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Abstract: Maximum likelihood estimators are usually biased. The first order bias
term of the maximum likelihood estimators can be large for a small or medium sample
size, and this bias may have a significant effect on distribution performance. Different
methods may be used to reduce this bias. These methods have inspired many scholars
to study this field over the past years, but the use of Bartlett’s method requires the
expected value of third power derivatives of the likelihood function. Consequently,
because this quantity (the expected value of third power derivatives of the likelihood
function) is not necessarily calculable in some distributions, in this paper we propose
a new method based on algebraic approximation of the maximum likelihood estimator
bias which needless the expected value of third power derivatives of the likelihood func-
tion. In addition, as an application of this method, we will consider a bias correction
for estimating parameters of Maxwell distribution.
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1 Introduction
Maxwell distribution was introduced for the first time by Maxwell (1860) and developed
by Boltzman (1870). The random variable X has the Maxwell distribution with scale
parameter θ which is shown by M(θ) if the probability density function (pdf) is

f(x; θ) =
4√
π
θ

3
2x2e−θx2

, x > 0, θ > 0,

and the cumulative distribution function (cdf) is

F (x; θ) =
2√
π
Γ
(
3/2, θx2

)
,
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where Γ(a, x) =
∫ x

0
ua−1e−udu is the incomplete gamma function.

Tyagi and Bhattacharya (1989a) and Tyagi and Bhattacharya (1989b) calculated
uniformly minimum-variance unbiased estimator, Bayes estimator of θ and its reliability
function for this distribution. Chaturvedi and Rani (1998) introduced the generalized
Maxwell distribution and calculated the classical and Bayes estimators for the param-
eters of this distribution. Podder and Roy (2003) calculated the parameter estimation
of this distribution under the modified linear exponential loss function. Bekker and
Roux (2005) calculated empirical Bayes estimator for the parameter of the Maxwell
distribution. Krishna and Malik (2009) calculated ML and Bayes estimators of the
reliability function under the type II censored data. Kazemi and Shahabi (2012) cal-
culated the Bayes estimators for the parameters of a mixture distribution with the
Maxwell components under type II censored data. Dey et al. (2013) studied the one-
parameter Maxwell distribution and calculated the estimation of the parameter under
different loss functions. In addition, recently Iriarte et al. (2017) introduced the new
two-parameter gamma distribution as a generalization of the Maxwell distribution and
some of its features using the G-gamma generator.

The remainder of this paper is organized as follows. In Section 2, we briefly discuss
a corrective approach to derive modified MLEs. In Section 3, we discuss bias correction
for one and two-parameter Maxwell distribution. In Section 4, we perform simulation
studies and compare the proposed estimators in Section 3.

2 Preliminaries
2.1 Bartlett bias correction
One of the preliminary results for algebraic approximation estimate of the maximum
likelihood bias was done by Bartlett (1953). He calculated the bias of MLE with
order O(n−1) of a one-parameter distribution. For Bartlett method, assume that we
have a regular parametric model with l(θ) as the logarithm of likelihood function.
For simplicity, we assume that the parameter θ is scalar and define l′(θ̂) = ∂l(θ)

∂θ |θ=θ̂,
v(θ)a = (v(θ))

a and irst(θ) = E [l′(θ)rl′′(θ)sl′′′(θ)t]. Given the above notations, assume
the regularity conditions as

i100(θ) = 0, i010(θ) + i200(θ) = 0, i001(θ) + 3i110(θ) + i300(θ) = 0,

In general, the MLE has a bias with order O(n−1). (for example see Cox and Hink-
ley, 1979). Applying the Taylor’s expansion for the second-order of the first derivative
of l(θ) at θ = θ̂ we have

l′(θ̂) = l′(θ) + (θ̂ − θ)l′′(θ) +
1

2
(θ̂ − θ)2l′′′(θ) +Op(n

−2) = 0,

where l′′(θ) and l′′′(θ) are the second and third derivatives of l(θ) respectively. If we
obtain expected value for both sides of the above equation, we have:

