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1 Introduction
Measuring the amount of dependence between random variables is an important con-
cept in data analysis. The two popular notions of dependence are correlation, because
of its simplicity, and mutual information, because of its intuitive understanding through
the concept of uncertainty (Shannon and Weaver (1949)). However, correlation, be-
cause of its linear nature, and mutual information, because of its difficulty in estimation
fall short in quantifying dependence. Therefore, the quest of measuring dependence
in the context of an application still remains active and a lot of research devoted to
the definition of measures of dependence. Schweizer and Wolff (1981) and Rényi
(1959) defined fundamental properties of a measure of dependence. The necessity for
dependence measures first appeared in the context of independence tests. Most of de-
pendency measures constructed based on the distance between the joint distribution
and the product of the marginal distributions, or the distance between the joint density
function and the product of the marginal densities (Blum et al. (1961), Feuerverger
and Mureika (1977), Hoeffding (1941), and Rosenblat (1975)). Statistical indepen-
dence between random variables has become an effective tool in many signal processing
applications such as the independent component analysis (ICA), see, e.g., Bach and
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Jordan (2002) and Shen et al. (1949). This analysis aims at finding a transformation
(usually linear) of a vector of observations, such that the transformed vector has in-
dependent components. To this end, one minimizes an objective function (also called
contrast function (Comon (1994)) which measures the degree of dependence between
the transformed components. In this paper, we study (In Section 2) the properties of
a measure of dependence which first appeared in Behboodian et al. (2005). In Section
3, the rank-based estimator of this measure is derived and a test of independence is
performed. Simulation results provided to illustrate the performance of new index in
testing independence. In Section 4, an algorithm for independent component analysis
is developed, whose contrast function derived from the proposed dependence measure.
The proposed algorithm is compared with the commonly used ICA algorithms through
some simulation results.

2 The proposed measure

Let (X,Y ) be a pair of continuous random variables with the joint distribution function
H(x, y) = P (X ≤ x, Y ≤ y) and the univariate marginal distributions F (x) = P (X ≤
x), G(y) = P (Y ≤ y). The random variablesX and Y are said to be positively quadrant
dependent (PQD) if H(x, y)−F (x)G(y) ≥ 0 for all (x, y) in IR2 and negatively quadrant
dependent (NQD) by reversing the sense of the inequality (Lehmman (1966)). So, in
a sense, the expression H(x, y) − F (x)G(y) measures “local” quadrant dependence at
each point (x, y) in IR2. Sklar’s Theorem (Sklar (1959)) guarantees the existence of
a unique function C such that, for all (x, y) ∈ IR2, H(x, y) = C{F (x), G(y)}. For a
complete discussion of copulas, see Nelsen (2006). For two random variables X and
Y with the associated copula C, consider a class of dependence measures of the form

δp(C) = λB

∫ 1

0

∫ 1

0

|C(u, v)− uv|pdB(u, v), (1)

where p ≥ 1, B is a fixed copula and λB is a constant depending on the copula B,
such that δp(C) = 1 when C = M or C = W . The notions M and W denote the
Fréchet-Hoeffding upper and lower bound copulas, respectively, which for any copula
C satisfy: max(u + v − 1, 0) = W (u, v) ≤ C(u, v) ≤ M(u, v) = min(u, v) for every
(u, v) in [0, 1]2. Each of the random variables X and Y is almost surely (a.s.) an
increasing (respectively, decreasing) function of the other if and only if their copula is
M (respectively, W ). The general class (1) first appeared in Behboodian et al. (2005)
and interpreted as the average quadrant dependence of two random variables U and V
with the associated copula C, where the average is computed with respect to another
copula B. Let Π(u, v) = uv denotes the copula of independent random variables. When
B = Π, and p = 1 this measure reduces to Schweizer and Wolff measure of dependence
defined by

σ(C) = 12

∫ 1

0

∫ 1

0

|C(u, v)− uv|dudv, (2)
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(Schweizer and Wolff (1981)). When B = Π, and p = 2, the general class (1) reduces
to the Hoeffding’s measure of dependence (Hoeffding, (1941)) given by

Φ(C) = 90

∫ 1

0

∫ 1

0

(
C(u, v)− uv

)2
dudv. (3)

A multivariate extension of this measure of dependence studied by Gaißer et al. (2010).
In the general class (1), if we choose p = 2 and the averaging copula B as the Fréchet-
Hoeffding upper copula M(u, v) = min(u, v), then

