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Abstract: In this paper, a new goodness-of-fit test for a location-scale family based on
progressively Type-II censored order statistics is proposed. Using Monte Carlo simula-
tion studies, the present researchers have observed that the proposed test for normality
is consistent and quite powerful in comparison with some existing goodness-of-fit tests
based on progressively Type-II censored data. Also, the new test statistic for a real
data set is used and the results show that the new proposed test statistic performs well.
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1 Introduction

One of the most interesting problems in statistics is finding a distribution which fits
to a given data set. In other words, it is desired to test whether a specific distribution
coincides with given data or not. To review the classical goodness-of-fit test problem, let
X1, ..., X, be random sample from an absolutely continuous population with cumulative
distribution function (CDF) F(.), and probability density function (PDF) f(.). Based
on the observed sample 1, ..., z,, an interesting test is

Ho: f=fo
{Hlif?éfo, S

which fo(z) = fo(z;0), where 8 € © C RF is a k-vector parameter for some k € N.
For more details on this topic, one may refer to D’Agostino and Stephens (1986) and
Huber-Carol et al. (2002).
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The most of goodness-of-fit tests are built based on the distance between empirical
distribution function (EDF) and theoretical distribution functions over the interval
(0,1). The null hypothesis is rejected if the distance is too large in some metrics.
However, one of the approaches for building a goodness-of-fit test is the deviation of
each order statistic of uniform distribution from its expected value.

The classical goodness-of-fit tests for complete data is not usable for progressively
Type-1II censored data. Pakyari and Balakrishnan (2013) proposed a modification of
the statistics based on order statistics and spacings including the class of C' statistics,
Greenwood’s (1964) statistic, Quesenberry and Miller’s (1975) statistic and Moran’s
(1951) statistic, to made them suitable for progressively Type-1I censored data. Also,
Torabi (2006, 2008) has introduced a new and general method for estimation and
hypotheses testing using spacing.

For more details on the progressive Type-II censoring, one may refer to Balakrishnan
(2007) and Balakrishnan and Aggarwala (2000). In progressive Type-1I censoring, it is
assumed that the removals of units are carried out at observed failure times and that the
censoring scheme (r1,79,...,7y,) is known in advance. Moreover, the number of units
(n) and the number of observed failure times (m) are prefixed. Starting all n units at
the same time, the first progressive censoring step takes place at the observation of the
first failure time X7i.;,,., at this time, 1 units are randomly chosen from the remained
units and withdrawn from the experiment. Then, the experiment continues with the
sample size n — r; — 1. After observing the next failure at time Xs.,,.,, 72 units are
randomly removed from n—r; —2 remained units. This process continued until the mth
failure is observed. Then, the experiment ends. The failure times Xi.m.n, -.s Ximimon
are called progressive Type-1I censored order statistics and T1.m:n, -+, Tmum:n are the
corresponding observations.

An exponentiality goodness-of-fit test based on spacings for progressively Type-II
censored data, was proposed by Balakrishnan et al. (2002). Afterwards, they (2004)
extended their method to general location—scale family of distributions. Also Wang
(2008) proposed another goodness-of-fit test for the exponential distribution under
progressively Type-II censored samples. Recently, Pakyari and Balakrishnan (2012)
proposed a modification to the EDF goodness-of-fit statistics under progressively Type-
IT censored data. An exponentiality test based on Kullback—Leibler information for
progressively Type-II censored data was proposed by Balakrishnan et al. (2012). Re-
cently, Nadeb and Torabi (2018) have proposed a goodness-of-fit test statistic under
progressive Type-II censoring from a location-scale distribution.

In Section 2, the test statistics based on spacings that were proposed by Pak-
yari and Balakrishnan (2013) are reviewed. These statistics are modification to the
Greenwood’s statistic, modification to the Quesenberry and Miller’s statistic and mod-
ification to Moran’s statistic. In Section 3, a new test statistic is proposed that will
be used for test of normality under the progressively Type-II censored data. Also,
consistency of this statistic is investigated using Monte Carlo simulation. The power
of the proposed test is then assessed through Monte Carlo simulations in Section 4,
and its performance is compared with those of the test procedures introduced earlier
by Balakrishnan et al. (2004) and Pakyari and Balakrishnan (2013). It is shown that
the proposed goodness-of-fit test is more powerful than or at least as good as the Bal-
akrishnan et al’s (2004) test and Pakyari and Balakrishnan’s (2013) tests for different
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choices of sample sizes and progressive censoring schemes. In Section 5, we illustrate
the application of proposed test procedure with a real data set.

2 Review on the test statistics based on spacings

Pakyari and Balakrishnan (2013) proposed the following statistics for goodness-of-fit
test under progressively Type-II censored data:

Cftun = m?ix (Viemn), Copey = max (=Vignen), Cinen = max (G, Cftun)v

_ U V2 . - “/zmn|
Km:n = C'm,:n + Cr—rz,anr(nl)n = Z w7T'rgn,2?n, = Z )
- -
which, Vi = Uimen — fismen, and Ugn.p, is the ith order statistic from uniform (0,1)
distribution under Type-II progressive censoring and p;.,,., is its expected value, i.e

1=1,...,m.

