1)\) based on PHR of \(x = (x_1, \ldots, x_m)\) can be rewritten as

\[
f(x|r; \theta) = A \prod_{i=1}^{m} \frac{f_0(x_i)}{F_0(x_i)} \theta^m e^{-\theta T(x)},
\]

where \(A = n(n - 1 - r_1)(n - 2 - r_1 - r_2) \cdots (n - m + 1 - r_1 \cdots - r_{m-1})\) and \(T(x) = -\sum_{i=1}^{m} (r_i + 1) \ln F_0(x_i)\) and the joint probability distribution of removals vector \(R = (R_1, \cdots, R_m)\) is given by

\[
f(r;p) = P(R = r;p) = Bp^D(1 - p)^E
\]

with \(B = \frac{(n - m)!}{(n - m - \sum_{j=1}^{m-1} r_j)! \prod_{j=1}^{m-1} r_j!}\), \(D = \sum_{j=1}^{m} r_j\), \(E = (m - 1)(n - m) - \sum_{j=1}^{m-1} (m - j)r_j\); see Weian et al. (2011). It is clear that the MLE of \(\theta\) is

\[
\hat{\theta}_{ML} = \frac{m}{T(x)}.
\]

Because of the Markovian property of progressively Type-II right censored-order statistics, it can be shown that the conditional distribution of \(X_{i,(s)}\) given \(X\) is just the distribution of \(X_{i,(s)}\) given \(X_i = x_i\); see Balakrishnan and Aggarwala (2000). This implies that the density of \(X_{i,(s)}\) given \(X = x\) is the same as the density of the \(s\)-th order statistic out of \(r_i\) units from the population with density \(f(y)/(1 - F(x_i)), y \geq x_i\) (left truncated density at \(x_i\)). Thus, the conditional density of \(Y = X_{i,(s)}\) given \(X_i = x_i\), for \(y \geq x_i\), is given by

\[
f_{Y|X_i}(y|x_i, r_i; \theta) = s \binom{r_i}{s} f(y; \theta) [F(y; \theta) - F(x_i; \theta)]^{s-1}
\]

\[
\times [1 - F(y; \theta)]^{r_i-s} [1 - F(x_i; \theta)]^{-r_i}.
\]
From (3), we have
\[
f_{Y|X}(y|x_i, r_i; \theta) = s \left(\frac{r_i}{s} \right) \theta \frac{f_0(y)}{F_0(y)} \left[(\tilde{F}_0(x_i))^\theta - (F_0(y))^\theta \right]^{s-1} \
\times \left[(F_0(y))^{\theta r_i - s + 1} \right] (\tilde{F}_0(x_i))^{-r_i}, \quad y \geq x_i. \tag{7}
\]

Therefore, PLF of \(Y, \theta \) and \(p \) can be extended as
\[
L(y, \theta, p; x, r) = f_{Y|X}(y|x_i, r_i; \theta) f(x_i | r; \theta) f(r | p) \\
= c f(y; \theta) [F(y; \theta) - F(x_i; \theta)]^{s-1} [1 - F(y; \theta)]^{r_i - s} \\
\times \prod_{j=1}^m f(x_j; \theta) \prod_{j=1, j \neq i}^m [1 - F(x_j; \theta)]^{r_j} \\
\times p^D (1 - p)^E, \quad y \geq x_i,
\]
where \(c \) is a constant factor. Disregarding the constant term, the predictive log-
likelihood function for \(y \geq x_i \) is
\[
\ln L(y, \theta, p; x, r) = \ln f(y; \theta) + (s - 1) \ln [F(y; \theta) - F(x_i; \theta)] \\
+ (r_i - s) \ln [1 - F(y; \theta)] + \sum_{j=1}^m \ln f(x_j; \theta) \\
\quad + \sum_{j=1, j \neq i}^m r_j [\ln 1 - F(x_j; \theta)] + D \ln p + E \ln (1 - p).
\]
By substituting (2) and (3), the log PLF of \(Y = y \) and \(\theta \), for \(y \geq x_i \), is given by
\[
\ln L(y, \theta, p; x, r) = (m + 1) \ln \theta + \ln \left[\frac{f_0(y)}{F_0(y)} \right] + \sum_{j=1}^m \ln \left[\frac{f_0(x_j)}{F_0(x_j)} \right] \\
+ (s - 1) \ln \left[1 - \left(\frac{\tilde{F}_0(y)}{F_0(x_i)} \right)^\theta \right] \\
+ \theta (r_i - s + 1) [\ln F_0(y) - \ln \tilde{F}_0(x_i)] \\
+ \theta \sum_{j=1}^m (r_j + 1) \ln \tilde{F}_0(x_j) + D \ln p + E \ln (1 - p). \tag{8}
\]