δ2(C) = 30

∫ 1

0

∫ 1

0

(
C(u, v)− uv

)2
dmin(u, v) (4)

= 30

∫ 1

0

(dC(u)− u2)2du.

where dC(u) = C(u, u) is the diagonal section of the copula C; see, Nelsen (2006)
for detail. The normalizing constant 30 obtained under the condition δ2(M) = 1.
The measure δ2 is comparable with the Hoeffding’s measure of dependence and did
not studied in literature. For two random variables X and Y with the copula C, the
measure δ2(X,Y ) = δ2(C), satisfies the following properties:
(1) δ2(X,Y ) is well defined for every pair of continuous random variables.
(2) δ2(X,Y ) = δ2(X,Y ).
(3) 0 ≤ δ2(X,Y ) ≤ 1.
(4) If X and Y are independent then δ2(X,Y ) = 0.
(5) δ2(X,Y ) = 1, when Y is an almost surely increasing transformation of X.
(5) δ2(f(X), g(Y )) = δ2(X,Y ), if f and g are almost surely strictly monotone functions
on the range of X and Y .
(6) If {(Xn, Yn)} is a sequence of continuous random vectors which converges weakly
to a pair (X,Y ) then δ2(Xn, Yn) → δ2(X,Y ) as n→ ∞.

Table 1: Values of the Spearman’s ρ, δ2 and the Hoeffding’s measure Φ for one param-
eter families of copulas Normal, Clayton, Frank and Gumbel.

.
Spearman’s Normal Clayton Frank Gumbel

ρ θ Φ δ2 θ Φ δ2 θ Φ δ2 θ Φ δ2
0.1 0.1 0.013 0.004 0.143 0.011 0.006 0.603 0.013 0.006 1.073 0.014 0.004
0.2 0.2 0.030 0.015 0.310 0.027 0.013 1.224 0.026 0.015 1.150 0.058 0.016
0.3 0.3 0.111 0.054 0.510 0.056 0.026 1.883 0.095 0.050 1.255 0.072 0.039
0.4 0.4 0.140 0.070 0.758 0.146 0.081 2.610 0.115 0.061 1.381 0.170 0.073
0.5 0.5 0.200 0.102 1.076 0.228 0.126 3.446 0.247 0.128 1.544 0.227 0.119
0.6 0.6 0.249 0.131 1.507 0.348 0.197 4.466 0.289 0.158 1.757 0.301 0.180
0.7 0.7 0.418 0.226 2.129 0.478 0.299 5.821 0.439 0.262 2.064 0.431 0.259
0.8 0.8 0.573 0.344 3.188 0.602 0.386 7.902 0.563 0.344 2.582 0.587 0.369
0.9 0.9 0.781 0.525 5.566 0.760 0.537 12.261 0.774 0.529 3.736 0.771 0.531

0.99 0.99 0.971 0.834 22.337 0.981 0.860 42.888 0.972 0.846 12.048 0.986 0.839

One disadvantage of the measure δ2 is that a value of zero does not necessarily
imply independence of random variables. This, however, also holds for the common
measures of dependence such as Spearman’s rho and Kendall’s tau. Note that the
diagonal section of an Archimedean copula C is given by dC(u) = ϕ[−1](2ϕ(u)), where



On a measure of dependence and its application to ICA 158

Table 2: Values of the Spearman’s ρ, δ2 and the Hoeffding’s measure Φ for one param-
eter families of copulas FGM and Ali-Mikhail-Haq

.
FGM Ali-Mikhail-Hagh

Spearman′s ρ θ Φ δ2 θ Φ δ2
0.05 0.15 0.002 0.001 0.14 0.003 0.002
0.1 0.3 0.005 0.004 0.278 0.009 0.005
0.15 0.45 0.018 0.010 0.402 0.018 0.012
0.2 0.6 0.038 0.017 0.517 0.038 0.021
0.25 0.75 0.063 0.027 0.622 0.055 0.030
0.3 0.9 0.077 0.039 0.719 0.089 0.038
0.33 0.99 0.080 0.047 0.774 0.092 0.049
0.35 - - - 0.808 0.098 0.076
0.4 - - - 0.889 0.143 0.103
0.45 - - - 0.962 0.207 0.109
0.47 - - - 0.989 0.219 0.114

