
Journal of Statistical Modelling: Theory and Applications
Vol. 1, No. 1, 2020, pp. 111-127
Yazd University Press 2020

Point prediction for the proportional hazards family based on
progressive Type-II censoring with binomial removals

RahmatSadat Meshkat∗, Naeimeh Dehqani
Department of Statistics, Yazd University, Yazd, IRAN

Received: August 21, 2018/ Revised: September 13, 2018/ Accepted: September 14, 2018

In this paper, some different predictors are presented for failure times of units cen-
sored in a progressively censored sample from proportional hazard rate models, where
the number of units removed at each failure time follows a binomial distribution. The
maximum likelihood predictors, best unbiased predictors and conditional median pre-
dictors are derived. Also, the Bayesian point predictors are investigated for the failure
times of units with the three common loss function. Finally, a numerical example and
a Monte Carlo simulation study are carried out to compare all the prediction methods
discussed in this paper.
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1 Introduction
In lifetime testing and analysis of reliability data, it is common to use the different
censoring scheme in order to reduce costs and time. A censoring scheme, which can
balance between (a) total time spent for the experiment; (b) number of units used in
the experiment; and (c) the efficiency of statistical inference based on the results of
the experiment, is desirable; see Ng et al. (2009). In some life-testing experiments, the
experimenter seeks to remove units at different stages in the study for various reasons.
This would lead to progressive censoring. In particular, a progressive Type-II censoring
scheme is taken account of an important scheme in life-testing experiments.

The progressive Type-II censoring can be described as follows: Suppose n indepen-
dent units are placed on a life test. Immediately following the first failure, r1 surviving
units are removed from the test at random. Then, immediately following the second
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failure, r2 surviving units are removed from the test at random. This process continues
until, at the time of the m-th failure, all the remaining rm = n−r1−r2−· · ·−rm−1−m
units are removed from the experiment. Suppose X1, · · · , Xn are the corresponding
failure times of these units that are identically distributed with Probability Density
Function (PDF) f(.) and Cumulative Distribution Function (CDF) F (.). Therefore,
the joint density function X1:m:n, · · · , Xm:m:n, a progressively Type-II censored order
statistics with the censoring scheme (r1, · · · , rm) is given by

f(x1:m:n, · · · , xm:m:n) = A

m∏
i=1

f(xi:m:n)[1− F (xi:m:n)]
ri , (1)

where x1:m:n < · · · < xm:m:n and A(n,m− 1) = n(n− 1− r1)(n− 2− r1 − r2) · · · (n−
m+ 1− r1 · · · − rm−1). Note that

m∑
i=1

ri = n−m, ri ≥ 0, i = 1, · · · ,m; see Balakrish-

nan and Aggarwala (2000). In this scheme, r1, r2, · · · , rm are all pre-fixed. However,
these numbers may occur at random in some practical situations. In some reliability
experiments, an experimenter may distinguish that it is inappropriate or too dangerous
to continue the testing on some of the tested units even though these units have not
failed; Yuen and Tse (1996) and Zeinab (2008). In such cases, the pattern of removal
at each failure is random. This leads to progressive censoring with random removals
(PCR); see Table 1.

Table 1: A schematic representation of the progressive Type-II censoring with binomial
removals that each unit leaves with equal probability p.

The numbers in life testing Binomial removals Remains
n R1 ∼ B(n−m, p) n− 1− r1

n− 1− r1 R2 ∼ B(n−m− r1, p) n− 2− r1 − r2
...

...
...

n− (m− 2)−
m−2∑
j=1

rj Rm−1 ∼ B(n−m−
m−2∑
j=1

rj , p) n− (m− 1)−
m−1∑
j=1

rj

n− (m− 1)−
m−1∑
j=1

rj Rm = n−m−
m−1∑
j=1

rj 0

The statistical inference on lifetime distributions under progressive censoring with
random removals is discussed by several authors. Tse et al. (2000) presented the max-
imum likelihood estimations of Weibull distribution under progressive censoring with
binomial removals. Wu and Chang (2003) and Wu et al. (2007) discussed the estimation
of the Burr Type-XII distribution and Pareto distribution based on progressively cen-
sored samples with random removals, where the number of removed units has a discrete
uniform removal pattern and binomial distribution. Xiang and Tse (2005) discussed the
maximum likelihood estimation of the model parameters and derived the correspond-
ing asymptotic variances based on Type-II progressive interval censoring with binomial
removals. Wu et al. (2006) obtained Maximum Likelihood Estimator (MLE) and the



113 R. Meshkat and N. Dehqani

estimated expected test time for the two-parameter Gompertz distribution under pro-
gressive censoring with binomial removals. Recently, Weian et al. (2011) presented
statistical analysis of generalized exponential distribution under progressive censoring
with binomial removals. Prediction of future events on the basis of past and present
knowledge is a fundamental problem in statistical inference. Viveros and Balakrishnan
(1994) used the conditional method of inference to develop a conditional prediction
interval for an observation from an independent future sample based on an observed
progressively Type-II right censored sample. Some key references about prediction
based on a progressively censored sample include Balakrishnan and Lin (2002), Basak
et al. (2006) and Raqab et al. (2010). Recently, Asgharzadeh and Valiollahi (2010) dis-
cussed point prediction for the proportional hazards family under progressive Type-II
censoring with fixed removal.