The maximum likelihood predictor (MLP) of \(Y \) and the Predictive Maximum Likeli-
hood Estimator (PMLE) of \(\theta \) are obtained directly by maximizing \(\ln L(y, \theta; x) \), since
\(f(r; p) \) does not involve \(y \) and \(\theta \). Thus, the predictive likelihood equations (PLEs) for
\(Y \) and \(\theta \) (for \(y \geq x_i \)) are given by
\[
\frac{\partial \ln L(y, \theta; x)}{\partial y} = \frac{1}{F_0(y)} \left[f'_0(y) \tilde{F}_0(y) + f_0^2(y) \right] - \theta (r_i - s + 1) f_0(y) \\
+ \theta (s - 1) f_0(y) \left[\frac{F_0(y)}{F_0(x_i)} \right]^{\theta} = 0,
\]
\[
\frac{\partial \ln L(y, \theta; x)}{\partial \theta} = \frac{1}{F_0(y)} \left[f'_0(y) \tilde{F}_0(y) + f_0^2(y) \right] \left[\frac{F_0(y)}{F_0(x_i)} \right]^{\theta} - \theta (r_i - s + 1) f_0(y) \\
+ \theta (s - 1) f_0(y) \left[\frac{F_0(y)}{F_0(x_i)} \right]^{\theta} = 0.
\]
and

\[
\frac{\partial \ln L(y, \theta; \mathbf{x})}{\partial \theta} = \frac{m + 1}{\theta} - (s - 1) \ln \left[\frac{\bar{F}_0(y)}{F_0(x_i)} \right] \frac{\frac{F_0(y)}{F_0(x_i)}}{1 - \left[\frac{F_0(y)}{F_0(x_i)} \right]^\theta} \\
+ (r_i - s + 1) \left[\ln[F_0(y)] - \ln[F_0(x_i)] \right] \\
+ \sum_{j=1}^{m} (r_j + 1) \ln[F_0(x_j)] = 0.
\]

Independently, the MLE of \(p \) can be obtained by maximizing \(f(r; p) \) directly,

\[
\frac{\partial \ln f(r; p)}{\partial p} = \frac{D}{p} - \frac{E}{1 - p} = 0,
\]

hence,

\[
\hat{p} = \frac{D}{D + E}.
\]

Example 2.1. For exponential distribution, we have

\[\bar{F}_0(x) = e^{-x} \quad x > 0.\]

Hence, the PLEs reduce to:

\[
\frac{\partial \ln L(y, \theta; x)}{\partial y} = -\theta (r_i - s + 1) + \theta (s - 1) \frac{e^{-\theta(y-x_i)}}{1 - e^{-\theta(y-x_i)}} = 0,
\]

and

\[
\frac{\partial \ln L(y, \theta; x)}{\partial \theta} = \frac{m + 1}{\theta} - \left[\sum_{j=1}^{m} (r_j + 1)x_j + (r_i - s + 1)(y - x_i) \right] \\
+ (s - 1) \frac{(y - x_i)e^{-\theta(y-x_i)}}{1 - e^{-\theta(y-x_i)}} = 0.
\]

Now, the MLP of \(Y \) and PMLE of \(\theta \) can be obtained as

\[
\hat{Y}_{MLP} = x_i + \frac{1}{\hat{\theta}_{PML}} \ln \left[\frac{R_i}{R_i - s + 1} \right],
\]

and

\[
\hat{\theta}_{PML} = \frac{m + 1}{T_0(x)},
\]

where

\[
T_0(x) = \sum_{i=1}^{m} (R_i + 1)x_i.
\]
2.2 Best Unbiased Predictor

In this section, we first define a best unbiased predictor and then we obtain BUP for the interested variables.

Definition 2.2. A statistic \(\hat{Y} \) is called a best unbiased predictor (BUP) of \(Y = X_{i(s)} \), if the predictor error \(\hat{Y} - Y \) has a mean zero and its prediction error variance \(\text{Var}[\hat{Y} - Y] \) is less than or equal to that of any other unbiased predictor of \(Y \).

Nayak (2000) showed that since the conditional distribution of \(Y \) given \(x = (x_1, ..., x_m) \) is just the distribution of \(Y \) given \(X_i \), the BUP of \(Y \) is

\[
\hat{Y}_{\text{BUP}} = E[Y|X_i = x_i].
\]

By (7), we have

\[
\hat{Y}_{\text{BUP}} = \int_{x_i}^{\infty} y f(y|x_i; \theta) \, dy
= \int_0^{1} \tilde{F}_0^{-1} \left(u^{\frac{1}{s}} \tilde{F}_0(x_i) \right) \frac{u^{r_i-s}(1-u)^{s-1}}{\text{Beta}(r_i - s + 1, s)} \, du.
\]

Note that \(R_i \) is a random variable, so we define

\[
\hat{Y}_{\text{EBUP}} = E[R_i] \left[\int_0^{1} \tilde{F}_0^{-1} \left(u^{\frac{1}{s}} \tilde{F}_0(x_i) \right) \frac{u^{r_i-s}(1-u)^{s-1}}{\text{Beta}(r_i - s + 1, s)} \, du \right].
\]