ﬁ k+ Z;n:me»l Tj

Hizm:n = 1- m y
k=m—i+1 L+ k + Zj:m*iﬁLl Tj

It is easy to show that the distributions of all the above statistics do not depend on
the location and scale parameters under location-scale transformations. Note that the
family of densities {g(.;p,0) : p € R,0 > 0} is said to belong to location-scale family,
if it is of the form g(z; p, o) = Lgo(2=£); which go(.) is a baseline density function and
1 and o are said to be location and scale parameters, respectively.

If the null hypothesis is true, we expect that V;.,,.,, to be small and consequently the
above test statistics to be small. If the above test statistics exceed the corresponding
upper-tail null critical values, the null hypothesis may be rejected. Recently, several
goodness-of-fit statistics based on spacings have been developed. The one-step spacings

are defined by

Si = (n —Trr—T2— .. —Ti—1— 1+ 1)(Uzmn - Ui*l:m:n)v 1= ]-7 2; -,

where Upy.p.n, = 0.
The following statistics are based on the spacings that generalized by Pakyari and
Balakrishnan (2013) under the progressively Type-II censored data:

e Statistic based on the sum of squares of the spacings of the form

Gnin = ijsf.
i=1

e The generalization of Quesenberry and Miller’s statistic for progressively Type-II
censored samples will be of the form

m m—1
Qmn = ZSE + Z SiSit1.
i=1 i=1

The exact distributions of G,,., and Q,,., are not available explicitly but by
Monte Carlo simulations the percentage points will be determined.
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e The above statistics can also be defined in terms of higher order spacings. The
overlapping k-step spacings, for integer k, are defined as

S(k) = (Tl —Try—="r2—= .. = Ti-1 - i+ 1)(Ui+k—1:m:n - Ui—l:m:n)a 1= 17 27 -1,

K2

which Upp., = 1 for [ > m. Hartley and Pfaffenberger (1972) presented that
the higher order spacings are useful for testing large complete samples. The
extensions of Greenwood’s statistic and Quesenberry and Miller’s statistic in
terms of overlapping k-spacings take the form

m

k
G =D (1),
i=1
The null hypothesis of uniformity is rejected if these statistics are too large.

« Balakrishnan et al’s (2004) test statistic was defined as below:

N m - )G
T: 1=2 - ,
(m —2) ; G;

where
Si _ Ui:m:n - Ui—l:m:n

E(Sz) Hizm:n — ,Ufi—lzm:n '

In the next section, we propose a new test statistic and in Section 4, we compare
it with the reviewed test statistics.

3 Proposed test

In this section, we propose a new approach for goodness-of-fit testing for normality
under progressively Type-II censored data. Consider again the goodness-of-fit testing
problem (1) based on X1.p., -y Xpnomen, where

Ty, 0) = To‘e VT ’ 2, r € R,
o 1/vV2r02e— @—1)"/20 R

in which ¢ € R and ¢ > 0 are both unknown. Suppose (& and & are the MLEs of
1 and o based on Xi.m.n, ..., Xin:m:n- Because of consistency of the ML estimators,

we expect Fo(Xim:mn, i, 0) has the same distribution as Uj.,.n; so it is justifiable that
Fo(Xi:m:n,i,6)

Hizm:n

~ 1. Our proposed test is based on this ratio. More precisely, define
L~ (Fo(Xiomen, 1, 0
Hmnzzh( O( z.m.na,ufvo')>’
m i=1 Hi:m:n

where h : (0,00) — R is assumed to be continuous, decreasing on (0, 1) and increasing
on (1,00) with the absolute minimum at x = 1 such that h(1) = 0. By comparison
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of the powers using Monte Carlo simulation for some choices h, we observed that the

best choice is ( )2
r—1

h =
(@) = — 1

which has the maximal power. Plot of the function h is given in Figure 1.
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Figure 1: Plot of the function h(z).

We know that MLE of i and ¢ are location-scale invariant for p and o, respectively.
Therefore under a location-scale transformation, the distribution of H,,., does not
depend on the parameters p and ¢ under location-scale transformations.

It is expected that the null hypothesis of normality is rejected if the statistic H,.p,
is too large. Thus, the critical region is of the form {H,,., > c}, for some ¢ > 0. But for
finding c for a size « test, the exact distribution of H,,.,, can not be explicitly obtained;
but the critical points can be determined by Monte Carlo simulation.

