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Abstract: The problem of pretest estimation in Rayleigh type-II censored data under
the squared-log error loss (SLEL) is considered. The risk-unbiased estimator is derived
and its risk is computed under the SLEL. The pretest estimator based on a point guess
about the parameter of interest is constructed and the bias and risk is computed. A
comparison study is performed between the pretest estimator and the risk-unbiased
estimator. The optimal level of significance and critical values of pretest is obtained
using regret minimax method. A real data set is used for illustrative purposes.
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1 Introduction
In some situations, the experimenter has a prior point information θ0 about θ, the pa-
rameter of interest, which is available from past investigation or any other sources. For
example, a producer considers the failure times (in minutes) for a sample of electronic
components in an accelerated life test. He/she can estimate the mean life in classical
methods by natural estimator such as maximum likelihood estimator (MLE) or un-
biased estimator or in Bayesian perspective by employing a flexible prior distribution
for the parameter of interest. Suppose that he/she knows that the mean life of elec-
tronic components products is close to 50 minutes. This information can be used for a
pretest estimation in the hope that it will perform better than the natural estimator.
The problem of pretest estimation has received significant attention in recent years,
see Baklizi (2005), Baklizi (2008), Mirfarah and Ahmadi (2014), Balaghi et al. (2015)
and Baklizi et al. (2016) among others.
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Let X has a one parameter Rayleigh distribution with probability density function
(p.d.f.)

f(x|θ) = x

θ
exp

{
−x2

2θ

}
, x > 0. (1)

In this paper, we deal with pretest estimation in Rayleigh distribution based on type-
II censored data under the SLEL function. We provide some preliminaries about loss
function, censored data and the risk-unbiased estimator in Section 2. Section 3 is
concerned to construct the pretest estimators on the basis of the risk-unbiased estimator
of θ. The bias of the pretest estimator is computed numerically and plotted for various
cases. After calculating the risk of the pretest estimator, we compare it with respect
to the risk-unbiased estimator via relative efficiency. The optimal levels of significance
are obtained using regret minimax criterion. In Section 4, a numerical example is
presented for illustrative purposes. We end the paper with some concluding remarks.

2 Some preliminaries
2.1 Loss function
Consider the SLEL function for estimating θ as

L(θ, δ) = (log δ − log θ)2 = log2
(
δ

θ

)
= log2 ∆. (2)

This loss is proposed by Brown (1968); see also Pal and Ling (1996). The SLEL is
not symmetric and convex; it is convex for ∆ = δ

θ ≤ e and concave otherwise, but has
a unique minimum at ∆ = 1. Also when ∆ > 1, this loss increases sublinearly, while
when 0 < ∆ < 1, it rises rapidly to infinity at zero. The SLEL function is useful in
situations where underestimation is more serious than overestimation. Zellner (1986)
stated that in dam construction, an underestimation of the peak water level is usually
much more serious than an overestimation. Sanjari and Zakerzadeh (2005), Kiapour
and Nematollahi (2011), Naghizadeh Qomi and Barmoodeh (2015) and Naghizadeh
Qomi (2017) used this loss for some estimation problems.

2.2 Type-II censored data
Suppose that n units are placed on test simultaneously and the test terminates imme-
diately after r units have failed. r is fix, is chosen before the data are collected and
the length of experiment is a random variable. The following lemma is a key for future
derivations of the paper.

Lemma 2.1. (Arnold et al. (1998)) Let X1:n, · · · , Xr:n be the observed failure times
for the first r units under the Rayleigh model (1). Then, we have:
(i) The likelihood function of X = (X1:n, · · · , Xr:n) at x = (x1:n, · · · , xr:n) is given by

L(θ|x) = n!
∏r

i=1 xi:n

(n− r)!θr
exp

{
−
∑r

i=1 x
2
i:n + (n− r)x2

r:n

2θ

}
. (3)
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(ii) The MLE of θ, denoted by θ̂ is given by

θ̂ =

∑r
i=1 X

2
i:n + (n− r)X2

r:n

2r
. (4)

(iii) The spacings Zi = (n−i+1)(X2
i:n−X2

i−1:n)/θ for i = 1, ..., r (X0:n ≡ 0) constitute
a random sample of χ2

2 random variable and then 2rθ̂/θ ∼ χ2
2r.