Example 2.3. For the exponential distribution and after replacing \(\theta \) by its MLE, we have

\[
\hat{Y}_{\text{EBUP}} = E[R_i] \left[\int_0^{1} \tilde{F}_0^{-1} \left(u^{\frac{1}{s}} \tilde{F}_0(x_i) \right) \frac{u^{r_i-s}(1-u)^{s-1}}{\text{Beta}(r_i - s + 1, s)} \, du \right]
= x_i + \frac{T_0(x)}{m} E[R_i] \left[\int_0^{1} (-\ln u) \frac{u^{r_i-s}(1-u)^{s-1}}{\text{Beta}(r_i - s + 1, s)} \, du \right].
\]

2.3 Empirical Conditional Median Predictor

As another possible predictor, it can be considered Conditional Median Predictor (CMP); see Raqab and Nagaraja (1995).

Definition 2.4. A predictor \(\hat{Y} \) is called the CMP of \(Y \), if it is the median of the conditional distribution of \(Y \) given \(X_i = x_i \); that is,

\[
P_{\theta}(Y \leq \hat{Y}|X_i = x_i) = P_{\theta}(Y \geq \hat{Y}|X_i = x_i).
\]

By using the relation

\[
P_{\theta}(Y \leq \hat{Y}|X_i = x_i, R_i = r_i) = P_{\theta} \left[\left(\frac{\tilde{F}_0(Y)}{\tilde{F}_0(X_i)} \right)^{\theta} \geq \left(\frac{\tilde{F}_0(\hat{Y})}{\tilde{F}_0(X_i)} \right)^{\theta} \right] X_i = x_i, R_i = r_i,
\]
and this fact that the distribution of \(\left(\frac{F_0(Y)}{F_0(X_i)} \right)^\theta \) given \(X_i = x_i \) and \(R_i = r_i \) is a Beta\((r_i - s + 1, s)\) distribution, we obtain the CMP of \(Y \) as

\[
\hat{Y}_{CMP} = \bar{F}_0^{-1} \left(\frac{F_0(x_i)}{Med(U|r_i)} \right)^{\frac{1}{\theta}},
\]

where \(U|r_i \) has Beta\((r_i - s + 1, s)\) distribution and \(Med(U|r_i) \) stands for median of \(U|r_i \). Note that \(R_i \) is a random variable, so we define Empirical Conditional Median Predictor (ECMP) as below

\[
\hat{Y}_{ECMP} = \mathbb{E}_{R_i} \left[\bar{F}_0^{-1} \left(\frac{F_0(x_i)}{Med(U|r_i)} \right)^{\frac{1}{\theta}} \right],
\]

as the expectation of CMP of \(Y \). Substituting \(\theta \) with its MLE leads us to ECMP in the following form,

\[
\hat{Y}_{ECMP} = \mathbb{E}_{R_i} \left[\frac{1}{m} \left(\frac{\bar{F}_0(x_i)}{Med(U|r_i)} \right)^{\frac{1}{\theta}} \right].
\]

Example 2.5. Taking \(\bar{F}_0(x) = e^{-x} \), we obtain

\[
\hat{Y}_{ECMP} = \mathbb{E}_{R_i} \left[-ln \left(e^{-x} \left(\frac{\bar{F}_0(x)}{Med(U|r_i)} \right)^{\frac{1}{m}} \right) \right] = x_i - \frac{T_0(x)}{m} \mathbb{E}_{R_i} [ln[Med(U|r_i)]].
\]

2.4 Bayesian Point Predictors

Bayesian predictors are obtained from \(f^*(y|x) \), the Bayes predictive density function of \(Y \) given \(X = x \), and given loss function. The loss function \(L(y, \hat{y}) \) indicates the loss for using \(\hat{y} \) as the predicted value of \(Y \) when the realized value is \(y \). Here, we consider the three loss functions to discuss Bayesian predictors.

Definition 2.6. The Squared Error Loss (SEL) is a symmetric and most commonly used loss function, defined as

\[
L(y, \hat{y}) = (\hat{y} - y)^2.
\]

The Bayes point predictor of \(y \), under SEL function, \((\hat{y}_{SEP}) \) is \(\mathbb{E}[Y|x] \).

Definition 2.7. The Absolute Difference Loss (ADL) is a symmetric loss function, defined as

\[
L(y, \hat{y}) = |y - \hat{y}|.
\]

The Bayes point predictor of \(y \), under ADL function, \((\hat{y}_{ADL}) \) is the median of the Bayes predictive distribution.