An adequate test statistic for a goodness-of-fit test problem should be consistent,
i.e, with increasing sample size, it is expected that the statistic tends to a finite value,
especially under Hy tends to zero. We can not prove consistency of the proposed test
statistic, but in the following it is discussed using Monte Carlo simulation. To illustrate
the goal, we consider 5 various censoring schemes as the below:

e Scheme {1}: Progressive Type-II censoring scheme with constant removal, r =
(1,1,...,1), in this case n = 2m;

e Scheme {2}: a progressive Type-1I censoring scheme with increasing removal,
r; =1, for i = 1,2,...,m, in this case n = m(m + 3)/2;

e Scheme {3}: Progressive Type-II censoring scheme with decreasing removal,
r;=m—1i+1fori=1,2,..,m, thus n =m(m+ 3)/2;

e Scheme {4}: Type-II censoring, r; =0 for i = 1,2,...,m — 1, r,,, = m/5, hence
n = 1.2m;

e Scheme {5}: Complete data, i.e., 7; =0 for i = 1,2,...,m, thus n = m;

As it is stated, the normal model is considered as the parent model in Hy, but it can
be replaced by any location-scale model due to the structure of test statistic. Against
this model, we consider the following alternative models:
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 Student’s t distribution with v degrees of freedom (#(,) with the density function

I'((v+1)/2)

flaiv) = Sl (v/2)

2
(1+Z)=0+0/2 ) 50,
12

o Logistic distribution with parameters u and o (L(u, o)) with the density function

L exp {*(930*11)}
flzp,0) = zeR,pueR,o>0.

(oo 2])

o Double exponential distribution with parameters p and o (DE(u,0)) with the
density function

1 |y —
f(z;p,0) = —exp {H], reR pueR,o>0.
20 o

For more details on these distributions, one may refer to Casella and Berger (2002).

Averages of the simulated values of statistic are reported in Table 1. In the view
of this table, it is observed that under the null hypothesis of normality, the average of
values of the test statistic tend to zero when m increases (and hence n increases), but
under the alternative distributions such as #(3), t(4), L(0,1) and DE(0, 1), the averages
tend to a non zero value for all five schemes.

4 Simulation Study

In this section, we assess the power of the proposed test statistic by comparing the
simulated power values with those of the test of Balakrishnan et al. (2004) and Pak-
yari and Balakrishnan (2013). We calculated the power of the proposed test for testing
of normality against some different alternatives with simulating 10,000 random sam-
ples for some different choices of sample sizes and progressive censoring schemes. For
comparative purposes, all 27 censoring schemes used by Balakrishnan et al. (2004) and
Pakyari and Balakrishnan (2013) in their studies are considered again here, and these
are listed in Table 2. Also the simulated critical values of H,,., for every 27 censoring
scheme has listed in Table 3. All the simulations were carried out in R software.

In Table 4, we present the estimated power of the our proposed test, Balakrishnan
et al’s (2004) T-statistic and Pakyari and Balakrishnan’s (2013) test statistics when
the null hypothesis stipulates normal and the alternative hypothesis corresponds to
Student’s t with three and four degrees of freedom, Logistic distribution and double
exponential distribution. From this table, it is observed that for a symmetric heavy-
tailed alternative in the case of normality test, the test statistic H,,., has possessed
better power than Balakrishnan et al’s (2004) T-statistic and Pakyari and Balakr-
ishnan’s (2013) test statistics in 78 out of 108 situations. Also, when n = 20 in the
Student’s t distribution with three degrees of freedom in 4 out of 9 situations, in the
Student’s t distribution with four degrees of freedom in 5 out of 9, in the Logistic
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Table 1: Averages of simulated values of H,,., when the null hypothesis is normal
distribution.
Scheme no. n m  N(0,1) t(3) t(a) DE(0,1) L(0,1)
{1} 50 25 0.0301 0.0617 0.0518 0.0580 0.0405
100 50 0.0184 0.0541 0.0426 0.0470 0.0292
200 100  0.0112 0.0501 0.0366 0.0406 0.0223
300 150  0.0084 0.0481 0.0345 0.0384 0.0195
400 200  0.0067 0.0475 0.0334  0.0375 0.0180
500 250  0.0057 0.0459 0.0325 0.0368 0.0169
600 300 0.0050 0.0397 0.0314 0.0364 0.0134

{2} 65 10 0.0639 0.0951 0.0865  0.0789  0.07356
230 20 0.0391  0.0818 0.0695  0.0535 0.0504
430 40 0.0241  0.0737 0.0594  0.0365 0.0346
1890 60 0.0178 0.0682 0.0546  0.0293 0.0280
3320 80 0.0144 0.0630 0.0525  0.0246 0.0244
5150 100  0.0123 0.0471 0.0464  0.0224 0.0217

{3} 65 10 0.0665 0.1124 0.0994  0.0949 0.0812
230 20 0.0449 0.1128 0.0924  0.0785 0.0636
430 40 0.0295 0.1191 0.0922  0.0647 0.0522
1890 60 0.0230  0.1251 0.0957  0.0579 0.0452
3320 80 0.0188  0.1249 0.0974  0.0540 0.0425
5150 100  0.0160 0.1195 0.0978  0.0503 0.0408

{4} 60 50 0.0170  0.0429 0.0343  0.0397 0.0247
120 100  0.0104 0.0391 0.0291 0.0343 0.0185
180 150  0.0077 0.0379 0.0269  0.0323 0.0158
240 200  0.0064 0.0369 0.0258  0.0318 0.0145
300 250  0.0051 0.0361 0.0247  0.0312 0.0135
360 300 0.0046 0.0350 0.0243  0.0305 0.0130
420 350  0.0041 0.0313 0.0239  0.0300 0.0101
480 400  0.0037 0.0215 0.0193  0.0274 0.0097