2.3 A risk-unbiased estimator of θ

Following Lehmann (1951) an estimator θ̃ of θ is said to be risk-unbiased under the
loss function L(θ, θ̃) if it satisfies

E[L(θ, θ̃)] ≤ E[L(θ′, θ̃)], ∀θ′ ̸= θ. (5)

With respect to SLEL, the estimator θ̃ of θ is risk-unbiased if E[log θ̃] = log θ, ∀θ or
equivalently E[log(θ̃/θ)] = 0, ∀θ, see Naghizadeh Qomi and Barmoodeh (2015). It is
easy to check that if X1:n, · · · , Xr:n denote the type-II censored data from the Rayleigh
model with p.d.f. given in (1), then the estimator θ̂RU = re−Ψ(r)θ̂ is a risk-unbiased for
θ under the SLEL, where θ̂ is the MLE of θ, Ψ(r) = d

dr ln Γ(r) =
Γ′(r)
Γ(r) is the digamma

function and Γ(r) denotes the complete gamma function given by Γ(r) =
∫∞
0

tr−1e−tdt.
Moreover, the risk of the risk-unbiased estimator under the SLEL is Ψ′(r), where
Ψ′(r) = d

drΨ(r) is the trigamma function, for detail, see Naghizadeh Qomi (2017).

3 Pretest estimation
Assume that we have a priori θ0 about θ. A pretest for{

H0 : θ = θ0
H1 : θ ̸= θ0,

(6)

may be performed for checking that θ is near to θ0. For testing (6), the likelihood ratio
test statistic is U = 2rθ̂/θ ∼ χ2

2r, then, H0 is rejected at the level of significance α, if
U < q1 or U > q2, where q1 = χ2

α
2 ,2r and q2 = χ2

1−α
2 ,2r are the values of the lower and

upper 100α/2% points of a chi-square distribution with 2r degrees of freedom.
The pretest estimator is

θ̂PT =

{
θ0 q1δ ≤ U ≤ q2δ

θ̂RU U < q1δ or U > q2δ,
= θ̂RU + (θ0 − θ̂RU )I(A), (7)

where δ = θ0/θ and A = {U : q1δ ≤ U ≤ q2δ}.

3.1 Bias of θ̂PT

Considering d = e−Ψ(r) we get θ̂RU/θ = dU/2 and then the Bias of θ̂PT under the
SLEL is given by

Bθ̂PT
(δ) = E

[
log

(
θ̂PT

θ

)]
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= E

[
log

(
θ̂RU + (θ0 − θ̂RU )I(A)

θ

)]
= E

[
log

(
dU

2
+ (δ − dU

2
)I(A)

)]
=

∫ ∞

0

[
log

(
du

2
+ (δ − du

2
)I(A)

)]
g(u)du

=

∫
A

log δ g(u)du+

∫
Ac

log

(
du

2

)
g(u)du

=

∫ ∞

0

log

(
du

2

)
g(u)du+

∫ q2δ

q1δ

[
log δ − log

(
du

2

)]
g(u)du

= 0 +

∫ q2δ

q1δ

[
log δ − log

(
du

2

)]
g(u)du

=

∫ q2δ

q1δ

[
log δ − log

(
du

2

)]
g(u)du. (8)

Figure 1 shows the values of bias Bθ̂PT
(δ) for selected values of r = 4(2)10 and

α = 0.01, 0.05, 0.1, 0.2 with respect to δ. We observe that the bias may be negative,
zero or positive, then we can state that the pretest estimator θ̂PT may be negatively
risk-biased, risk-unbiased or positively risk-biased. Also note that Bθ̂PT

(δ) goes to zero
when δ → 0 or 1 or ∞ or equivalently θ0 → 0 or θ or ∞. The values δmin, δmax and
δ0 ∈ (δmin, δmax) where the pretest estimator has the minimum, maximum and zero
bias, respectively, are summarized in Table 1 for selected values of r and α.