Suppose F0(.) is a CDF with a corresponding hazard rate function r0(.). The family
of random variables with hazard rate function of the form {θr0(.) : θ > 0} is called
PHR family and the CDF F0(.) is called the baseline CDF of that family. Cox (1972)
introduced this model and it has been extensively discussed in the statistical literature.
This family of distributions includes several well-known lifetime distributions such as
exponential, Pareto (Types I and II), Beta, Burr Type XII and so on. Let X be from
proportional hazard family with the baseline CDF F0(.). The distribution function of
X is defined by

F (x; θ) = 1− [F̄0(x)]
θ, −∞ ≤ c < x < d ≤ ∞, θ > 0. (2)

or equivalently

F̄ (x; θ) = [F̄0(x)]
θ, −∞ ≤ c < x < d ≤ ∞, θ > 0,

where F̄0(.) = 1− F0(.) is the baseline survival function and F0(c) = 0 and F0(d) = 1.
The corresponding probability density function is as following

f(x; θ) = θ f0(x)[F̄0(x)]
θ−1, −∞ ≤ c < x < d ≤ ∞, θ > 0, (3)

where f0(.) is the PDF of F0(.). Lawless (2003), Ahmadi et al. (2009a,b) and As-
gharzadeh and Valiollahi (2009, 2010) have extensively discussed the PHR model.

Consider X1:m:n, · · · , Xm:m:n indicate the progressively Type-II order statistics
from the PHR model given in (2) or (3) obtained from a sample of size n with the cen-
soring scheme (r1, · · · , rm). To simplify the notation, we will use Xi in place of Xi:m:n.
The purpose of this paper is to obtain the prediction of the life-lengths Y = Xi,(s)

(s = 1, 2, · · · , ri, i = 1, 2, · · · ,m) of all censored units in all m stages of censoring
based on observed data x = (x1, ..., xm), where Xi,(s) indicates the s-th order statistic
out of ri removed units at stage i (i = 1, 2, · · · ,m). In Section 2, we derive some dif-
ferent point predictors for failure times of units censored (non-Bayesian and Bayesian
approaches). A numerical example and a Monte Carlo simulation study are carried out
in Section 3 to compare all the prediction methods mentioned in this paper. Finally,
some results is presented in Section 3.2.
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2 Different methods for point prediction
Consider X1:m:n, · · · , Xm:m:n indicate the progressively Type-II order statistics from
the PHR model given in (2) or (3) obtained from a sample of size n with the censoring
scheme (r1, · · · , rm). To simplify the notation, we will use Xi in place of Xi:m:n. Our
interest is to obtain the prediction of the life-lengths Y = Xi,(s) (s = 1, 2, · · · , ri, i =
1, 2, · · · ,m) of all censored units in all m stages of censoring based on observed data
x = (x1, ..., xm), where Xi,(s) indicates the s-th order statistic out of ri removed units
at stage i, i = 1, 2, · · · ,m.

2.1 Maximum likelihood predictor
The maximum likelihood is one of the most important and widely used methods in
statistics. Kaminsky and Rhodin (1985), Basak et al. (2006), and Asgharzadeh and
Valiollahi (2010) have used maximum likelihood prediction for predicting future obser-
vations. Our interest is to predict the unobservable future value of Y , having observed
x. Consider X = (X1, ..., Xm) and Y have the joint PDF f(x, y, r; θ, p) indexed by
the parameters θ and p. Thus, we can define

L(y, θ, p;x, r) = f(x, y, r; θ, p)

= fY |X(y|x; θ) f(x|r; θ) f(r; p), (4)

as the Predictive Likelihood Function (PLF) of y and θ and p, where the joint density
function (1) based on PHR of x = (x1, ..., xm) can be rewritten as

f(x|r; θ) = A

[
m∏
i=1

f0(xi)

F̄0(xi)

]
θm e−θT (x), (5)

where A = n(n− 1− r1)(n− 2− r1 − r2) · · · (n−m+ 1 − r1 · · · − rm−1) and T (x) =
−
∑m

i=1(ri + 1) ln F̄0(xi) and the joint probability distribution of removals vector R =
(R1, · · · , Rm) is given by

f(r; p) = P (R = r; p) = BpD(1− p)E

with B =
(n−m)!(

n−m−
∑m−1

j=1 rj

)
!
∏m−1

j=1 rj !
, D =

m−1∑
j=1

rj , E = (m − 1)(n −m) −

m−1∑
j=1

(m− j)rj ; see Weian et al. (2011). It is clear that the MLE of θ is

θ̂ML =
m

T (x)
.

Because of the Markovian property of progressively Type-II right censored-order statis-
tics, it can be shown that the conditional distribution of Xi,(s) given X is just the dis-
tribution of Xi,(s) given Xi = xi; see Balakrishnan and Aggarwala (2000). This implies
that the density of Xi,(s) given X = x is the same as the density of the s-th order
statistic out of ri units from the population with density f(y)/(1−F (xi)), y ≥ xi (left



115 R. Meshkat and N. Dehqani

truncated density at xi). Thus, the conditional density of Y = Xi,(s) given Xi = xi,
for y ≥ xi, is given by

fY |Xi
(y|xi, ri; θ) = s

(
ri
s

)
f(y; θ) [F (y; θ)− F (xi; θ)]

s−1

×[1− F (y; θ)]ri−s [1− F (xi; θ)]
−ri . (6)

From (3), we have

fY |Xi
(y|xi, ri; θ) = s

(
ri
s

)
θ
f0(y)