{5} 50 50 0.0165 0.0371 0.0297  0.0467 0.0215
100 100 0.0103 0.0351 0.0250  0.0265 0.0159
200 200 0.0063 0.0334 0.0225  0.0235 0.0121
400 400  0.0037 0.0335 0.0206  0.0218 0.0095
800 800  0.0022 0.0334 0.0196  0.0208 0.0083
1600 1600 0.0013 0.0334 0.0189  0.0203 0.0075
3200 3200 0.0007 0.0334 0.0189  0.0203 0.0075

(0,1) in 6 out of 9 situations and in the double exponential (0, 1) in 7 out of 9 situa-
tions, in the case n = 40 in the Student’s t distribution with three degrees of freedom
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Table 2: Progressive censoring schemes used in the Monte Carlo simulations.

Scheme no. n m r=(r1,re, .. Tm)
(1] 20 8 r1=12,7;, =0 for i # 1
[2] 20 8 rg = 12,7; = 0 for i # 8
[3] 20 8 ri1=rg =67, =0fori#1,8
[4] 20 12 r1 =81, =0fori#8
[5] 20 12 r19 = 8,7; = 0 for i # 12
[6] 20 12 r3=rs=r7y=r9=2,7;,=0"fori+#3,57,9
[7] 20 16 ri=4,r,=0fori#1
8] 20 16 rie = 4,7, =0 for ¢ # 16
[9] 20 16 rs=4,7;, =0fori#5
[10] 40 10 r1 = 30,7, =0 for ¢ # 1
[11] 40 10 110 = 30,75 = 0 for i # 10
[12] 40 10 ry=r5 =119 = 10,7, =0 for i # 1,5,10
13] 10 20 11 =20, =0fori Z1
[14] 40 20 ra0 = 20,7 = 0 for i # 20
[15] 40 20 ri=1, for r; = 1,2, ..., 20
[16] 10 30 =10, =0 for i £ 1
[17] 40 30 T30 = 10, r; = 0 for ¢ # 30
[18] 40 30 ry=r3 =05,r;, =0 fori#1,30
[19] 60 20 r1 =40,7, =0 for i #1
[20] 60 20 roo = 40,7, = 0fori # 20
[21] 60 20 71 = oo = 10,710 = 207 = 0 for i # 1,10, 20
[22] 60 40 r1 =20,7, =0 for i #1
[23] 60 40 rao = 20,75 = 0 for i # 40
[24] 60 40 Foin = 1,79; = 0, for i = 1,2, ..., 20
[25] 60 50 1 =107 =0fori £1
[26] 60 50 rs0 = 10,7 = 0 for i # 1
[27] 60 50 r1 =15 = 5,7, =0 for i # 1,50

in 7 out of 9 situations, in the Student’s t distribution with four degrees of freedom
in 7 out of 9, in the Logistic (0,1) in 7 out of 9 situations and in the double ex-
ponential (0,1) in 7 out of 9 situations and in the cases n = 60 in the Student’s t
distribution with three degrees of freedom in 6 out of 9 situations, in the Student’s
t distribution with four degrees of freedom in 8 out of 9, in the Logistic (0,1) in 8
out of 9 situations and in the double exponential (0,1) in 6 out of 9 situations our
test statistic possessed better power than Balakrishnan et al’s (2004) T-statistic and
Pakyari and Balakrishnan’s (2013) test statistics. Also, in early censoring schemes
([11,[4],[7],[10],[13],[16],[19],[22],[25]), the G{Z}, statistic has the most power in 6 out
36 situations, the G,(g)n statistic has the most power in 11 out 36 situations, the Q,.,,
statistic has the most power in 1 out 36 situations, the 7, 7(,12)n statistic has the most power
in 4 out 36 situations, the T-statistic has the most power in 4 out 36 situations and the
H,,., statistic has the most power in 10 out 36 situations. In addition, in non-early cen-
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Table 3: Simulated critical values of H,,.,.
Scheme no. H,,.,  Scheme no. H,,.,, Schemeno. H,,.,

] 0.1069 [10] 0.1033 [19] 0.0633
2] 0.1062 [11] 0.0941 [20] 0.0595
3] 0.1060 [12] 0.0971 [21] 0.0621
[4] 0.0802 [13] 0.0588 [22] 0.0351
[5] 0.0793 [14] 0.0573 23] 0.0358
[6] 0.0846 [15] 0.0602 [24] 0.0370
7] 0.0646 [16] 0.0424 [25] 0.0296
8] 0.0661 [17] 0.0431 [26] 0.0300
[9] 0.0671 [18] 0.0425 [27] 0.0298

soring schemes ([2],[3],[5],[6],[8],[9],[11],[12],[14],[15],[17],[18],[20],[21],[23],[24],[26],[27]),
the Gg)n statistic has the most power in 1 out 72 situations, the @Q,,., statistic has
the most power in 1 out 72 situations, the T-statistic has the most power in 2 out 72
situations and the H,,., statistic has the most power in 68 out 72 situations. Also note
that, as one would normally expect, it can be observed from the values in the Table
4 that the power increases as the degree of censoring (1 — m/n) decreases. Finally,
based on this results and comparative findings, we recommend the use of Gﬁf;?" and
H,,., statistics for the case of early censoring and the use of H,,.,, statistic for the case
of non-early censoring.