Table 1: The values δmin, δ0 and δmax of δ where the pretest estimator has minimum,
zero and maximum bias.

α = 0.01 α = 0.05 α = 0.1 α = 0.2
r δmin δ0 δmax δmin δ0 δmax δmin δ0 δmax δmin δ0 δmax

4 0.4757 1.0038 3.4721 0.5371 1.0146 2.0109 0.5683 1.0277 2.2165 0.6058 1.0587 2.0109

6 0.5346 1.0024 2.5876 0.5939 1.0094 2.0416 0.6228 1.0179 1.8657 0.6554 1.0380 1.7360

8 0.5751 1.0018 2.2097 0.6322 1.0069 1.8239 0.6592 1.0132 1.6951 0.6888 1.0281 1.5978

10 0.6054 1.0014 1.9972 0.6605 1.0055 1.6951 0.6862 1.0105 1.5918 0.7136 1.0222 1.5125

15 0.6576 1.00091 1.7232 0.7084 1.0037 1.5208 0.7314 1.0069 1.4492 0.7552 1.0147 1.3928

20 0.6919 1.0007 1.5862 0.7395 1.0027 1.4296 0.7606 1.0051 1.3731 0.7819 1.0109 1.3279
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Figure 1: Bias of the pretest estimators for selected values of r and α in δ.

3.2 Risk of θ̂PT

Going along the similar lines for deriving the bias in (8), the risk of θ̂PT as a function
of δ and α under the SLEL is given by

R(θ, θ̂PT ) = E

[
log2

(
θ̂PT

θ

)]
= E

[
log2

(
θ̂RU + (θ0 − θ̂RU )I(A)

θ

)]
=

∫ ∞

0

[
log2

(
du

2
+ (δ − du

2
)I(A)

)]
g(u)du

=

∫ ∞

0

log2
(
du

2

)
g(u)du+

∫ q2δ

q1δ

[
log2 δ − log2

(
du

2

)]
g(u)du

=

∫ q2δ

q1δ

[
log2 δ − log2

(
du

2

)]
g(u)du+Ψ′(r). (9)

For comparison of θ̂PT and θ̂RU , the relative efficiency (RE) is calculated as

RE(θ̂PT , θ̂RU ) =
R(θ, θ̂RU )

R(θ, θ̂PT )
, (10)
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Table 2: The values of δmax and the range of δ that θ̂PT dominates θ̂RU .
α = 0.01 α = 0.05 α = 0.1 α = 0.2

r δmax [δ1, δ2] δmax [δ1, δ2] δmax [δ1, δ2] δmax [δ1, δ2]

4 1.0026 [0.6179,1.6214] 1.0085 [0.6364,1.5428] 1.0146 [0.6484,1.5077] 1.0277 [0.6674,1.4845]

6 1.0018 [0.6805,1.4719] 1.0056 [0.6974,1.4173] 1.0096 [0.7077,1.3926] 1.0181 [0.7228,1.3751]

8 1.0013 [0.7189,1.3928] 1.0042 [0.7346,1.3497] 1.0071 [0.7439,1.3300] 1.0134 [0.7568,1.3155]

10 1.001 [0.7457,1.3425] 1.0034 [0.7605,1.3062] 1.0056 [0.7689,1.2895] 1.0106 [0.7804,1.2768]

15 1.0007 [0.7885,1.2693] 1.0022 [0.8014,1.2423] 1.0037 [0.8087,1.2297] 1.0071 [0.8179,1.2197]