Definition 2.8. The General Entropy Loss (GEL) function is a useful asymmetric loss function, that

\[
L(y, \hat{y}) \propto \left(\frac{\hat{y}}{y} \right)^q - q \ln \left(\frac{\hat{y}}{y} \right) - 1, \quad q \neq 0,
\]

whose minimum occurs at \(\hat{y} = y \). This loss function is a generalization of the Entropy-loss.
The Bayes point predictor \(\hat{y}_{GEP} \) of \(y \) under GEL function becomes

\[
\hat{y}_{GEP} = (E_Y(Y^q))^{-\frac{1}{q}},
\]

where \(E_Y(.) \) denotes the posterior expectation with respect to the Bayes predictive density function of \(y \); see Soliman (2005). When the parameters \(p \) and \(\theta \) are unknown, if \(p \) and \(\theta \) are independent, all Bayesian predictors are the same as the fixed removal obtained by Asgharzadeh and Valiollahi (2010). Now, consider \(p \) and \(\theta \) are dependent. Let \(\pi(p, \theta|x, r) \) be a non-informative prior distribution, that is \(f(p) = 0 \) for \(> 0 \) and \(p \sim Beta(a, b) \). In this cases, the posterior density function of \(p \) and \(\theta \) given the data, \(\pi(p, \theta|x, r) \), can be obtained as below

\[
\pi(p, \theta|x, r) = \frac{[T(x)]^{m+1} \theta^m e^{-\theta T(x)} p^a + D (1 - p)^b + E - 1}{\Gamma(m + 1) Beta(a + D + 1, E + b)} I(0, \frac{1}{\theta}) (\theta).
\]

The Bayes predictive density function of \(Y \) given \(X_i = x_i \) is given by

\[
f^*(y|x_i, r) = \int_0^\infty \int_0^1 f(y|x_i, r; \theta, p) \pi(p, \theta|x, r) dp d\theta.
\]

By substituting (7) and (11), for \(y \geq x_i \) we get

\[
f^*(y|x_i) = \int_0^\infty \int_0^1 s \left(\begin{array}{c} r_i \\ s \end{array} \right) \theta \frac{\tilde{F}_0(y)}{\tilde{F}_0(y)} \left[(\tilde{F}_0(y))^\theta \right]^{r_i-s+1} \\
\times \left[(\tilde{F}_0(x_i))^\theta - (\tilde{F}_0(y))^\theta \right]^{s-1} \left[(\tilde{F}_0(x_i))^\theta \right]^{-r_i} \\
\times \frac{[T(x)]^{m+1} \theta^m e^{-\theta T(x)} p^a + D (1 - p)^b + E - 1}{\Gamma(m + 1) Beta(a + D + 1, E + b)} dp d\theta.
\]

Using bivariate expansion, we have

\[
[(\tilde{F}_0(x_i))^\theta - (\tilde{F}_0(y))^\theta]^{s-1} = \sum_{j=0}^{s-1} \left(\begin{array}{c} s - 1 \\ j \end{array} \right) (-1)^j [\tilde{F}_0(y)]^{\theta j} [\tilde{F}_0(x_i)]^{\theta (s-j-1)}.
\]

The equation (13) can be rewritten as

\[
f^*(y|x_i) = s(m + 1) \left(\begin{array}{c} r_i \\ s \end{array} \right) \frac{[T(x)]^{m+1} \tilde{F}_0(y)}{\tilde{F}_0(y)} \\
\times \sum_{j=0}^{s-1} \left(\begin{array}{c} s - 1 \\ j \end{array} \right) (-1)^j \\
\times \left[T(x) - (r_i - s + j + 1) \ln \left(\frac{\tilde{F}_0(y)}{\tilde{F}_0(x_i)} \right) \right]^{-(m+2)}.
\]

By using (15), under ADL function, the Bayes point predictor of \(Y \), \(\hat{Y}_{ADP} \), can be
obtained as
\[
\frac{1}{2} = \int_{x_i} \hat{Y}_{ADP} f^*(y|x_i, r) dy
\]
\[
= s \left(\begin{array}{c} r_i \\ s \end{array} \right) \sum_{j=0}^{s-1} \left(\begin{array}{c} s - 1 \\ j \end{array} \right) (-1)^j \frac{1}{r_i + j - s + 1}
\times \left[1 - \frac{[T(x)]^{m+1}}{[T(x) - (r_i + j - s + 1) ln \left(\frac{F_0(y)}{F_0(x_i)} \right)]^{m+1}} \right].
\]
(16)

Using (10), the Bayes point predictor of \(Y \) under GEL function is given by
\[
\hat{Y}_{GEP} = \left[\int_{x_i}^{\infty} y^{-q} f^*(y|x_i, r) dy \right]^{-\frac{1}{q}}
\]
\[
= \left[s(m + 1) \left(\begin{array}{c} r_i \\ s \end{array} \right) [T(x)]^{m+1} \sum_{j=0}^{s-1} \left(\begin{array}{c} s - 1 \\ j \end{array} \right) (-1)^j I(j) \right]^{-\frac{1}{q}},
\]
(17)

where
\[
I(j) = \int_{x_i}^{\infty} y^{-q} f_0(y) \frac{F_0(y)}{F_0(y)} \left[T(x) - (r_i + j - s + 1) ln \left(\frac{F_0(y)}{F_0(x_i)} \right) \right]^{-(m+2)} dy.
\]
(18)

Remark 2.9. The Bayes point predictor under SEL function (\(\hat{Y}_{SEP} \)) can be obtained by setting \(q = -1 \) in the Bayes point predictor under GEL function (\(\hat{Y}_{GEP} \)).