5 Illustrative data analyses

In this section, the wire connection strength data from Nelson (1982), (Table 5.1, p.
111) are considered. These data, first studied by King (1971), concern the breaking
strength of 23 wire connections. The wires were bonded at one end to a semiconductor
wafer and at the other end to a terminal post. The first two and the last one of
the observations were eliminated from the analysis due to validity of the data; see
Nelson (1982), for more details. Pakyari and Balakrishnan (2013) randomly generated
a progressively Type-IT censored sample of size m = 10 from n = 20 observations.
Table 5 presents the data and the corresponding progressive censoring scheme. The
possibility of fitting a normal model to the data was done by Nelson (1982), and we
also tested for normality. Table 6 presents the test statistics and their corresponding p-
values. The normal model is strongly supported by all the test statistics for describing
the wire connection strength data. Results in Table 6 show that the test statistic,
H,,..n, agrees with the other statistics.

Conclusions

In this paper, we proposed a simple and powerful test for normality based on progres-
sively Type-II censored order statistics and compared this new test with all previously
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Table 4: Estimated powers of the statistics with a = 0.1.

Scheme dist.

no.

Chin Comin Coen Kin T2 T2 Gonen

Qm:n

G2, GB, T Hua

(1]

2]

(3]

(10]

(11]

t3) 0.22240.11120.2251
t4y 0.18070.10160.1770
L(0,1) 0.12320.10030.1114
DE(0,1)0.19120.0943 0.1803

tz ~0.24500.0507 0.1463
ty 0.19880.06160.1221
L(0,1) 0.1440 0.0682 0.0937
DE(0,1) 0.2222 0.0489 0.1198

tzy  0.25920.04710.1887
tay  0.20660.05720.1480
L(0,1) 0.14580.0715 0.1094
DE(0,1) 0.24380.04020.1671

tz ~0.22330.14640.2510
t4y 0.17720.12000.1879
L(0,1) 0.12350.09720.1318
DE(0,1)0.19150.1195 0.2149

t3) 0.26300.0448 0.1848
t(4) 0.2036 0.0546 0.1442
L(0,1) 0.14630.07210.1083
DE(0,1)0.27830.03430.1835

tz 0.09520.24670.1784
tay 0.08190.19060.1373
L(0,1) 0.07670.1309 0.1092
DE(0,1) 0.0843 0.2266 0.1560

tzy 0.21830.18810.2718
taay 0.16980.14330.2018
L(0,1) 0.12050.1086 0.1183
DE(0,1) 0.1926 0.1646 0.2253

t3 0.25330.07400.2055
tsy 0.19630.07010.1581
L(0,1) 0.13740.07610.1137
DE(0,1) 0.2665 0.0625 0.2117

tz) 0.15310.23300.2292
tgy 0.11780.17220.1679
L(0,1) 0.09440.1156 0.1169
DE(0,1) 0.1326 0.1940 0.2005

tz 0.31110.10370.3002
tgy 0.23860.08800.2204
L(0,1) 0.15140.0746 0.1295
DE(0,1) 0.2549 0.0782 0.2242

tzy 0.30570.04040.1832
tg) 0.23840.04880.1411
L(0,1) 0.15410.07040.1024

0.1681
0.1303
0.0944
0.1251

0.1459
0.1234
0.0985
0.1313

0.1288
0.1098
0.0920
0.1210

0.2000
0.1505
0.1017
0.1647

0.1526
0.1229
0.0929
0.1485

0.1908
0.1491
0.1013
0.1698

0.2332
0.1629
0.0984
0.1824

0.1652
0.1251
0.0954
0.1632

0.2185
0.1584
0.1058
0.1843

0.2300
0.1637
0.1096
0.1646

0.1939
0.1539
0.1173

0.2266 0.2158 0.2438 0.2528
0.1738 0.1661 0.1946 0.2043
0.11990.11220.1369 0.1376
0.17250.1668 0.2188 0.2322

0.1541 0.1554 0.2057 0.2272
0.1254 0.12570.1678 0.1839
0.1069 0.0989 0.1330 0.1321
0.13100.1317 0.1827 0.2078

0.18020.17710.2316 0.2541
0.1433 0.13850.1871 0.2004
0.11570.1092 0.1279 0.1345
0.17740.1673 0.2116 0.2423

0.2598 0.2583 0.2523 0.2716
0.1921 0.1916 0.2021 0.2161
0.11800.1199 0.1416 0.1471
0.2148 0.2029 0.2332 0.2661

0.18920.1873 0.2579 0.2807
0.1462 0.1438 0.2038 0.2227
0.1066 0.1136 0.1393 0.1591
0.1819 0.1890 0.2483 0.3087