F̄0(y)

[
(F̄0(xi))

θ − (F̄0(y))
θ
]s−1

×
[
(F̄0(y))

θ
]ri−s+1 [

(F̄0(xi))
θ
]−ri

, y ≥ xi. (7)

Therefore, PLF of Y , θ and p can be extended as

L(y, θ, p;x, r) = fY |Xi
(y|xi, ri; θ) f(xi|r; θ) f(r; p)

= c f(y; θ) [F (y; θ)− F (xi; θ)]
s−1[1− F (y; θ)]ri−s

×
m∏
j=1

f(xj ; θ)

m∏
j=1,j ̸=i

[1− F (xj ; θ)]
rj

× pD (1− p)E , y ≥ xi,

where c is a constant factor. Disregarding the constant term, the predictive log-
likelihood function for y ≥ xi is

lnL(y, θ, p;x, r) = ln f(y; θ) + (s− 1) ln[F (y; θ)− F (xi; θ)]

+(ri − s) ln[1− F (y; θ)] +

m∑
j=1

ln f(xj ; θ)

+

m∑
j=1,j ̸=i

rj ln[1− F (xj ; θ)] +D ln p+ E ln(1− p).

By substituting (2) and (3), the log PLF of Y = y and θ, for y ≥ xi, is given by

lnL(y, θ, p;x, r) = (m+ 1) ln θ + ln

[
f0(y)

F̄0(y)

]
+

m∑
j=1

ln
f0(xj)

F̄0(xj)

+(s− 1) ln

[
1−

(
F̄0(y)

F̄0(xi)

)θ
]

+θ(ri − s+ 1) [ln F̄0(y)− ln F̄0(xi)]

+θ

m∑
j=1

(rj + 1) ln F̄0(xj) +D ln p+ E ln(1− p). (8)

The maximum likelihood predictor (MLP) of Y and the Predictive Maximum Likeli-
hood Estimator (PMLE) of θ are obtained directly by maximizing lnL(y, θ;x), since
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f(r; p) does not involve y and θ. Thus, the predictive likelihood equations (PLEs) for
y and θ (for y ≥ xi) are given by

∂ lnL(y, θ;x)

∂y
=

1

F̄0(y)

[
f

′

0(y)F̄0(y) + f2
0 (y)

f0(y)
− θ(ri − s+ 1)f0(y)

+θ(s− 1)f0(y)

[
F̄0(y)
F̄0(xi)

]θ
1−

[
F̄0(y)
F̄0(xi)

]θ
]
= 0,

and

∂ lnL(y, θ;x)

∂θ
=

m+ 1

θ
− (s− 1) ln

[
F̄0(y)

F̄0(xi)

] [
F̄0(y)
F̄0(xi)

]θ
1−

[
F̄0(y)
F̄0(xi)

]θ
+(ri − s+ 1) [ln[F̄0(y)]− ln[F̄0(xi)]]

+

m∑
j=1

(rj + 1) ln[F̄0(xj)] = 0.

Independently, the MLE of p can be obtained by maximizing f(r; p) directly,

∂ ln f(r; p)

∂p
=

D

p
− E

1− p
= 0,

hence,
p̂ =

D

D + E
.

Example 2.1. For exponential distribution, we have

F̄0(x) = e−x x > 0.

Hence, the PLEs reduce to:

∂ lnL(y, θ;x)

∂y
= −θ(ri − s+ 1) + θ(s− 1)

e−θ(y−xi)

1− e−θ(y−xi)
= 0,

and

∂ lnL(y, θ;x)

∂θ
=

m+ 1

θ
−

 m∑
j=1

(rj + 1)xj + (ri − s+ 1)(y − xi)


+(s− 1)

(y − xi)e
−θ(y−xi)

1− e−θ(y−xi)
= 0.

Now, the MLP of Y and PMLE of θ can be obtained as

ŶMLP = xi +
1

θ̂PML

ln

[
Ri

Ri − s+ 1

]
,
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and
θ̂PML =

m+ 1

T0(x)
,

where
T0(x) =

m∑
i=1

(Ri + 1)xi.

2.2 Best unbiased predictor
In this section, we first define a best unbiased predictor and then we obtain BUP for
the interested variables.

Definition 2.2. A statistic Ŷ is called a best unbiased predictor (BUP) of Y = Xi,(s),
if the predictor error Ŷ −Y has a mean zero and its prediction error variance V ar[Ŷ −Y ]
is less than or equal to that of any other unbiased predictor of Y .

Nayak (2000) showed that since the conditional distribution of Y given x = (x1, ..., xm)
is just the distribution of Y given Xi, the BUP of Y is

ŶBUP = E[Y |Xi = xi].

By (7), we have

ŶBUP =

∫ ∞

xi

y f(y|xi; θ) dy

=

∫ 1

0

F̄0
−1
(
u

1
θ F̄0(xi)

) uri−s(1− u)s−1

Beta(ri − s+ 1, s)
du.

Note that Ri is a random variable, so we define

ŶEBUP = ERi

[∫ 1

0

F̄0
−1
(
u

1
θ F̄0(xi)

) uri−s(1− u)s−1

Beta(ri − s+ 1, s)
du

]
.