ϕ : [0, 1] → [0,∞] is a continuous, convex and strictly decreasing function such that
ϕ(0) = 0 and ϕ[−1](u) = ϕ−1(u), if 0 ≤ u ≤ ϕ(0) and ϕ[−1](u) = 0, if ϕ(0) ≤ u ≤ ∞,
is the pseudo-inverse of ϕ. As shown in Alsina et al (2006), if (X,Y ) is a random
vector having an Archimedean copula C, then X and Y are independent if and only
if dC(u) = dΠ(u) = u2. Thus within the class of Archimedean copulas, we have that
δ2(C) = 0 if and only if C = Π. Figure 1 shows the plot of δ2 and the Hoeffding’s
measure Φ for the three models (1) Y = X2+c−1Z, (2) Y = X+c−1Z, where c ∈ [0, 10]
and X,Z are two independent random variables having N(0,1) distribution, and (3)
six families of copulas Clayton, Frank, Gumbel, normal, Farlie�-Gumbel-�Morgenstern
(FGM) and Ali-Mikhail-Haq (AMH) (see, Nelsen (2006)) for different values of the
parameter. Tables 1 and 2 show the values of the Spearman’s ρ, δ2 and Hoeffding’s
measure Φ for these families of copulas.

3 Statistical inference for δ2

An estimator for δ2 could be written in terms of the ranks of a random sample
(X1j , X2j), j = 1, 2, . . . , n, from the random vector (X1, X2) with the copula C, and
respective marginal distribution functions F1 and F2. We assume that C, as well as F1

and F2, are completely unknown. For j = 1, ..., n, let (R1j , R2j) denote the correspond-
ing vectors of ranks, i.e., Rij =

∑n
l=1 II{Xlj ≤ Xij}, for i = 1, 2 and 1 ≤ j ≤ n, where

II{A} denotes the indicator function of the set A. Let Fin be the re-scaled empirical
counterpart of Fi, i = 1, 2, i.e.,

Fin(x) =
1

n+ 1

n∑
j=1

II{Xij ≤ x},
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and
Cn(u1, u2) =

1

n

n∑
j=1

II{Û1j ≤ u1 Û2j ≤ u2}, (5)

with pseudo–observations Ûij = Fin(Xj) = Rij/(n+ 1), i = 1, 2, j = 1, 2, ..., n, be the
empirical copula (Fermanian (2004)). A ”plug-in” rank-based estimator of δ2 is given
by

δn = 30h(n)

∫ 1

0

(
Cn(u, u)− u2

)2
du, (6)

where h(n) is a constant such that δn = 1 when the ranks coincide (perfect depen-
dence), and δn = 0 when the ranks have a natural order (independence case), namely
j1, j2, . . . , jn. The following theorem provides the explicit form of δn.

Theorem 3.1. Let (X1j , X2j), j = 1, 2, . . . , n, be a sample of size n from a vector
(X1, X2) of continuous random variables with the copula C and let (R1j , R2j), j =
1, . . . , n, be the corresponding vectors of ranks. Then

δn = h(n)

16− 30

n2

n∑
j=1

n∑
k=1

max

(
R1j

n+ 1
,
R1k

n+ 1
,
R2j

n+ 1
,
R2k

n+ 1

)

+
20

n

n∑
j=1

3
max

(
R1j

n+ 1
,
R2j

n+ 1

) ,
where h(n) = n2(n+ 1)/(n3 + n2 + 5n).

Proof: For i = 1, 2 and j = 1, 2, .., n, let Ûij = Rij/(n + 1), Aj(u) = II{Û1j ≤
u}II{Û2j ≤ u}. Let Cn be the associated empirical copula. Then one may write

(
Cn(u, u)− u2

)2
=

 1

n

n∑
j=1

(Aj(u)− u2

2

=
1

n2

n∑
j=1

(
Aj(u)− u2

) n∑
k=1

(
Ak(u)− u2

)
=

1

n2

n∑
j=1

n∑
k=1

Aj(u)Ak(u)−
2u2

n

n∑
j=1

Aj(u) + u4. (7)

It is easy to see that

Aj(u)Ak(u) = II{max(Û1j , Û1k, Û2j , Û2k) ≤ u}.