0.2123 0.2259 0.2703 0.2895
0.1626 0.1693 0.2159 0.2277
0.1064 0.1076 0.1497 0.1541
0.1807 0.1941 0.2406 0.2847

0.2894 0.2865 0.2694 0.2832
0.2102 0.2080 0.2119 0.2216
0.1231 0.1249 0.1484 0.1557
0.2353 0.2485 0.2507 0.2738

0.2048 0.2021 0.2799 0.3089
0.1564 0.1558 0.2216 0.2406
0.1071 0.1090 0.1505 0.1650
0.2106 0.2097 0.2842 0.3321

0.2621 0.2663 0.2839 0.2997
0.1911 0.2226 0.2381 0.2216
0.1124 0.12250.1594 0.1632
0.2153 0.2279 0.2756 0.2964

0.3094 0.2918 0.3258 0.3457
0.2253 0.2111 0.2521 0.2640
0.1328 0.1269 0.1585 0.1581
0.2329 0.2091 0.2691 0.2883

0.18810.19520.2153 0.2417
0.1462 0.1520 0.1728 0.1920
0.09670.1101 0.1180 0.1301

DE(0,1)0.2041 0.0484 0.1156 0.14434 0.1178 0.1268 0.1489 0.1594

0.2676
0.2211
0.1509
0.2377

0.2341
0.1920
0.1305
0.2216

0.2567
0.2056
0.1217
0.1909

0.2638
0.2172
0.1408
0.2286

0.1579
0.1335
0.1039
0.1236

0.0754
0.0766
0.0956
0.0694

0.2461
0.1965
0.1330
0.1746

0.2895
0.2380
0.1585
0.2555

0.2883
0.2276
0.1577
0.2569

0.2570
0.2085
0.1364
0.2372

0.2543
0.2018
0.1297
0.1833

0.3000
0.2382
0.1654
0.2902

0.3036
0.2424
0.1748
0.2904

0.2802
0.2234
0.1669
0.2734

0.3071
0.2490
0.1411
0.2340

0.3008
0.2364
0.1673
0.2702

0.3003
0.2335
0.1585
0.3112

0.2657
0.2112
0.1380
0.2776

0.3190
0.2484
0.1311
0.1980

0.3526
0.2797
0.1927
0.3682

0.2732
0.2173
0.1435
0.2605

0.2211
0.1803
0.1391
0.2406

0.3386
0.2727
0.1434
0.2051

0.3367
0.2748
0.1826
0.3234

0.2942
0.2364
0.1540
0.2740

0.2586
0.2076
0.1518
0.2617

0.3407
0.2755
0.1539
0.2668

0.3193

0.2645
0.1707
0.2850

0.3164
0.2464
0.1668
0.3240

0.2917
0.2266
0.1400
0.3061

0.3309
0.2607
0.1391
0.2100

0.3684
0.2987
0.1900
0.3941

0.2805 0.2255
0.1805 0.2810
0.1523 0.1300
0.2940 0.2189

0.3479
0.2607
0.1447
0.2237

0.3204

0.2681

0.1620
0.2992

0.3408 0.3507
0.2750 0.2759
0.1691 0.1960
0.2814 0.3279

0.3098
0.2432
0.1477
0.2313

0.3380
0.2577
0.1584
0.2556

0.0773 0.0473 0.03170 0.3527
0.0753 0.0589 0.2646 0.2847
0.0745 0.0855 0.1312 0.1800
0.0640 0.0540 0.1545 0.2384
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Table 4: Continued

[€9)

Scheme dist. O’rtz:n C';L:n Cm:n K Tm:n Tr(nZ)n

no.

[12]  t(z 0.18140.07200.12910.14650.1715 0.1835
t(4) 0.14130.05940.1048 0.10820.1263 0.1393
L(0,1) 0.10910.0614 0.0841 0.0842 0.897 0.0875
DE(0,1)0.15270.0372 0.0987 0.0914 0.1201 0.1205
[13] ¢z 0.13630.2004 0.3627 0.3282 0.3897 0.3860
t4) 0.25440.14070.2617 0.2208 0.2738 0.2725
L(0,1) 0.14150.10150.1456 0.1200 0.1407 0.1471
DE(0,1)0.29800.1557 0.2974 0.2668 0.3148 0.3241

[14]  t3y  0.40750.03750.2934 0.2543 0.3087 0.3124
t4y 0.30700.03950.2076 0.1807 0.2100 0.2145
L(0,1) 0.18480.06230.12670.10700.1177 0.1229
DE(0,1)0.4194 0.0186 0.2619 0.2113 0.2737 0.2944

[15] (3 0.13000.32420.2457 0.2549 0.2921 0.3088
tqy 0.09620.23500.1700 0.1765 0.2003 0.2096

L(0,1) 0.07510.13770.10730.11520.1136 0.1211

0.2912 0.3369 0.3318 0.2963
0.2261 0.2566 0.2577 0.2303
0.1341 0.1686 0.1528 0.1483
0.2096 0.2754 0.2429 0.2413