Example 2.3. For the exponential distribution and after replacing θ by its MLE, we
have

ŶEBUP = ERi

[∫ 1

0

− ln
(
u

T0(x)
m e−xi

) uri−s(1− u)s−1

Beta(ri − s+ 1, s)
du

]
= xi +

T0(x)

m
ERi

[∫ 1

0

(− lnu)
uri−s(1− u)s−1

Beta(ri − s+ 1, s)
du

]
.

2.3 Empirical conditional median predictor
As another possible predictor, it can be considered Conditional Median Predictor
(CMP); see Raqab and Nagaraja (1995).

Definition 2.4. A predictor Ŷ is called the CMP of Y , if it is the median of the
conditional distribution of Y given Xi = xi; that is,

Pθ(Y ≤ Ŷ |Xi = xi) = Pθ(Y ≥ Ŷ |Xi = xi).
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By using the relation

Pθ(Y ≤ Ŷ |Xi = xi, Ri = ri) = Pθ

( F̄0(Y )

F̄0(Xi)

)θ

≥

(
F̄0(Ŷ )

F̄0(Xi)

)θ
∣∣∣∣∣∣Xi = xi, Ri = ri

 ,

and this fact that the distribution of
(

F̄0(Y )
F̄0(Xi)

)θ
given Xi = xi and Ri = ri is a

Beta(ri − s+ 1, s) distribution, we obtain the CMP of Y as

ŶCMP = F̄0
−1
(
F̄0(xi)[Med(U |ri)]

1
θ

)
,

where U |ri has Beta(ri − s + 1, s) distribution and Med(U |ri) stands for median of
U |ri. Note that Ri is a random variable, so we define Empirical Conditional Median
Predictor (ECMP) as below

ŶECMP = ERi

[
F̄0

−1
(
F̄0(xi)[Med(U |ri)]

1
θ

)]
,

as the expectation of CMP of Y . Substituting θ with its MLE leads us to ECMP in
the following form,

ŶECMP = ERi

[
F̄0

−1
(
F̄0(xi)[Med(U |ri)]

T (x)
m

)]
.

Example 2.5. Taking F̄0(x) = e−x, we obtain

ŶECMP = ERi

[
− ln

(
e−xi [Med(U |ri)]

T0(x)
m

)]
= xi −

T0(x)

m
ERi [ln[Med(U |ri)]] .

2.4 Bayesian point predictors
Bayesian predictors are obtained from f∗(y|x), the Bayes predictive density function
of Y given X = x, and given loss function. The loss function L(y, ŷ) indicates the loss
for using ŷ as the predicted value of Y when the realized value is y. Here, we consider
the three loss functions to discuss Bayesian predictors.

Definition 2.6. The Squared Error Loss (SEL) is a symmetric and most commonly
used loss function, defined as

L(y, ŷ) = (ŷ − y)2.

The Bayes point predictor of y, under SEL function, (ŷSEP ) is E[Y |x].

Definition 2.7. The Absolute Difference Loss (ADL) is a symmetric loss function,
defined as

L(y, ŷ) = |y − ŷ|.

The Bayes point predictor of y, under ADL function, (ŷADL) is the median of the
Bayes predictive distribution.
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Definition 2.8. The General Entropy Loss (GEL) function is a useful asymmetric
loss function, that

L(y, ŷ) ∝
(
ŷ

y

)q

− q ln

(
ŷ

y

)
− 1, q ̸= 0, (9)

whose minimum occurs at ŷ = y. This loss function is a generalization of the Entropy-
loss.

The Bayes point predictor ŷGEP of y under GEL function becomes

ŷGEP = (EY (Y
−q))−

1
q , (10)

where EY (.) denotes the posterior expectation with respect to the Bayes predictive
density function of y; see Soliman (2005).When the parameters p and θ are unknown,
if p and θ are independent, all Bayesian predictors are the same as the fixed removal
obtained by Asgharzadeh and Valiollahi (2010). Now, consider p and θ are dependent.
Let θ given p be a non-informative prior distribution, that is f(θ|p) = 0 for θ > 0 and
p ∼ Beta(a, b). In this cases, the posterior density function of p and θ given the data,
π(p, θ|x, r), can be obtained as below

π(p, θ|x, r) = [T (x)]m+1 θm e−θT (x) pa+D (1− p)b+E−1

Γ(m+ 1)Beta(a+D + 1, E + b)
I(0, 1p )(θ). (11)

The Bayes predictive density function of Y given Xi = xi is given by

f∗(y|xi, r) =

∫ ∞

0

∫ 1

0

f(y|xi, r; θ, p)π(p, θ|x, r)dpdθ. (12)

By substituting (7) and (11), for y ≥ xi we get

f∗(y|xi) =

∫ ∞

0

∫ 1

0

s

(
ri
s

)
θ
f0(y)

F̄0(y)

[
(F̄0(y))

θ
]ri−s+1

×
[
(F̄0(xi))

θ − (F̄0(y))
θ
]s−1 [

(F̄0(xi))
θ
]−ri

× [T (x)]m+1 θm e−θT (x) pa+D (1− p)b+E−1

Γ(m+ 1)Beta(a+D + 1, E + b)
dpdθ. (13)

Using bivariate expansion, we have

[
(F̄0(xi))

θ − (F̄0(y))
θ
]s−1

=

s−1∑
j=0

(
s− 1

j

)
(−1)j [F̄0(y)]

θj [F̄0(xi)]
θ(s−j−1). (14)

The equation (13) can be rewritten as

f∗(y|xi) = s(m+ 1)