Example 2.10. In the exponential distribution, the Bayes point predictors \(\hat{Y}_{ADP} \) and \(\hat{Y}_{GEP} \) of \(Y \) can be obtained as below
\[
\frac{1}{2} = s \left(\begin{array}{c} r_i \\ s \end{array} \right) \sum_{j=0}^{s-1} \left(\begin{array}{c} s - 1 \\ j \end{array} \right) (-1)^j \frac{1}{r_i + j - s + 1}
\times \left[1 - \frac{[T_0(x)]^{m+1}}{[T_0(x) - (r_i + j - s + 1)(x_i - \hat{y}_{ADP})]^{m+1}} \right].
\]
(19)

and
\[
\hat{Y}_{GEP} = \left(s \left(\begin{array}{c} r_i \\ s \end{array} \right) \frac{m + \alpha}{\beta + T_0(x)} \sum_{j=0}^{s-1} \left(\begin{array}{c} s - 1 \\ j \end{array} \right) (-1)^j I_0(j) \right)^{-\frac{1}{q}},
\]
(20)

where
\[
I_0(j) = \int_{x_i}^{\infty} y^{-q} \left[1 + \frac{(r_i - s + j + 1)(y - x_i)}{\beta + T_0(x)} \right]^{-(m+\alpha+1)} dy.
\]
3 Numerical Example and Simulation

In this section, we present the results of numerical experiments of the different point predictors investigated in the previous section. We present the analysis of a data set and a Monte Carlo simulation to compare the performance of the point predictors with respect to their biases and Mean Squared Prediction Errors (MSPEs). Consider the exponential distribution \(E(\theta) \) with CDF

\[
F(x, \theta) = 1 - e^{-\theta x}, \quad x > 0, \quad \theta > 0,
\]

as a special case from the model (2). Here, we have

\[
F_0(x) = e^{-x} \quad \text{and} \quad T_0(x) = \sum_{i=1}^{m} (r_i + 1)x_i.
\]

3.1 Numerical Example

First, we generate the \(B = 1000 \) of progressive censoring sample with binomial removals \(r_i (i = 1, 2, \ldots, m) \) and then, the point predictors are obtained by Monte-Carlo method. Steps are as follows:

Step 1. Generate the values \(r_i \) for the given values \(n = 20, m = 9 \) and \(p = 0.25 \), from

\[
R_i \sim B(n - m - \sum_{j=1}^{i-1} r_j, p),
\]

where

\[
r_m = n - m - \sum_{i=1}^{m-1} r_i, \quad i = 1, 2, ..., m - 1.
\]

Note that \(\sum_{j=1}^{0} r_j = 0 \).

Step 2. We generate \(\theta = 1 \) from the prior PDF (11).

Step 3. Using the sample from step 2, we generate a progressively Type-II censored sample of size \(m = 9 \) with binomial removals \(r_i (i = 1, 2, \ldots, m) \) from step 1, from the exponential distribution. The generated sample is

\[
0.0323, 0.0462, 0.0484, 0.1224, 0.2968, 0.3772, 1.4380, 1.5063, 1.5212.
\]

Step 4. Using this sample, the non-Bayesian point predictors MLP, EBUP and ECMP and Bayesian point predictors ADP, SEP and GEP are obtained for \(X_{i,(s)} (s = 1, 2, \ldots, r_i; \ i = 1, \ldots, m) \) by using the previous step’s sample. The results are presented in Table 2.
Table 2: Different Point Predictors for \(n = 20, \ m = 9 \) and \(\theta = 1 \) with random removals \(R = (1, 1, 3, 2, 0, 2, 0, 0, 2) \).