Upon integrating both sides of (7) and letting Ûij = Rij

n+1 , one gets the required result.
By letting R1j = R2j = j, and R1k = R2k = k, we obtain the normalizing constant
h(n), as

h(n) =
(n3 + n2 + 5n)

n2(n+ 1)
.
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2

The asymptotic distributions of δ2 can be deduced from the asymptotic behavior
of the empirical copula process which has been discussed, e.g., in Fermanian et al.
(2004) and Segers (2012). For a regular copula C, that is the partial derivatives
Ċ1(u, v) =

∂
∂uC(u, v) and Ċ2(u, v) =

∂
∂vC(u, v) exist everywhere and are continuous,

the empirical process Cn =
√
n(Cn −C) converges weakly in L∞([0, 1]2) to a centered

Gaussian process GC which takes the form GC(u, v) = BC(u, v) − Ċ1(u, v)BC(u, 1) −
Ċ2(u, v)BC(1, v). The process BC is a Brownian bridge on [0, 1]2 with the covariance
function Cov(BC(u1, u2),BC(v1, v2)) = C(u1 ∧ v1, u2 ∧ v2) − C(u1, u2)C(v1, v2). The
following result gives the asymptotic normality of δn.
Theorem 3.2. If C 6= Π is a regular copula then

√
n(δn − δ2) 7−→d ZC , (8)

where ZC ∼ N(0, σ2
C) with

σ2
C = 4

∫ 1

0

∫ 1

0

(C(u, u)− u2)(C(v, v)− v2)E(GC(u, u)GC(v, v))dudv, (9)

Proof: Note that we can regard δ2 = ψ(C) as a functional acting on the space D
of c‘adl‘ag functions D : [0, 1]2 → R, equipped with the sup norm. It is a Hadamard-
differentiable map (van der Varrt and Wellner (1996) at any copula C, tangentially to
the subspace C ⊂ D of continuous maps. This taken to mean that there is a continuous
linear functional ψ′

C : C → R such that for every D ∈ C, limn→∞
ψ(C+hnDn)−ϕ(C)

hn
=

ψ′(D) where hn → 0 and Dn → D. Letting Dn = Cn and hn = n−1/2, an application
of the functional Delta Method (van der Varrt and Wellner (1996)) to Cn →w GC
gives the required result. 2

Remark 3.3. Note that under the assumption C 6= Π, the limiting random variable is
non-degenerated. If C = Π, an application of the continuous mapping theorem yields

nδn = 30h(n)

∫ 1

0

(
√
n(Cn(u, u)− u2))2du 7−→d 30

∫ 1

0

(GΠ(u, u))
2. (10)

This result is important for testing of independence, i.e., H0 : C = Π versusH1 : C 6= Π.
We can reject H0 for large value of nδn, for example if nδn exceed from (1−α)-quantile
of limiting distribution in equation (10) which can be estimated via simulation.

Since the main aim of the present work is to compare the proposed index δ with
the Hoeffding’s Φ, we include a simulation study to compare the test statistics con-
structed based on these measures. The simulated power comparisons presented in
Figure 1, obtained with sample sizes n = 50 and α = 0.05. Every Monte Carlo experi-
ment simulated 100,000 times, using well-known one-parameter Archimedean copulas
Frank, Clayton, Gumbel and Ali-Mikhail-Haq and Non-Archimedean copulas normal
and FGM as alternatives. For a given degree of association as measured by Spearman’s
rho, Figure 1 compares the power of the independence test statistics based on δn and
the Hoeffding’s Φn given by

Φn =
90

n2

n∑
j=1

n∑
k=1

min

(
1− R1j

n+ 1
, 1− R1k

n+ 1

)
min

(
1− R2j

n+ 1
, 1− R2k

n+ 1

)
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− 1

45n

n∑
j=1

(
R1j

n+ 1

R2j

n+ 1

)2

− 3(2n+ 1) + 42

5
, (11)

as introduced in Gaißer et al. (2010). The results show a better performance for test
of independence based on δn than the Hoeffding’s measure Φn.