E(θ̂ − θ)E(l′′(θ)) + cov((θ̂ − θ), l′′(θ))

+
1

2
E(θ̂ − θ)2E(l′′′(θ)) +

1

2
cov((θ̂ − θ)2, l′′′(θ)) ≈ 0.
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So, we have an explicit form for E(θ̂ − θ), that is the bias of the MLE with order
O(n−1). Using Bartlett’s strategy we have

E(θ̂ − θ) = b(θ) +O(n−2),

where

b(θ) =
1

2
i200(θ)

−2 {2i110(θ) + i001(θ)} = O(n−1), (1)

b(θ) = −1

2
i200(θ)

−2 {i300(θ) + i110(θ)} = O(n−1). (2)

So the bias corrected estimator of θ is θ̂BC = θ̂ − b(θ̂) where, E(θ̂BC − θ) = O(n−2).
Bartlett’s method is also used for p -dimensional parameter vector, Θ. For simplicity

and without loss of generality assume that l(Θ) be the log-likelihood function based
on a sample of n observations for p -dimensional parameter vector Θ = (θ1, . . . , θp)

′.
The joint cumulants of derivatives of l = l (Θ) are given by the following formulas

kij = E

[
∂2l

∂θi∂θj

]
, kijl = E

[
∂3l

∂θi∂θj∂θl

]
,

kij,l = E

[(
∂2l

∂θi∂θj

)
∂l

∂θl

]
, klij =

∂kij
∂θl

, i, j, l = 1, 2, . . . ., p. (3)

Assume that the log-likelihood is well-defined and regular function relative to all
third order derivatives and all of the above equations are of order O(n). Also, assume
that K = [−κij ] is the p × p information matrix of Θ for i, j = 1, 2, . . . ., p. Cox
and Snell (1968) showed that when the sample is independent but not necessarily
identically distributed, the bias of the estimator of the sth element of Θ, namely θ̂s
may be expressed in the form of

Bias(θ̂s) =

p∑
i=1

p∑
j=1

p∑
l=1

κsiκjl

[
1

2
kijl + kij,l

]
+O(n−2), s = 1, 2, . . . , p, (4)

where κij is the (i, j)th element of the inverse of the information matrix, K. Then,
Cordeiro and Klein (1994) showed that when all equations in (3) are of order O(n), even
if the observations are not independent, equation (4) is satisfied. Thus they expressed
a better form of Bias(θ̂s) as follow

Bias(θ̂s) =

p∑
i=1

p∑
j=1

p∑
l=1

κsiκjl

[
k
(l)
ij − 1

2
kijl

]
+O(n−2), s = 1, 2, . . . , p. (5)

By defining a
(l)
ij = k

(l)
ij − 1

2kijl for i, j, l = 1, 2, . . . ., p and matrix A(l) =
{
a
(l)
ij

}
, and

consideration A =
[
A(1)|A(2)| . . . .|A(p)

]
, the bias of Θ̂ can be written as

Bias(Θ̂) = K−1A vec(K−1) +O(n−2).

Finally, the bias-correction of the MLE will be defined as Θ̃ = Θ̂ − K̂−1Â vec(K̂−1)
where K̂ = K|Θ̂ and Â = A|Θ̂. One advantage of this method is that these expressions
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can also be calculated when the likelihood equations do not have a closed-form solu-
tion. In such cases the bias-correction of the ML can be obtained by using numerical
computation methods. In this case Θ̃ is unbiased of order O(n−2).

One of the problems of the Bartlett’s method is requirement the mean of the first
and second derivatives of the likelihood function and also the mean of the l′(θ̂)l′(θ̂) and(
l′(θ̂)

)3
, (see equations (1)-(5)). As we see, these values are not necessarily available

for all distributions. As example, consider the two-parameter Maxwell distribution,
which we will discuss later. Therefore, in these cases, a new method is proposed for the
bias correction of the MLE to hope that derivatives of lower order of the log-likelihood
function l(θ) will be useful.

2.2 Firth’s bias prevention
The bias correction depends on the finiteness of the maximum likelihood estimators.
By definition, when the MLE is infinite, the bias correction of the MLE is not defined.
Another method is the bias prevention which is proposed by Firth (1993) and has a
different theory.