(
ri
s

)
[T (x)]m+1 f0(y)

F̄0(y)

×
s−1∑
j=0

(
s− 1

j

)
(−1)j
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×
[
T (x)− (ri − s+ j + 1) ln

(
F̄0(y)

F̄0(xi)

)]−(m+2)

. (15)

By using (15), under ADL function, the Bayes point predictor of Y , ŶADP , can be
obtained as

1

2
=

∫ ŶADP

xi

f∗(y|xi, r)dy

= s

(
ri
s

) s−1∑
j=0

(
s− 1

j

)
(−1)j

1

ri + j − s+ 1

×

1− [T (x)]m+1[
T (x)− (ri + j − s+ 1) ln

(
F̄0(ŷADP )
F̄0(xi)

)]m+1

 . (16)

Using (10), the Bayes point predictor of Y under GEL function is given by

ŶGEP =

[∫ ∞

xi

y−q f∗(y|xi, r)dy

]− 1
q

=

s(m+ 1)

(
ri
s

)
[T (x)]m+1

s−1∑
j=0

(
s− 1

j

)
(−1)jI(j)

− 1
q

, (17)

where

I(j) =

∫ ∞

xi

y−q f0(y)

F̄0(y)

[
T (x)− (ri − s+ j + 1) ln

(
F̄0(y)

F̄0(xi)

)]−(m+2)

dy. (18)

Remark 2.9. The Bayes point predictor under SEL function (ŶSEP ) can be obtained
by setting q = −1 in the Bayes point predictor under GEL function (ŶGEP ).

Example 2.10. In the exponential distribution, the Bayes point predictors ŶADP and
ŶGEP of Y can be obtained as below

1

2
= s

(
ri
s

) s−1∑
j=0

(
s− 1

j

)
(−1)j

1

ri + j − s+ 1

×

[
1− [T0(x)]

m+1

[T0(x)− (ri + j − s+ 1)(xi − ŷADP )]
m+1

]
. (19)

and

ŶGEP =

s

(
ri
s

)
m+ α

β + T0(x)

s−1∑
j=0

(
s− 1

j

)
(−1)jI0(j)

− 1
q

, (20)

where

I0(j) =

∫ ∞

xi

y−q

[
1 +

(ri − s+ j + 1)(y − xi)

β + T0(x)

]−(m+α+1)

dy.
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3 Numerical example and simulation
In this section, we present the results of numerical experiments of the different point
predictors investigated in the previous section. We present the analysis of a data set
and a Monte Carlo simulation to compare the performance of the point predictors with
respect to their biases and Mean Squared Prediction Errors (MSPEs). Consider the
exponential distribution E(θ) with CDF

F (x, θ) = 1− e−θx, x > 0, θ > 0,

as a special case from the model (2). Here, we have F̄0(x) = e−x and T0(x) =
m∑
i=1

(ri +

1)xi.

3.1 Numerical example
First, we generate the B = 1000 of progressive censoring sample with binomial removals
ri(i = 1, 2, · · · ,m) and then, the point predictors are obtained by Monte-Carlo method.
Steps are as follows:
Step 1. Generate the values ri for the given values n = 20, m = 9 and p = 0.25, from

Ri ∼ B(n−m−
i−1∑
j=1

rj , p),

where rm = n−m−
m−1∑
i=1

ri, i = 1, 2, ...,m− 1. Note that
0∑

j=1

rj = 0.

Step 2. We generate θ = 1 from the prior PDF (11).
Step 3. Using the sample from step 2, we generate a progressively Type-II censored
sample of size m = 9 with binomial removals ri(i = 1, 2, · · · ,m) from step 1, from the
exponential distribution. The generated sample is

0.0323, 0.0462, 0.0484, 0.1224, 0.2968, 0.3772, 1.4380, 1.5063, 1.5212.

Step 4. Using this sample, the non-Bayesian point predictors MLP, EBUP and
ECMP and Bayesian point predictors ADP, SEP and GEP are obtained for Xi,(s)(s =
1, 2, · · · , ri; i = 1, · · · ,m) by using the previous step’s sample. The results are pre-
sented in Table 2.
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Table 2: Different Point Predictors for n = 20, m = 9 and θ = 1 with random removals
R = (1, 1, 3, 2, 0, 2, 0, 0, 2).

Xi,(s) MLP EBUP ECMP ADP SEP GEP(q = −0.5) GEP(q = 0.5)
X1,(1) 0.051 0.512 0.371 0.349 0.510 0.264 0416

X2,(1) 0.399 0.934 0.771 0.723 0.923 0.594 0.802

X3,(1) 0.563 1.149 0.973 0.914 1.133 0.790 1.004
X3,(2) 0.566 1.167 0.987 0.929 1.151 0.821 1.025
X3,(3) 0.600 1.266 1.065 1.004 1.243 0.897 1.108

X4,(1) 0.557 1.253 1.041 0.985 1.234 0.893 1.101
X4,(2) 0.581 1.303 1.083 1.028 1.283 0.956 1.153

X6,(1) 0.655 1.423 1.188 1.133 1.401 1.072 1.271
X6,(2) 0.784 1.584 1.339 1.283 1.560 1.262 1.437

X9,(1) 0.997 1.760 1.529 1.479 1.740 1.502 1.641
X9,(2) 1.529 2.471 2.182 2.117 2.420 2.193 2.303

3.2 Simulation study
A Monte Carlo simulation study is used to evaluate the biases and MSPEs for the
predictors MLP, EBUP, ECMP, ADP, SEP and GEP. We randomly generated 1000
progressively censored sample from exponential distribution with θ = 0.5. Note that
we worked with the binomial removal corresponding to p = 0.25, 0.5, 0.75. To compute
Bayesian predictors, since we do not have any prior information, we can use arbitrary
a and b, for example, we assume that a = 2 and b = 3 in our simulation.
Tables 3, 4 and 5 display the biases and MSPEs of different predictors obtained from
this simulation study. All the computations are performed using R software.