4 Application to ICA
Independent component analysis is an important problem in signal processing which
consists of recovering unobserved signals from their observed mixtures. Assume that
we observe d linear mixtures x = (x1, ..., xd)

T of d independent components s =
(s1, ..., sd)

T , that is x = As, where, A is d × d mixing matrix. The independent
components si’s are latent random variables with zero mean which cannot be observed
directly. To solve this problem, independent component analysis (ICA) is the most
popular method to extract the components via an optimization problem, in which the
statistical dependency among them is minimized. The independent component analy-
sis of a random vector involves of searching for a linear transformation that minimizes
the statistical dependence between its components (Comon (1994)). More precisely,
let X be a random vector on the space Rm, the ICA problem would like to determine
the matrix W ∈ Rm×m such that a new random vector

Y =WX (12)

has its components Y1, ..., Ym getting the smallest statistical dependency. Let κ be a
measure of dependency, and X be a given m-dimensional random vector. We define the
contrast function CX from the space of m×m real matrices to R, as CX(W ) = κ(WX),
the dependency of the new random vector WX. The ICA is stated in a mathematical
view as follows:

Finding W ∗ ∈ Rm×m such that CX(W ∗) = min
W∈Rm×m

CX(W ). (13)

In this section, we present an algorithm which we call MICA for ICA demixing. The
algorithm uses the estimator of the index δ2 given by (7) as a contrast function in
demixing pairs of variables. First, consider the two-dimensional case, where the signal
s mixed with a 2 × 2 matrix A. We assume that the matrix A is orthogonal. The
problem is then reduced to finding a demixing rotation matrix

W (θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

For the objective function, we use δn given by (7) computed on 2 ×N matrix y(θ) =
W (θ)x of rotated samples. Given an angle θ, the value of δn(y(θ)) can be computed
by ranks of the vector y(θ). The solution is then found by finding angle θ minimizing
, δn(y(θ)). We find such solution by searching over K values of θ in the interval [0, π

2
].

This algorithm is outlined in Algorithm 1. A d-dimensional linear transformation de-
scribed by a d×d orthogonal matrix W is equivalent to a composition of 2-dimensional
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Figure 1: Power of a test of independence with the size α = 0.05 by using δn (green line) and Φn

(the red line) based on a random sample of size n = 50 from Frank, Clayton, Gumbel, Normal, FGM
and AMH copulas



163 J. Rahmanishamsi and A. Alikhani-Vafa

rotations; see, e.g., Comon (1994). The transformation matrix itself can be written
as a product of corresponding rotation matrices, W =WL×, . . . ,×W1 where each ma-
trix Wl, l = 1, ..., L, is a rotation matrix (by angle θl) for some pair of dimensions
(i, j). Thus a d-dimensional ICA problem can be solved by solving 2-dimensional ICA
problems in succession. Given a current demixing matrix Wc = Wl × ... ×W1 and a
current version of the signal xc =Wcx, we find an angle θ corresponding to Algorithm
(x(i,j)
c ,K)

Input: A 2×N matrix X where rows are mixed signals (centered and
whitened), k equispaced evaluation angles in the [0, π/2) interval for
each of K angles θ in the interval [0, π/2), θ = πk

2K , k = 0, . . . ,K − 1.
Procedure:

[1]Compute rotation matrix

W (θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
.

[2]Compute rotated signals Y(θ) =W (θ)X
[3]Compute δn(Y(θ)) sample estimate of M index.
[4]Find best angle θm = argminθδn(Y(θ)).

Output: Rotation matrix W = W(θm), demixed signal X = Y(θm), and
estimated dependence measure δn(Y(θ))

.

Algorithm 1: MICA algorithm

In the following we present simulation results to compare the proposed rank-based
method with the commonly used ICA algorithms FastICA (Hyvärinen et al. (1999);
Hyvärinen and Köoster (2006)), KernelICA (Bach and Jordan (2002); Gretton et
al. (2005)), RADICAL (Learned-Miller (2003)) and JADE (Cardoso and Souloumiac
(1993); Cardoso (1999)). In the simulation study 9 different one-dimensional densities
including: (1) t(3), the student t distribution with 3 degree of freedom, (2) t(5), (3)
Uniform on the interval (0,1), (4) Exponential, (5) Chi-Square, (6) Lognormal, (7) F,
(8) unimodal mixture of normal and (9) multimodal mixture of normal densities are
used to generating original independent sources. The shapes of the densities presented
in Figure 2. The procedure for generating data is as the following: (1) N samples of
each of the d sources were generated according to their density functions and placed
into an d × N matrix X, (2) a random mixing matrix A was chosen, (3) a matrix Y
of dimension d ×N was formed as the mixture Y = AX, (4) the data were whitened
by multiplying Y by the inverse of the square root of the sample covariance matrix,
yielding an d × N matrix of whitened data Y. This matrix is the input of the ICA
algorithms. Each of the ICA algorithms outputs a demixing matrix W which can
be applied to the matrix Y to recover estimates of the independent components. To
evaluate the performance of the algorithm, we compare Amari error (Amari (1996))
or blind performance index of MICA algorithm with those of the other algorithms. Let
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Figure 2: The shapes of the density functions used in the simulation study.