If U(θ) = l′(θ) and j(θ) = −l′′(θ) are the score functions and the observed infor-
mation, respectively, then by subtracting an appropriate part of the score function, we
can remove bias of order O(n−1) from the MLE. This idea is bias prevention of b(θ)
by addition of M∗(θ) to score function. This method leads to a modified likelihood
function as

U∗(θ) = U(θ) +M∗(θ) = 0.

Thus θ̂∗ is obtained by solving equation U∗(θ) = 0. The adjusted M∗(θ) is selected so
that

E(θ̂∗ − θ) = O(n−2). (6)

Using Taylor series for U∗(θ) = 0 around θ we can find an expansion of (θ̂∗ − θ). So
using condition (6), we have

M∗(θ) = −b(θ)E (j(θ)) . (7)

2.3 Bootstrap approach
Jackknife bias reduction idea is the calculation of the estimate by deleting one or more
observations at a time from the original data. An estimate for the bias of the statistic,
can be calculated from this new set of replicates of the statistic. The idea of bootstrap’s
bias reduction is sampling with replacement from the main data and calculate the
statistic in each cases. Therefore, it is possible to calculate the statistic for the bias
of estimator by these samples. Although mathematically, there is a widespread theory
about the difference between these two methods, in practice, for researchers the main
difference is that by repeating these methods on a given data, bootstrap offers different
results, while Jackknife is able to give the same results each time.

Here, we study Efron’s resampling method (1979) to calculate the bias correction
of MLE as another algebraic method. Assume Y = (Y1, . . . , Yn) is a random sample
of size n of random variable Y with distribution function F . Let η = t (F ) be a



103 M. M. Maghami and M. Bahrami

parameter of known function F and η̂ = s (Y ) denotes the estimation of η. We assume
a large number of simulated samples with replacement of the sample y in Efron’s
bootstrap resampling and calculate η̂ in each bootstrap samples y∗ = (y∗1 , . . . , y

∗
n), say

η̂∗ = s (y∗). Then we use empirical distribution of η̂∗ to estimate distribution function
η̂. If F belongs to a known parametric family with finite dimension of Fη, then we can
obtain parametric estimation of F by consistence estimation Fη̂. The bias of η̂ = s (y)
may be written as

BF (η̂, η) = EF [s (y)]− η̂ (F ) ,

where the index F shows that the expected value is obtained under F . The estimate
of bootstrap bias-correction is calculated by replacing F with F (η̂). So bias may be
written as

BF (η̂) = EF (η̂) [η̂]− η̂.

For N bootstrap independent samples where are generated from main data y, we
calculate bootstrap estimates corresponding to

(
η̂∗(1), . . . , η̂∗(n)

)
. When N is large, the

expected value of EF (η̂) [η̂] may be approximated as

η̂∗(.) =
1

N

N∑
i=1

η̂∗(i). (8)

The estimation of bootstrap of η̂ by using N iteration is

BF (η̂) (η̂, η) = η̂∗(.) − η̂.

The MLE with a second order correction for arbitrary distribution can be calculated
as follows

ηB = η̂ −BF (η̂) (η̂, η) = 2η̂ − η̂∗(.),

where η̂∗(.), may be calculated by bootstrap samples and using (8).

2.4 Bias of MLE by using new method
Consider the definitions of Section 1. By Taylor’s expansion to the first order of the
first derivative of the log-likelihood function at θ = θ̂, we have

0 = l′(θ̂) = l′(θ) + (θ̂ − θ)l′′(θ) +Op(n
−1).

So for any t, we can write

l′(t) + (θ̂ − t)l′′(t) +Op(n
−1) = 0. (9)

Now, we integrate both sides of equation (9) over −θ < t < θ. Note that this is
possible only if the parameter space be the real line R. So we have∫ θ

−θ

l′(t)dt+

∫ θ

−θ

(θ̂ − t)l′′(t)dt ≈ 0.