Conclusion
From Table 3, 4 and 5, for all n, m and p, we have the best results in terms of Biases for
the EBUPs and in terms of MSPEs for the SEPs. As expected, the MLP does not work
well, See Asgharzadeh and Valiollahi (2010). Also, we observe that for n = 10 most
of predictors usually under-predict (because of negative sign of bias) the life-lengths
Xi,(s) (s = 1, · · · , ri; i = 1, 2, · · · ,m), except the EBUP, which over-predict (because
of positive sign of bias) most of the time; and for n = 15 most of predictors usually
under-predict the life-lengths Xi,(s) (s = 1, · · · , ri; i = 1, 2, · · · ,m), except the EBUP,
which over-predict in special cases m = 13 as p = 0.5, 0.75 and m = 9 as p = 0.5.
This table shows that the Bayes predictors relative to GEL function are sensitive to
the value of the shape parameter q.
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Table 3: Biases and MSPE’s of point predictors for θ = 0.5 and p = 0.25 with random
removals.

n m Xi,(s) MLP EBUP ECMP ADP SEP GEP(q = −0.5) GEP(q = 0.5)
10 4 X1,(1) Bias -1.369 -0.026 -0.438 -0.570 -0.223 -0.721 -0.464

MSPE 4.168 2.518 2.457 2.544 2.255 2.764 2.376
X1,(2) Bias -1.459 -0.029 -0.450 -0.662 -0.387 -0.767 -0.662

MSPE 5.219 3.763 3.600 3.691 3.230 3.998 3.471
X4,(1) Bias -1.336 0.038 -0.361 -0.573 -0.385 -0.529 -0.643

MSPE 5.181 4.092 3.846 3.849 3.332 5.060 3.615
X4,(2) Bias -1.251 -0.058 -0.404 -0.586 -0.380 -0.494 -0.586

MSPE 4.157 2.864 2.790 2.899 2.623 3.196 2.917
X4,(3) Bias -1.295 -0.120 -0.451 -0.652 -0.436 -0.474 -0.646

MSPE 4.083 2.876 2.851 2.973 2.600 3.406 2.830
X4,(4) Bias -1.991 -0.088 -0.615 -0.992 -1.341 0.070 -1.822

MSPE 9.548 7.675 7.325 7.409 7.306 23.678 9.121

10 6 X2,(1) Bias -1.599 0.057 -0.451 -0.565 -0.171 -0.761 -0.459
MSPE 5.766 3.360 3.352 3.441 3.116 3.747 3.268

X2,(2) Bias -1.660 0.017 -0.493 -0.645 -0.351 -0.704 -0.643
MSPE 6.643 4.467 4.380 4.475 4.023 4.782 4.279

X6,(1) Bias -1.604 0.009 -0.480 -0.625 -0.382 -0.504 -0.645
MSPE 6.299 4.152 4.119 4.208 3.805 4.475 4.092

X6,(2) Bias -1.796 0.166 -0.429 -0.613 -0.786 0.360 -1.221
MSPE 7.377 5.075 4.830 4.902 5.137 12.220 6.482

10 8 X2,(1) Bias -1.822 -0.067 -0.606 -0.698 -0.279 -0.854 -0.569
MSPE 7.159 4.002 4.214 4.317 3.893 4.620 4.11

X5,(1) Bias -2.096 -0.208 -0.788 -0.903 -0.734 -0.501 -1.071
MSPE 9.206 5.278 5.636 5.791 5.672 8.465 6.52

15 9 X1,(1) Bias -1.408 0.004 -0.429 -0.495 -0.114 -0.737 -0.373
MSPE 4.588 2.490 2.586 2.644 2.396 2.972 2.508

X4,(1) Bias -1.426 0.036 -0.414 -0.520 -0.203 -0.739 -0.486
MSPE 5.116 3.302 3.293 3.354 3.032 3.631 3.198

X5,(1) Bias -1.544 0.017 -0.460 -0.572 -0.264 -0.709 -0.551
MSPE 5.650 3.435 3.487 3.574 3.279 3.804 3.521

X5,(2) Bias -1.713 -0.030 -0.546 -0.658 -0.355 -0.701 -0.643
MSPE 6.725 4.050 4.160 4.256 3.860 4.475 4.146

X8,(1) Bias -1.587 0.118 -0.405 -0.507 -0.225 -0.417 -0.494
MSPE 5.594 3.488 3.415 3.469 3.124 3.657 3.290

X9,(1) Bias -1.899 0.043 -0.554 -0.668 -0.716 0.164 -1.109
MSPE 7.840 4.746 4.807 4.903 5.203 11.135 6.399

15 11 X1,(1) Bias -1.617 -0.035 -0.521 -0.582 -0.165 -0.855 -0.451
MSPE 5.777 3.177 3.337 3.398 3.078 3.801 3.225