bij be the entries of the performance matrix B =WA. The Amari error r(B) measures
how different matrix B is from a permutation matrix, and defined by

r(B) =
1

2d(d− 1)

 d∑
i=1

(∑d
j=1 |bij |

maxj |bij |
− 1

)
+

d∑
j=1

(∑d
i=1 |bij |

maxi|bij |
− 1

) . (14)

It takes value in [0,1], with the minimum value 0 if and only if B is a permutation
matrix. Tables 4, 5 and 6 summarize the medians of the Amari errors for 2-dimensional,
4-dimensional and 8-dimensional cases where both sources had the same distribution.
Samples from these sources were then transformed by a random rotation, and then
demixed using competing ICA algorithms. As we see from Table 3, in 2-dimentional
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case, when the initial sources come from the near-Gaussian-tailed distribution (t(3)
, t(5)) and the uniform distribution, the MICA algorithm is not better than usual
algorithms. But for the sources with the heavytail distributions, rank-based algorithm
MICA can recover unobserved signals from their observed mixtures closer than usual
algorithms. Similar results have been seen in 4-dimentional and 8-dimentional cases in
the Table 4 and Table 5, respectively.

Table 3: The Amari errors (multiplied by 100) for 2-component (d=2) ICA with 1000
samples. Each entry is the median of 100 replicates for each pdf, (1) to (10). The
lowest (best) entry in each row is boldfaced.

.

Num Distribution Kernel ICA JADE Fast ICA RADICAL MICA
1 t(3) 9.43 7.02 5.93 7.92 14.94
2 t(5) 14.10 11.15 11.78 13.25 22.17
3 Uniform 9.84 62.05 8.17 8.98 18.43
4 Exp 8.55 26.55 12.56 9.02 5.24
5 Chi square 9.42 38.69 9.65 10.05 6.99
6 Lognormal 8.71 22.17 8.51 7.92 5.24
7 F 8.50 17.75 9.48 8.98 7.87
8 Unimodal mixture of normal 8.59 9.58 9.21 8.98 5.09
9 Multimodal mixture of normal 9.26 50.63 9.73 8.98 6.11

Table 4: The Amari errors (multiplied by 100) for 4-component (d=4) ICA with 1000
samples. Each entry is the median of 100 replicates for each pdf, (1) to (10). The
lowest (best) entry in each row is boldfaced

.

Num Distribution Kernel ICA JADE Fast ICA RADICAL MICA
1 t(3) 10.11 8.78 9.49 8.03 13.53
2 t(5) 19.17 11.44 13.75 13.12 21.43
3 Uniform 7.20 35.80 6.89 5.51 19.35
4 Exp 5.18 16.28 10.87 5.15 4.17
5 Chi square 5.36 16.39 10.98 5.64 5.16
6 Lognormal 5.18 16.28 10.87 5.15 3.88
7 F 4.48 12.12 7.04 5.12 3.70
8 Unimoda mixture of normal 5.51 9.37 11.12 5.20 4.67
9 Multimodal mixture of normal 4.93 30.75 5.32 4.99 4.50

Table 5: The Amari errors (multiplied by 100) for 8-component (d=8) ICA with 1000
samples. Each entry is the median of 100 replicates for each pdf, (1) to (10). The
lowest (best) entry in each row is boldfaced.

Num Distribution Kernel ICA JADE Fast ICA RADICAL MICA
1 t(3) 12.10 8.72 9.48 7.74 14.39
2 t(5) 20.57 10.90 12.80 12.00 22.45
3 Uniform 5.87 25.46 6.64 5.32 20.08
4 Exp 5.86 11.30 13.46 4.75 4.70
5 Chi square 5.82 10.90 12.29 4.41 4.35
6 Lognormal 4.22 9.33 7.66 4.12 3.98
7 F 3.87 7.93 5.81 3.86 3.21
8 Unimodal mixture of normal 38.26 15.27 17.13 4.21 4.12
9 Multimodal mixture of normal 42.54 16.43 4.22 4.03 3.97
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