20 1.0005 [0.8146,1.2283] 1.0017 [0.8263,1.2062] 1.0028 [0.8328,1.1958] 1.0053 [0.8408,1.1872]

30 1.0003 [0.8464,1.1819] 1.0011 [0.8565,1.165] 1.0019 [0.8619,1.1569] 1.0035 [0.8685,1.1501]

and plotted in Figure 2 for selected values of r = 4(2)10 and α = 0.01, 0.05, 0.1, 0.2
with respect to δ. It is observed that when the guess value is near to the true value
of the parameter, i.e., δ ≈ 1, the pretest estimator θ̂PT with small α is better than
the risk-unbiased estimator θ̂RU . Moreover, for δ closer to one and fix values of r, the
pretest estimators with smaller α perform better than other pretest estimators. Also,
the pretest estimator with larger r is preferable when α is fixed and δ = 1, see Figure
3. The value of δmax (the value of δ with maximum RE) and the range of δ that θ̂PT

dominates θ̂RU are given in Table 2.

3.3 Optimal level of significance
As we mentioned in the previous subsection, the risk of θ̂PT in (9), is a function of α
(through q1 and q2) and δ, then we consider the risk by RPT (δ, α), hereafter. From (9)
we get RPT (δ, α) → RPT (δ, 1) when δ goes to 0 or ∞. This can be observed from Figure
2. We obtain the roots of the equation RPT (δ, 0) = RPT (δ, 1), or equivalently log2 δ =

Ψ′(r), which are δ1 = e−
√

Ψ′(r) and δ2 = e
√

Ψ′(r). Then, an optimal value of α is α = 0
if δ1 ≤ δ ≤ δ2 and α = 1 otherwise. For finding an optimal value of α with reasonable
risk RPT (δ, α), we use the regret function REG(δ, α) = RPT (δ, α) − infα RPT (δ, α)
with

inf
α

RPT (δ, α) =

{
RPT (δ, 0) e−

√
Ψ′(r) < δ < e

√
Ψ′(r)

RPT (δ, 1) δ ≤ e−
√

Ψ′(r) or δ ≥ e
√

Ψ′(r).

We explore the value of α, say αopt, so that REG(δL, αopt) = REG(δU , αopt), where
δL and δU are the values which REG(δ, α) takes a maximum for δ < e

√
Ψ′(r) and

δ > e
√

Ψ′(r), respectively. Figure 4, show the shapes of REG(δ, α) for r = 2, 4, 6, 8.
The values of αopt, δL, δU , q1 and q2 are summarized in Table 3 for r = 2(1)20,

where q1 and q2 are 100
αopt

2 left quantiles of chi-square distribution with 2r degrees of
freedom. For example, if r = 6, then δ1 = 0.6532 and δ2 = 1.5308. For δ ≤ 1.5308,
REG(δ, α) takes a maximum value at δL = 0.9567 and For δ > 1.5308, REG(δ, α) takes
a maximum value at δU = 2.1631. Therefore, the optimal value of α is αopt = 0.1959.
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Figure 2: RE between the pretest and the risk-unbiased estimator for selected values of r = 4(2)10
and α = 0.01, 0.05, 0.1, 0.2 with respect to δ.

4 An illustrative example
The following data set due to Lawless (2003)

1.4, 5.1, 6.3, 10.8, 12.1, 18.5, 19.7, 22.2,
23, 30.6, 37.3, 46.3, 53.9, 59.8, 66.2.

are the failure times (in minutes) for a sample of 15 electronic components in an
accelerated life test. A Kolmogorov-Smirnov (K-S) test with the test statistic D =
0.2341 and a corresponding p − value = 0.3837 shows adequacy of the fitness of the
Rayleigh distribution with θ = 580.5973, see MirMostafaee et al. (2016).