X1,(2) Bias -1.685 -0.036 -0.546 -0.635 -0.271 -0.844 -0.569
MSPE 6.706 4.040 4.197 4.283 3.895 4.635 4.124

X4,(1) bias -1.769 0.018 -0.532 -0.622 -0.276 -0.693 -0.570
MSPE 6.937 4.153 4.247 4.330 3.972 4.567 4.193

X5,(1) Bias -1.972 -0.016 -0.617 -0.704 -0.534 -0.310 -0.873
MSPE 8.024 4.454 4.666 4.761 4.601 6.759 5.271

15 13 X1,(1) Bias -1.768 0.098 -0.474 -0.537 -0.084 -0.810 -0.404
MSPE 6.718 3.779 3.857 3.909 3.613 4.267 3.729

X2,(1) Bias -1.885 0.082 -0.525 -0.598 -0.270 -0.538 -0.590
MSPE 7.197 3.998 4.092 4.154 3.880 5.842 4.169
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Table 4: Biases and MSPE’s of point predictors for θ = 0.5 and p = 0.5 with random
removals.

n m Xi,(s) MLP EBUP ECMP ADP SEP GEP(q = −0.5) GEP(q = 0.5)
10 4 X1,(1) Bias -0.788 0.015 -0.231 -0.310 -0.052 -0.382 -0.200

MSPE 1.576 0.946 0.904 0.935 0.890 0.988 0.910
X1,(2) Bias -1.064 0.003 -0.298 -0.492 -0.217 -0.627 -0.447

MSPE 3.316 2.552 2.429 2.486 2.289 2.654 2.417
X1,(3) Bias -1.237 0.088 -0.271 -0.544 -0.375 -0.607 -0.669

MSPE 4.796 4.410 4.024 3.956 3.497 4.361 3.752
X2,(1) Bias -1.515 -0.021 -0.434 -0.714 -0.592 -0.669 -0.907

MSPE 6.254 5.235 4.918 4.910 4.154 5.965 4.600
X4,(1) Bias -1.644 -0.062 -0.516 -0.768 -0.623 -0.636 -0.926

MSPE 7.211 5.678 5.465 5.496 4.733 6.450 5.194
X4,(2) Bias -1.987 -0.031 -0.610 -0.879 -0.915 -0.274 -1.305

MSPE 8.847 6.438 6.172 6.293 5.889 10.393 6.915

10 6 X1,(1) Bias -1.148 -0.036 -0.377 -0.453 -0.125 -0.604 -0.328
MSPE 3.313 1.909 1.963 2.020 1.842 2.242 1.931

X1,(2) Bias -1.431 -0.068 -0.475 -0.637 -0.351 -0.822 -0.631
MSPE 5.237 3.787 3.715 3.805 3.359 4.158 3.576

X1,(3) Bias -1.698 -0.083 -0.563 -0.749 -0.535 -0.794 -0.852
MSPE 7.459 5.181 5.182 5.309 4.772 6.322 5.236

X2,(1) Bias -1.963 -0.041 -0.623 -0.797 -0.608 -0.601 -0.952
MSPE 8.032 5.063 5.049 5.188 4.650 6.346 5.187

10 8 X2,(1) Bias -1.700 -0.023 -0.538 -0.626 -0.211 -0.866 -0.507
MSPE 6.055 3.159 3.322 3.415 3.060 3.801 3.256

X8,(1) Bias -1.973 -0.047 -0.639 -0.769 -0.454 -0.854 -0.791
MSPE 8.524 5.410 5.473 5.583 5.012 5.988 5.338

15 9 X1,(1) Bias -0.796 0.016 -0.233 -0.271 -0.009 -0.396 -0.161
MSPE 1.632 0.936 0.951 0.969 0.906 1.078 0.919

X1,(2) Bias -1.019 0.018 -0.297 -0.393 -0.120 -0.609 -0.345
MSPE 3.261 2.328 2.306 2.351 2.198 2.583 2.293

X1,(3) Bias -1.206 0.009 -0.354 -0.483 -0.270 -0.652 -0.542
MSPE 4.558 3.419 3.362 3.420 3.108 3.803 3.339

X3,(1) Bias -1.370 0.033 -0.388 -0.521 -0.305 -0.642 -0.602
MSPE 5.641 4.179 4.108 4.162 3.745 4.581 4.002

X3,(2 Bias -1.561 0.052 -0.438 -0.563 -0.307 -0.650 -0.615
MSPE 5.967 3.928 3.893 3.963 3.615 4.388 3.900

X3,(3) Bias -1.926 0.001 -0.590 -0.711 -0.453 -0.619 -0.787
MSPE 8.194 5.081 5.155 5.265 4.901 7.920 5.341

15 11 X1,(1) Bias -1.079 0.086 -0.271 -0.317 0.019 -0.521 -0.197
MSPE 2.779 1.543 1.534 1.558 1.470 1.752 1.493

X1,(2) Bias -1.301 0.056 -0.365 -0.459 -0.145 -0.725 -0.425
MSPE 4.604 3.140 3.115 3.167 2.918 3.482 3.051

X1,(3) Bias -1.591 0.005 -0.486 -0.592 -0.297 -0.797 -0.612
MSPE 6.504 4.251 4.312 4.395 3.989 4.750 4.249

X3,(1) Bias -1.779 0.150 -0.444 -0.544 -0.206 -0.647 -0.538
MSPE 6.809 3.940 3.956 4.028 3.724 4.229 3.952