0.3703 0.4090
0.28190.3171
0.1453 0.2013
0.24690.3116

0.3567 0.3866 0.42120.4415 0.3797 0.4318
0.2689 0.2940 0.33190.3501 0.3018 0.3369
0.1645 0.1700 0.1828 0.2236 0.1651 0.2040
0.2969 0.33276 0.3497 0.3984 0.2635 0.3751

0.3095
0.2359
0.1504
0.2724

0.3592 0.3960 0.3913
0.2706 0.3071 0.3049
0.1612 0.1758 0.1968
0.3205 0.3443 0.3652

0.4820 0.5050
0.3729 0.3886
0.13740.2325
0.2506 0.4484

0.3628
0.2773
0.1723

0.4177 0.4143 0.4054 0.4822 0.5062
0.3184 0.3150 0.3109 0.3797 0.3987
0.1905 0.1932 0.1932 0.1624 0.2454
0.4087 0.3884 0.4057 0.2597 0.4997

DE(0,1)0.1071 0.2996 0.2098 0.2307 0.2793 0.2967 0.3308

[16] %3y 0.3546 0.29360.4107 0.3990 0.4461 0.4501 0.3786
t4) 0.24990.2000 0.2784 0.2635 0.3096 0.3087 0.2802
L(0,1) 0.14110.11570.14120.12720.1521 0.1467 0.1626
DE(0,1)0.3175 0.2432 0.3443 0.3455 0.3900 0.3992 0.3292
(17] tzy 0.39610.09410.3201 0.2794 0.3346 0.3410 0.3847
tay 0.29200.0661 0.2259 0.1878 0.2373 0.2387 0.2865
L(0,1) 0.16950.0586 0.1278 0.1057 0.1246 0.1386 0.1648
DE(0,1) 0.4396 0.0527 0.3429 0.2903 0.3656 0.3753 0.3772
(18]  t(3 0.37410.12130.3201 0.28350.3379 0.3416
tq) 0.27690.0849 0.2244 0.1925 0.2365 0.2402
L(0,1) 0.15820.07260.1246 0.1061 0.1395 0.1321
DE(0,1) 0.38830.0976 0.3167 0.2919 0.3603 0.3329

0.3863
0.2889
0.1864
0.3677
[19] ¢z 0.42300.18690.4158 0.3865 0.4521 0.4469 0.4163
t4)y 0.30980.12640.2962 0.2576 0.3154 0.3087 0.3096
L(0,1) 0.17770.08450.15500.1286 0.1536 0.1423 0.1826
DE(0,1) 0.3499 0.1380 0.3285 0.2934 0.3425 0.3261
[20] %3y 0.45470.02200.3208 0.2860 0.3392 0.3472
{4y 0.34780.03120.2229 0.2003 0.2332 0.2406
L(0,1) 0.19850.05120.12230.1136 0.1235 0.1286
DE(0,1)0.3416 0.0224 0.2026 0.1761 0.2149 0.2176

0.2853
0.2152
0.1461
0.2058
[21] ¢z 0.15370.27440.2065 0.2770 0.2871 0.3231 0.3994
t(4y 0.10510.17620.1354 0.17570.1839 0.2116 0.2988
L(0,1) 0.08300.0999 0.0826 0.0891 0.1023 0.1047 0.1772
DE(0,1)0.13550.17320.1407 0.1974 0.2154 0.2346 0.3432
[22] t3) 0.45710.37070.51850.5201 0.5653 0.5719 0.4529
t(4y 0.19630.07010.15810.1251 0.1564 0.1558 0.2216
L(0,1) 0.15030.12370.1621 0.14910.1786 0.1764 0.1805
DE(0,1)0.39810.2911 0.4360 0.4678 0.5049 0.5090 0.3715

0.3390 0.3982 0.3413 0.3860

0.4153 0.4316 0.4186 0.41520.4737
0.3084 0.3285 0.3197 0.3281 0.3666
0.1852 0.1987 0.2013 0.1903 0.2168
0.3717 0.3921 0.4011 0.2906 0.4573

0.4430 0.4615
0.3333 0.3481 0.3508
0.1950 0.2115 0.2326
0.4531 0.4757 0.5266

0.4671 0.4998 0.5470
0.3894 0.4317
0.16320.2567

0.28700.5688

0.4400 0.4490 0.4538
0.3318 0.3426 0.3452
0.1985 0.2037 0.2036
0.4269 0.4321 0.4699

0.44390.5330
0.34610.4115
0.1576 0.2479
0.2503 0.5099

0.4513 0.4404 0.5027 0.3904 0.4785
0.3428 0.33650.3904 0.3073 0.3710
0.1988 0.21620.2221 0.1680 0.2102
0.2666 0.3971

0.3377 0.2925 0.2383
0.2517 0.2161 0.1713 0.4021 0.4154
0.1599 0.1195 0.1085 0.1399 0.2434
0.2468 0.1533 0.1207 0.2026 0.3815

0.5208 0.5308

0.4680 0.4739 0.4303
0.3540 0.3527 0.3163
0.2033 0.1978 0.1796
0.4297 0.4373 0.4069