Assume that all 15 components were placed on test and we have failed to observe
the last ten ordered data so that r = 10 and n = 15. The MLE of θ is θ̂ = 385.053.
Also, the risk-unbiased estimator of θ is θ̂RU = (10)e−Ψ(10)(385.053) = 405.1322 with
corresponding risk R(θ, θ̂RU ) = Ψ′(10) = 0.1052. From Table 3, the optimal value
of α is αopt = 0.1914 with quantiles q1 = χ2

0.0957,20 = 12.3286 and q2 = χ2
0.9043,20 =

28.6112. Consider the point guess values θ0 ∈ {100, 400, 700} for true value θ. The test
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Figure 3: RE between the pretest and the risk-unbiased estimator for selected values of α =
0.01, 0.05, 0.1, 0.2 with respect to r when δ = 1.

Table 3: The values of optimal α, δL, δU and quantiles q1 and q2 for selected values of
r = 2(1)19.

r
2 3 4 5 6 7 8 9 10

αopt 0.2061 0.2024 0.1997 0.1975 0.1959 0.1945 0.1933 0.1923 0.1914
δL 0.8873 0.9207 0.9382 0.9492 0.9567 0.9622 0.9664 0.9697 0.9724
δU 4.0902 3.0611 2.6023 2.3376 2.1630 2.0381 1.9434 1.8689 1.8084
q1 1.0830 2.2159 3.4875 4.8456 6.2666 7.7333 9.2366 10.7702 12.3286
q2 7.7038 10.6101 13.3663 16.0309 18.6264 21.1742 23.6834 26.1602 28.6112

r
11 12 13 14 15 16 17 18 19

αopt 0.1906 0.1899 0.1893 0.1887 0.1882 0.1878 0.1873 0.1869 0.1866
δL 0.9747 0.9766 0.9782 0.9796 0.9808 0.9819 0.9829 0.9837 0.9845
δU 1.7582 1.7157 1.6791 1.6472 1.6192 1.5943 1.5720 1.5519 1.5336
q1 1.033334 2.1535 3.4194 4.7756 6.1956 7.6637 9.16762 10.7025 12.2637
q2 7.9002 10.7941 13.5373 16.1889 18.7751 21.3120 23.8138 26.2835 28.7258

statistic under H0 : θ = θ0 is U = 2rθ̂/θ0. We obtain U = 77.0106, 19.2526, 11.0015
corresponding to the values θ0. For deriving the risk of pretest estimator, we need to
estimate δ. We have two estimate of δ at hand. The first is the MLE of δ of the form
δ̂ML = θ0/θ̂. The second is the risk-unbiased estimate of δ as δ̂RU = θ0/θ̂RU , because

E[log δ̂RU ] = E

[
log

(
θ0

θ̂RU

)]
= E[log θ0]− E[log θ̂RU ]

= log θ0 − log θ = log δ.

Table 4 shows the risk of θ̂RU and the bias and the risk of θ̂PT . It is observed from
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Figure 4: The shapes of REG(δ, α) for selected values r = 2(2)8.

this table that the pretest estimator corresponding to θ0 = 400 has smaller risk than
the risk-unbiased estimator.

5 Concluding remarks

In this paper, we consider the problem of constructing the pretest estimators for the
scale parameter of a Rayleigh distribution based on censored data under the SLEL
function. The risk-unbiased estimator is derived under the SLEL and the bias and risk
of them plotted for different cases. Comparisons between the pretest estimator and the
risk-unbiased estimator show that the pretest estimator is better than the risk-unbiased
estimator when the point guess is near to the true parameter (δ → 1).

The key question in pretest estimation is selection of guess value θ0. A choice is to
select the θ0 using a form of inference, called fiducial inference, see Casella and Berger
(2001). In this inference, M(x)L(θ|x) interprets as a p.d.f. for θ, where M(x) =
(
∫∞
−∞ L(θ|x)dθ)−1. After finding the fiducial distribution of θ, the mean of distribution

can be considered as θ0, which is an empirical estimation of θ.
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Table 4: The risk of θ̂RU and the bias and risk of θ̂PT for selected values of θ0 =
100, 400, 700.