<table>
<thead>
<tr>
<th>(X_{i,(s)})</th>
<th>MLP</th>
<th>EBUP</th>
<th>ECMP</th>
<th>ADP</th>
<th>SEP</th>
<th>GEP((q = -0.5))</th>
<th>GEP((q = 0.5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X_{1,(1)})</td>
<td>0.051</td>
<td>0.512</td>
<td>0.371</td>
<td>0.349</td>
<td>0.510</td>
<td>0.264</td>
<td>0416</td>
</tr>
<tr>
<td>(X_{2,(1)})</td>
<td>0.399</td>
<td>0.934</td>
<td>0.771</td>
<td>0.723</td>
<td>0.923</td>
<td>0.594</td>
<td>0.802</td>
</tr>
<tr>
<td>(X_{3,(1)})</td>
<td>0.563</td>
<td>1.149</td>
<td>0.973</td>
<td>0.914</td>
<td>1.133</td>
<td>0.790</td>
<td>1.004</td>
</tr>
<tr>
<td>(X_{3,(2)})</td>
<td>0.566</td>
<td>1.167</td>
<td>0.987</td>
<td>0.929</td>
<td>1.151</td>
<td>0.821</td>
<td>1.025</td>
</tr>
<tr>
<td>(X_{3,(3)})</td>
<td>0.600</td>
<td>1.266</td>
<td>1.065</td>
<td>1.004</td>
<td>1.243</td>
<td>0.897</td>
<td>1.108</td>
</tr>
<tr>
<td>(X_{4,(1)})</td>
<td>0.557</td>
<td>1.253</td>
<td>1.041</td>
<td>0.985</td>
<td>1.234</td>
<td>0.803</td>
<td>1.101</td>
</tr>
<tr>
<td>(X_{4,(2)})</td>
<td>0.581</td>
<td>1.303</td>
<td>1.083</td>
<td>1.028</td>
<td>1.283</td>
<td>0.956</td>
<td>1.153</td>
</tr>
<tr>
<td>(X_{6,(1)})</td>
<td>0.655</td>
<td>1.423</td>
<td>1.188</td>
<td>1.133</td>
<td>1.401</td>
<td>1.072</td>
<td>1.271</td>
</tr>
<tr>
<td>(X_{6,(2)})</td>
<td>0.784</td>
<td>1.584</td>
<td>1.339</td>
<td>1.283</td>
<td>1.560</td>
<td>1.262</td>
<td>1.437</td>
</tr>
<tr>
<td>(X_{9,(1)})</td>
<td>0.997</td>
<td>1.760</td>
<td>1.529</td>
<td>1.479</td>
<td>1.740</td>
<td>1.502</td>
<td>1.641</td>
</tr>
<tr>
<td>(X_{9,(2)})</td>
<td>1.529</td>
<td>2.471</td>
<td>2.182</td>
<td>2.117</td>
<td>2.420</td>
<td>2.193</td>
<td>2.303</td>
</tr>
</tbody>
</table>

3.2 Simulation Study

A Monte Carlo simulation study is used to evaluate the biases and MSPEs for the predictors MLP, EBUP, ECMP, ADP, SEP and GEP. We randomly generated 1000 progressively censored sample from exponential distribution with \(\theta = 0.5 \). Note that we worked with the binomial removal corresponding to \(p = 0.25, 0.5, 0.75 \). To compute Bayesian predictors, since we do not have any prior information, we can use arbitrary \(a \) and \(b \), for example, we assume that \(a = 2 \) and \(b = 3 \) in our simulation.

Tables 3, 4 and 5 display the biases and MSPEs of different predictors obtained from this simulation study. All the computations are performed using R software.

Conclusion

From Table 3, 4 and 5, for all \(n, m \) and \(p \), we have the best results in terms of Biases for the EBUPs and in terms of MSPEs for the SEPs. As expected, the MLP does not work well, See Asgharzadeh and Valiollahi (2010). Also, we observe that for \(n = 10 \) most of predictors usually under-predict (because of negative sign of bias) the life-lengths \(X_{i,(s)}(s = 1, \ldots, r_i; i = 1, 2, \ldots, m) \), except the EBUP, which over-predict (because of positive sign of bias) most of the time; and for \(n = 15 \) most of predictors usually under-predict the life-lengths \(X_{i,(s)}(s = 1, \ldots, r_i; i = 1, 2, \ldots, m) \), except the EBUP, which over-predict in special cases \(m = 13 \) as \(p = 0.5, 0.75 \) and \(m = 9 \) as \(p = 0.5 \). This table shows that the Bayes predictors relative to GEL function are sensitive to the value of the shape parameter \(q \).
Table 3: Biases and MSPE's of point predictors for $\theta = 0.5$ and $p = 0.25$ with random removals.