Using integration by parts, we have

2l(θ)− 2l(−θ) + θ̂ (l′(θ)− l′(−θ))− θ (l′(θ) + l′(−θ)) ≈ 0.
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So, we have θ̂ ≈ 2l(−θ)−2l(θ)+θ(l′(θ)+l′(−θ))
l′(θ)−l′(−θ) , or θ̂ − θ ≈ 2l(−θ)−2l(θ)+2θl′(−θ)

l′(θ)−l′(−θ) . Now, using
Taylor series (first order) of 1

l′(θ)−l′(−θ) around E (l′(θ)− l′(−θ)) = −E (l′(−θ)), We
have

1

l′(θ)− l′(−θ)
=

−1

E(l′(−θ))
− 1

E2 (l′(−θ))
(l′(θ)− l′(−θ) + E (l′(−θ))) +OP

(
n−1

)
=

l′(−θ)− l′(θ)− 2E (l′(−θ))

E2 (l′(−θ))
+OP (n

−1).

Therefore for sufficiently large n,

θ̂ − θ ≈ (2l(−θ)− 2l(θ) + 2θl′(−θ))
l′(−θ)− l′(θ)− 2E (l′(−θ))

E2 (l′(−θ))
. (10)

Finally, by obtaining expectation of both sides of the equation (10), we will get the bias
of MLE i.e. E(θ̂ − θ). For simplicity we recommend using symbols v(θ)a = (v(θ))

a,
jabcrst (θ) = E {l(aθ)rl′(bθ)sl(cθ)t} and jabrs (θ) = E {l(aθ)rl′(bθ)s}. We have

E(θ̂ − θ) ≈ 1

j1−1
01 (θ)2

(2j−1−1
11 (θ)− 2j−11

11 (θ)− 4j−11
10 (θ)j1−1

01 (θ)− 2j1−1
11 (θ)

+2j1111(θ) + 4j1110(θ)j
1−1
01 (θ) + 2θj1−1

02 (θ)− 2θj1−11
011 (θ)− 4θj1−1

01 (θ)2).(11)

It should be noted that in this method of bias estimation, we only need the expected
value of the first order derivative of logarithm of likelihood or their product. Therefore,
this method can be used for estimate bias of MLE for a larger family of distributions
(Including the location parameter of Maxwell distribution). The new method pro-
posed in one-parameter case is not simply generalizable to multi-parameters. In a two-
parameters case, assume that we have a regular parametric model with logarithm of
likelihood function, l(θ1, θ2).

Assume that the MLE of parameters are θ̂1 and θ̂2, respectively. For simplicity
we use the symbols of Section 2.1 and let l′1(θ1, θ2) = ∂l(θ1,θ2)

∂θ1
, l′2(θ1, θ2) = ∂l(θ1,θ2)

∂θ2
,

l′′1 (θ1, θ2) =
∂2l(θ1,θ2)

∂2θ1
and l′′2 (θ1, θ2) =

∂2l(θ1,θ2)
∂2θ2

. In this case, the functions l′1(θ1, θ̂2) and
l′2(θ̂1, θ2) are one-variable functions equal to zero at θ1 = θ̂1 and θ2 = θ̂2, respectively.
Therefore, using first order of Taylor expansion for l′1(θ1, θ̂2), l′2(θ̂1, θ2) at points θ1 = θ̂1
and θ2 = θ̂2, we have

0 = l′1(θ̂1, θ̂2) = l′1(θ1, θ̂2) +
(
θ̂1 − θ1

)
l′′1 (θ1, θ̂2) +Op(n

−1),

0 = l′2(θ̂1, θ̂2) = l′2(θ̂1, θ2) +
(
θ̂2 − θ2

)
l′′2 (θ̂1, θ2) +Op(n

−1),

or, for each t1 and t2 we can write

0 = l′1(θ̂1, θ̂2) = l′1(t1, θ̂2) +
(
θ̂1 − t1

)
l′′1 (t1, θ̂2) +Op(n

−1),

0 = l′2(θ̂1, θ̂2) = l′2(θ̂1, t2) +
(
θ̂2 − t2

)
l′′2 (θ̂1, t2) +Op(n

−1).
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Now, to have lower orders derivatives, we can integrate the sides of the above
equations on −θ1 < t1 < θ1 and −θ2 < t2 < θ2,∫ θ1