15 13 X1,(1) Bias -1.63 0.078 -0.446 -0.503 -0.073 -0.812 -0.382
MSPE 5.620 3.048 3.110 3.156 2.891 3.620 3.012

X1,(2) Bias -1.96 -0.018 -0.620 -0.704 -0.312 -0.944 -0.655
MSPE 8.041 4.635 4.816 4.910 4.438 5.387 4.716
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Table 5: Biases and MSPE’s of point predictors for θ = 0.5 and p = 0.75 with random
removals.

n m Xi,(s) MLP EBUP ECMP ADP SEP GEP(q = −0.5) GEP(q = 0.5)
10 4 X1,(1) Bias -0.469 0.012 -0.135 -0.183 0.004 -0.205 -0.083

MSPE 0.543 0.364 0.350 0.358 0.355 0.376 0.347
X1,(2) Bias -0.647 0.042 -0.147 -0.281 -0.031 -0.370 -0.184

MSPE 1.227 1.104 0.995 0.984 0.944 1.055 0.923
X1,(3) Bias -0.942 0.021 -0.221 -0.459 -0.234 -0.550 -0.463

MSPE 3.049 2.781 2.590 2.570 2.331 2.886 2.447
X1,(4) Bias -1.261 -0.002 -0.313 -0.635 -0.543 -0.614 -0.852

MSPE 5.056 4.759 4.418 4.330 3.700 5.726 4.107
X1,(5) Bias -1.510 0.044 -0.361 -0.705 -0.724 -0.448 -1.087

MSPE 6.635 6.228 5.735 5.556 4.709 14.698 5.378
X1,(6) Bias -2.062 -0.096 -0.657 -0.975 -1.031 -0.516 -1.441

MSPE 10.057 7.798 7.495 7.530 6.895 14.985 8.009

10 6 X1,(1) Bias -0.768 -0.009 -0.242 -0.294 -0.033 -0.371 -0.171
MSPE 1.485 0.862 0.884 0.910 0.847 0.974 0.863

X1,(2) Bias -1.012 0.044 -0.266 -0.408 -0.127 -0.584 -0.356
MSPE 2.689 1.917 1.831 1.878 1.735 2.046 1.819

X1,(3) Bias -1.413 0.014 -0.395 -0.612 -0.424 -0.738 -0.745
MSPE 5.739 4.453 4.298 4.387 3.959 4.903 4.326

X2,(1) Bias -1.849 0.065 -0.500 -0.726 -0.591 -0.718 -0.981
MSPE 8.170 5.906 5.701 5.784 5.141 6.626 5.688

10 8 X1,(1) Bias -1.430 0.001 -0.438 -0.514 -0.123 -0.729 -0.382
MSPE 4.474 2.371 2.468 2.533 2.307 2.847 2.429

X2,(1) Bias -1.956 -0.080 -0.656 -0.808 -0.486 -1.049 -0.848
MSPE 8.712 5.673 5.769 5.913 5.312 6.397 5.691

15 9 X1,(1) Bias -0.492 -0.008 -0.156 -0.179 -0.009 -0.232 -0.096
MSPE 0.538 0.302 0.312 0.319 0.299 0.340 0.300

X1,(2) Bias -0.654 -0.023 -0.211 -0.275 -0.047 -0.412 -0.186
MSPE 1.336 0.930 0.944 0.968 0.934 1.059 0.955

X1,(3) Bias -0.846 -0.004 -0.246 -0.360 -0.121 -0.530 -0.321
MSPE 2.606 2.030 2.007 2.046 1.920 2.219 2.005

X1,(4) Bias -1.186 -0.059 -0.381 -0.540 -0.380 -0.668 -0.659
MSPE 4.908 3.832 3.812 3.896 3.710 4.271 4.045

X2,(1) Bias -1.433 -0.009 -0.426 -0.592 -0.500 -0.637 -0.846
MSPE 6.109 4.578 4.529 4.594 4.214 5.286 4.715

X2,(2) Bias -2.011 -0.126 -0.697 -0.845 -0.639 -0.891 -1.017
MSPE 9.541 6.208 6.388 6.514 5.876 7.866 6.482

15 11 X1,(1) Bias -0.748 -0.003 -0.231 -0.261 -0.017 -0.372 -0.155
MSPE 1.364 0.719 0.761 0.776 0.710 0.870 0.732

X1,(2) Bias -1.023 -0.027 -0.333 -0.414 -0.123 -0.646 -0.341
MSPE 3.037 2.088 2.115 2.159 1.999 2.404 2.080

X2,(1) Bias -1.431 -0.094 -0.501 -0.623 -0.391 -0.839 -0.694
MSPE 6.147 4.499 4.551 4.636 4.216 5.109 4.517

X2,(2) Bias -1.930 -0.103 -0.663 -0.788 -0.544 -0.958 -0.917
MSPE 8.626 5.388 5.600 5.720 5.199 6.296 5.705

15 13 X1,(1) Bias -1.322 0.089 -0.344 -0.391 0.008 -0.658 -0.255
MSPE 3.769 2.022 2.053 2.084 1.935 2.389 1.981

X1,(2) Bias -1.808 0.035 -0.542 -0.639 -0.277 -0.982 -0.642
MSPE 7.597 4.734 4.844 4.926 4.499 5.454 4.768
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