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>$X_{i,(s)}$</th>
<th>MLP</th>
<th>EBUP</th>
<th>ECMP</th>
<th>ADP</th>
<th>SEP</th>
<th>GEP ($q = -0.5$)</th>
<th>GEP ($q = 0.5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td>$X_{1,(1)}$</td>
<td>Bias -1.369 -0.026 -0.438 -0.570 -0.223 -0.721 -0.464</td>
<td>4.168 2.518 2.457 2.544 2.255 2.764 2.376</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{1,(2)}$</td>
<td>Bias -1.459 -0.029 -0.450 -0.662 -0.387 -0.767 -0.662</td>
<td>5.219 3.763 3.600 3.691 3.230 3.998 3.471</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{4,(1)}$</td>
<td>Bias -1.336 0.038 -0.361 -0.573 -0.385 -0.529 -0.643</td>
<td>5.181 4.092 3.846 3.849 3.332 5.060 3.615</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{4,(2)}$</td>
<td>Bias -1.251 -0.058 -0.404 -0.586 -0.380 -0.494 -0.586</td>
<td>4.157 2.864 2.790 2.899 2.623 3.196 2.917</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>$X_{2,(1)}$</td>
<td>Bias -1.599 0.057 -0.451 -0.565 -0.171 -0.761 -0.459</td>
<td>5.766 3.360 3.352 3.441 3.116 3.747 3.268</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{2,(2)}$</td>
<td>Bias -1.660 0.017 -0.493 -0.645 -0.351 -0.704 -0.643</td>
<td>6.643 4.467 4.380 4.475 4.023 4.782 4.279</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{6,(1)}$</td>
<td>Bias -1.604 0.009 -0.480 -0.625 -0.382 -0.504 -0.645</td>
<td>6.299 4.152 4.119 4.208 3.805 4.475 4.092</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{6,(2)}$</td>
<td>Bias -1.796 0.166 -0.429 -0.613 -0.786 0.360 -1.221</td>
<td>7.377 5.075 5.325 5.409 7.306 23.678 9.121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>$X_{2,(1)}$</td>
<td>Bias -1.822 -0.067 -0.606 -0.698 -0.279 -0.854 -0.569</td>
<td>7.159 4.002 4.214 4.317 3.893 4.620 4.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{5,(1)}$</td>
<td>Bias -2.096 -0.208 -0.788 -0.903 -0.734 -0.501 -1.071</td>
<td>9.206 5.278 5.636 5.791 5.672 8.465 6.52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>$X_{1,(1)}$</td>
<td>Bias -1.408 0.004 -0.429 -0.495 -0.114 -0.737 -0.373</td>
<td>4.588 2.490 2.586 2.644 2.396 2.972 2.508</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{4,(1)}$</td>
<td>Bias -1.426 0.036 -0.414 -0.520 -0.203 -0.739 -0.486</td>
<td>5.116 3.302 3.293 3.354 3.032 3.631 3.198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{5,(1)}$</td>
<td>Bias -1.544 0.017 -0.460 -0.572 -0.264 -0.709 -0.551</td>
<td>5.650 3.435 3.487 3.574 3.279 3.804 3.521</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{5,(2)}$</td>
<td>Bias -1.713 -0.030 -0.546 -0.658 -0.355 -0.701 -0.643</td>
<td>6.725 4.050 4.160 4.256 3.860 4.475 4.146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{6,(1)}$</td>
<td>Bias -1.587 0.118 -0.405 -0.507 -0.225 -0.417 -0.494</td>
<td>5.94 3.488 3.415 3.469 3.124 3.657 3.290</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{6,(2)}$</td>
<td>Bias -1.991 -0.088 -0.615 -0.992 -1.341 0.070 -1.822</td>
<td>9.548 7.675 7.325 7.409 7.306 23.678 9.121</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>$X_{1,(1)}$</td>
<td>Bias -1.617 -0.035 -0.521 -0.582 -0.165 -0.855 -0.451</td>
<td>5.777 3.177 3.337 3.398 3.078 3.801 3.225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{1,(2)}$</td>
<td>Bias -1.685 -0.036 -0.546 -0.635 -0.271 -0.844 -0.569</td>
<td>6.706 4.040 4.197 4.283 3.895 4.635 4.124</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{4,(1)}$</td>
<td>Bias -1.769 0.018 -0.532 -0.622 -0.276 -0.693 -0.570</td>
<td>6.937 4.153 4.247 4.330 3.972 4.567 4.193</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{5,(1)}$</td>
<td>Bias -1.972 -0.016 -0.617 -0.704 -0.534 -0.310 -0.873</td>
<td>8.024 4.454 4.666 4.761 4.601 6.759 5.271</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>$X_{1,(1)}$</td>
<td>Bias -1.768 0.098 -0.474 -0.537 -0.084 -0.810 -0.404</td>
<td>6.718 3.779 3.857 3.909 3.613 4.267 3.729</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MSPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$X_{1,(2)}$</td>
<td>Bias -1.885 0.082 -0.525 -0.598 -0.270 -0.538 -0.590</td>
<td>7.197 3.998 4.092 4.154 3.880 5.842 4.169</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4: Biases and MSPE’s of point predictors for $\theta = 0.5$ and $p = 0.5$ with random removals.