θ0 R(θ, θ̂RU ) B(δ̂) R(δ̂, αopt)

100 δ̂RU 0.24 0.1052 -0.0008 0.1075
δ̂ML 0.26 0.1052 -0.0013 0.1084

400 δ̂RU 0.98 0.1052 -0.0148 0.0677
δ̂ML 1.04 0.1052 0.0068 0.0679

700 δ̂RU 1.73 0.1052 0.0867 0.1714
δ̂ML 1.82 0.1052 0.0779 0.1728

Acknowledgement
The authors are grateful to the editor, associate editor and reviewers for making helpful
comments and suggestions.

References
Arnold, B.C., Balakrishnan, N., and Nagaraja, H.N. (1998). Records. John Wiley &

Sons, New York.

Baklizi, A. (2005). Preliminary test estimation in the two parameter exponential dis-
tribution with time censored data. Applied Mathematics and Computation, 163,
639–643.

Baklizi, A., Asgharzadeh, A., and Sharifi, M. (2016). Estimation procedures based on
Preliminary test in exponential distribution under progressive censoring. Journal of
Applied Statistical Sciences, 22, 141–152.

Baklizi, A. (2008). Preliminary test estimation in the two parameter exponential distri-
bution based on record values. Journal of Applied Statistical Science, 18(3), 387–394.

Belaghi, R., Arashi, M. and Tabatabaey, S. M. M. (2015). On the construction of
preliminary test estimator based on record values for the Burr XII model. Commu-
nications in Statistics-Theory and Methods, 44, 1–23.

Brown, L. D. (1968). Inadmissibility of the usual estimators of scale parameters in prob-
lems with unknown location and scale parameters. Annals of Mathematical Statistics,
39, 29–48.

Casella, G. and Berger, R. (2001). Statistical Inference. 2nd Ed., Brooks/Cole.

Kiapour, A. and Nematollahi, N. (2011). Robust Bayesian prediction and estimation
under a squared-log error loss function. Statistics and Probability Letters, 81, 1717–
1724.



153 M. Naghizadeh Qomi and H. Zareefard

Lawless, J. F. (2003). Statistical Models and Methods for Lifetime Data. John Wiley &
Sons, New York.

Mirfarah, E. and Ahmadi, J. (2014). Pitman-closeness of preliminary test and some
classical estimators based on records from two-parameter exponential distribution.
Journal of Statistical Research of Iran, 11(1), 73–96.

MirMostafaee, S.M.T.K., Naghizadeh Qomi, M. and Fernandez, A.J. (2016). Toler-
ance limits for minimal repair times of a series system with Rayleigh distributed
component lifetimes. Applied Mathematical modeling, 40, 3153–3163.

Lehmann, E. L. (1951). A general concept of unbiasedness. Annals of Mathematical
Statistics, 22, 587–592.

Naghizadeh Qomi, M. (2017). Bayesian shrinkage estimation based on Rayleigh type-II
censored data under the squared log error loss. Communications in Statistics–Theory
and Methods, 46, 9859–9868.

Naghizadeh Qomi, M. and Barmoodeh, L. (2015). Shrinkage testimation in exponential
distribution based on records under asymmetric squared-log error loss. Journal of
Statistical Research of Iran, 12, 225–238.

Pal, N. and Ling, C. (1996). Estimation of a normal scale parameter under a balanced
loss function. Journal of the Indian Statistical Association, 34, 21–38.

Sanjari Farsipour, N. and Zakerzadeh, H. (2005). Estimation of a Gamma Scale Pa-
rameter under Asymmetric Squared Log Error Loss. Communications in Statistics–
Theory and Methods, 34, 1127–1135.

Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions.
Journal of the American Statistical Association, 81, 446–451.