0.5826 0.6001
0.4496 0.4700
0.15950.2718
0.2931 0.5277

0.5039 0.5243 0.5370
0.2406 0.2464 0.2266
0.2000 0.2090 0.2298
0.4322 0.4402 0.4912

0.4446 0.5715
0.2607 0.4462
0.1911 0.2441
0.3024 0.4984
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Table 4: Continued
Scheme Dis.  Cihn Crm Cmin Kmin T T2h Gmn Qmin Gy GBb T Hpm
no.
[23] t(g) 0.52340.11720.4238 0.3831 0.4550 0.4567 0.43850.5148 0.5779 0.5981 0.6351 0.6714
t(4) 0.3841 0.0652 0.2840 0.2454 0.3064 0.3083 0.3228 0.3847 0.4409 0.4929 0.2607 0.5298
L(O, 1) 0.2163 0.0518 0.1472 0.1265 0.1473 0.1502 0.1886 0.2124 0.2422 0.2622 0.1712 0.3148
DE(O7 1) 0.6119 0.0461 0.4696 0.4136 0.5146 0.5225 0.4309 0.5162 0.6080 0.6556 0.4060 0.6967

[24] t(3) 0.31410.44510.4329 0.4479 0.4833 0.4927 0.4523 0.5161 0.5161 0.5193 0.5263 0.6261
t4) 0.19500.31750.2862 0.2975 0.3233 0.3324 0.3371 0.3890 0.3876 0.3912 0.4167 0.4838
L(0,1) 0.09900.1656 0.1488 0.1408 0.1557 0.1548 0.1984 0.2225 0.2316 0.2301 0.1749 0.2938
DE(0,1)0.2946 0.4103 0.4173 0.4244 0.4865 0.4846 0.4079 0.4856 0.4971 0.5211 0.3063 0.5832

[25]  t(zy 0.48380.4407 0.5496 0.5684 0.6065 0.6245 0.4657 0.5189 0.5224 0.5280 0.4634 0.5940
tg)y 0.32960.2879 0.3724 0.3788 0.4189 0.4261 0.3361 0.3809 0.3902 0.3910 0.36369 0.4659
L(0,1) 0.15520.13600.1606 0.1605 0.1834 0.1788 0.1849 0.1992 0.2157 0.2224 0.1977 0.2639
DE(0,1) 0.4304 0.3850 0.4865 0.5501 0.5685 0.5850 0.3942 0.4436 0.4715 0.4904 0.3039 0.5128

[26]  t(3) 0.49080.17520.4140 0.4005 0.4492 0.4552 0.4645 0.5355 0.5497 0.5744 0.5754 0.6567
t(4) 0.35480.1029 0.2788 0.2605 0.3021 0.3077 0.3456 0.3989 0.4124 0.4333 0.4447 0.5107
L(0,1) 0.18390.0697 0.1562 0.1206 0.1558 0.1527 0.1997 0.2219 0.2333 0.2504 0.1666 0.3074
DE(0,1)0.52190.1568 0.4641 0.4382 0.5160 0.4952 0.4495 0.5341 0.5499 0.6007 0.3264 0.6580

[27]  t(z 0.46700.21100.4169 0.4109 0.4574 0.4616 0.4619 0.5236 0.52750.5526 0.4998 0.6217
t(4) 0.33300.1286 0.28190.2719 0.3149 0.3146 0.3428 0.3917 0.3980 0.4155 0.3871 0.4983
L(0,1) 0.17960.08610.14430.13150.1537 0.1545 0.1905 0.21720.2170 0.2393 0.1635 0.2842
DE(0,1) 0.4800 0.2140 0.4486 0.4521 0.5073 0.5037 0.4226 0.4995 0.5100 0.5325 0.2744 0.6037

Table 5: Wire connection strength data and the progressive Type-II censoring scheme.
i 1 2 3 4 5 6 7 8 9 10
ZTizmm 000 750 950 1150 1150 1150 1350 1450 1550 1850
Ty 0 2 1 0 3 0 0 2 0 2

proposed normality tests. Using a simulation study, consistency of our test was il-
lustrated and also power of the test for some various alternatives were obtained and
reported. It was apparent from Table 4 that none of the tests considered performs
better than all other tests against all alternatives. Comparing with other tests, how-
ever, the proposed test H,,.,,, was the most powerful with respect to approximately all
censoring schemes. Then, the performance of our test was examined for a real data set
and the results were completely coincided with the other tests.
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Table 6: Test statistics and the corresponding p-values for the data given in Table 5
for testing the normal distribution.
Criterion Chon Crin Chnien Kpn i, 12,
Test statistic 0.0946  0.0893  0.0946  0.1839  0.0021 0.0352
p-value 0.6576  0.3809  0.7057  0.5364 0.8020 0.8735

Criterion Gm:n Qm:n Gg)n Gg)n T Hm:n
Test statistic 6.8499 10.9208 26.7465 63.8562 0.4568 0.3220
p-value 0.7152  0.6476 0.6879 0.6689  0.6450 0.8091
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