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>$X_{1,(1)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{1,(2)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{1,(3)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{2,(1)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{2,(2)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{2,(3)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{3,(1)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{3,(2)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{3,(3)}$</th>
<th>Bias</th>
<th>MSPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td>4</td>
<td>-0.788</td>
<td>0.015</td>
<td>-0.231</td>
<td>-0.310</td>
<td>-0.052</td>
<td>-0.382</td>
<td>0.200</td>
<td>-0.627</td>
<td>0.447</td>
<td>2.654</td>
<td>2.417</td>
<td>4.361</td>
<td>3.752</td>
<td>-0.607</td>
<td>0.669</td>
<td>4.918</td>
<td>4.154</td>
<td>5.965</td>
<td>4.600</td>
<td>6.450</td>
<td>5.194</td>
<td>10.393</td>
<td>6.915</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>4</td>
<td>-1.148</td>
<td>-0.036</td>
<td>-0.377</td>
<td>-0.453</td>
<td>-0.125</td>
<td>-0.604</td>
<td>0.328</td>
<td>2.242</td>
<td>1.931</td>
<td>4.158</td>
<td>3.576</td>
<td>-0.794</td>
<td>0.852</td>
<td>6.322</td>
<td>5.236</td>
<td>8.847</td>
<td>6.438</td>
<td>10.672</td>
<td>5.889</td>
<td>6.346</td>
<td>5.187</td>
<td>10.393</td>
<td>6.915</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>4</td>
<td>-1.700</td>
<td>-0.023</td>
<td>-0.538</td>
<td>-0.626</td>
<td>-0.211</td>
<td>-0.866</td>
<td>0.507</td>
<td>3.801</td>
<td>3.256</td>
<td>6.450</td>
<td>5.194</td>
<td>-0.601</td>
<td>0.952</td>
<td>6.346</td>
<td>5.187</td>
<td>8.055</td>
<td>5.322</td>
<td>3.415</td>
<td>3.060</td>
<td>8.524</td>
<td>5.410</td>
<td>5.183</td>
<td>5.012</td>
<td>9.588</td>
<td>5.338</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>4</td>
<td>-0.796</td>
<td>0.016</td>
<td>-0.233</td>
<td>-0.271</td>
<td>-0.009</td>
<td>-0.396</td>
<td>0.161</td>
<td>1.078</td>
<td>0.919</td>
<td>2.583</td>
<td>2.293</td>
<td>3.803</td>
<td>3.339</td>
<td>5.988</td>
<td>5.338</td>
<td>1.078</td>
<td>0.919</td>
<td>2.583</td>
<td>2.293</td>
<td>3.803</td>
<td>3.339</td>
<td>5.988</td>
<td>5.338</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>4</td>
<td>-1.079</td>
<td>0.086</td>
<td>-0.271</td>
<td>-0.317</td>
<td>0.019</td>
<td>-0.521</td>
<td>0.197</td>
<td>1.752</td>
<td>1.493</td>
<td>3.482</td>
<td>3.051</td>
<td>-0.797</td>
<td>0.612</td>
<td>4.750</td>
<td>4.249</td>
<td>5.604</td>
<td>4.215</td>
<td>4.395</td>
<td>3.989</td>
<td>4.249</td>
<td>4.249</td>
<td>4.750</td>
<td>4.249</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>4</td>
<td>-1.63</td>
<td>0.078</td>
<td>-0.446</td>
<td>-0.503</td>
<td>-0.073</td>
<td>-0.812</td>
<td>0.382</td>
<td>3.620</td>
<td>3.012</td>
<td>3.620</td>
<td>3.012</td>
<td>-0.944</td>
<td>0.655</td>
<td>5.387</td>
<td>4.716</td>
<td>8.041</td>
<td>4.635</td>
<td>4.816</td>
<td>4.910</td>
<td>4.438</td>
<td>5.387</td>
<td>4.716</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The table entries represent biases and mean squared prediction errors (MSPE) for different configurations of n, m, and $X_{1,(i)}$, with biases and MSPE values for $\theta = 0.5$ and $p = 0.5$ with random removals.
Table 5: Biases and MSPE’s of point predictors for $\theta = 0.5$ and $p = 0.75$ with random removals.

<table>
<thead>
<tr>
<th>n</th>
<th>m</th>
<th>$X_{1,(1)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{1,(2)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{1,(3)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{1,(4)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{1,(5)}$</th>
<th>Bias</th>
<th>MSPE</th>
<th>$X_{1,(6)}$</th>
<th>Bias</th>
<th>MSPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td>$X_{1,(1)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(2)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(3)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(4)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(5)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(6)}$</td>
<td>Bias</td>
<td>MSPE</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>$X_{1,(1)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(2)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(3)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(4)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(5)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(6)}$</td>
<td>Bias</td>
<td>MSPE</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>$X_{1,(1)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(2)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(3)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(4)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(5)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(6)}$</td>
<td>Bias</td>
<td>MSPE</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>$X_{1,(1)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(2)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(3)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(4)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(5)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(6)}$</td>
<td>Bias</td>
<td>MSPE</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>$X_{1,(1)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(2)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(3)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(4)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(5)}$</td>
<td>Bias</td>
<td>MSPE</td>
<td>$X_{1,(6)}$</td>
<td>Bias</td>
<td>MSPE</td>
</tr>
</tbody>
</table>
References