−θ1

l′1(t1, θ̂2)dt1 +

∫ θ1

−θ1

(θ̂1 − t1)l
′′
1 (t1, θ̂2)dt1 ≈ 0,∫ θ2

−θ2

l′2(θ̂1, t2)dt2 +

∫ θ2

−θ2

(θ̂2 − t2)l
′′
2 (θ̂1, t2)dt2 ≈ 0.

Just like as one-parameter case and with some calculations, we have

θ̂1 − θ1 ≈ 2l(−θ1, θ̂2)− 2l(θ1, θ̂2) + 2θ1l
′(−θ1, θ̂2)

l′(θ1, θ̂2)− l′(−θ1, θ̂2)
, (12)

θ̂2 − θ2 ≈ 2l(θ̂1,−θ2)− 2l(θ̂1, θ2) + 2θ2l
′(θ̂1,−θ2)

l′(θ̂1, θ2)− l′(−θ̂1, θ2)
. (13)

Now for the approximate denominator of the (12) and (13), since l′(θ1, θ̂2) and l′(θ̂1, θ2)
are not necessarily the derivative of the log-likelihood of a special density, so in this
case, it is not possible to use Taylor’s expansion around their expected values. So,
using this method in two or more parameters is an open problem.

The method that we use to calculate the bias correction of the location and scale pa-
rameters of Maxwell distribution is first to remove scale parameter of the two-parameter
Maxwell density function and then consider the estimate bias correction for the desired
parameter (location parameter). In fact, in this case, a certain amount of parameters
estimate placed in the profile loglikelihood function. Another example is provided in
bias prevention, see Sartori (2006).

3 Maxwell distribution bias correction
3.1 One-parameter
To generate random numbers from the one-parameter Maxwell distribution, we use the
following process:

If Y has gamma distribution with scale parameter 1
θ and the shape parameter 3

2 ,
then X = +

√
Y has M(θ) distribution (see Krishna and Malik, 2012). Moreover, the

one-parameter Maxwell distribution moments can be calculated by using the following
lemma (Ling and Giles, 2014).
Lemma 3.1. The rth moment of M(θ) for r > −3 is µr = 2√

π
Γ ((r + 3) /2) 1

θr/2 .

Ling and Giles (2014) studied the empirical term for the bias of order O(n−1) of
MLE for generalized Rayleigh distribution with the parameters (θ, k) and in a special
case for the one-parameter Maxwell distribution (equivalent to generalized Rayleigh
distribution with parameters

(
θ = 1

2λ2 , k = 1
2

)
) using Bartlett’s method. According to

this paper, the bias-correction of MLE of the parameter θ is

Bias(θ̂)) =
θ{[2(k + 1)(− 1

k2 +Ψ(1)(k))− 3](− 1
k2 +Ψ(1)(k))− (k + 1)( 2

k3 +Ψ(2)(k))}
2n[(k + 1)(−1/k2 +Ψ(1)(k))− 1]2

,

(14)
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where Ψ(1)(k) and Ψ(2)(k) are the digamma and trigamma functions, respectively. By
substituting k = 1/2 in (14), we obtain the bias correction for the parameter θ in
one-parameter Maxwell distribution as

Bias(θ̂) = 0.67
θ

n
. (15)

In this section, we directly calculate the bias correction of θ by using Bartlett’s
method. According to the given the one parameter Maxwell density function we can
write

l(xi; θ) = n log
4√
π
+

3n

2
log θ +

n∑
i=1

2 log xi − θ

n∑
i=1

x2
i , θ > 0.

So, we have:

U (θ) = l′(θ) =
∂l

∂θ
=

3n

2θ
−

n∑
i=1

x2
i ,

l′′(θ) =
∂2l

∂θ2
=

−3n

2θ2
, l′′′(θ) =

∂3l

∂θ3
=

3n

θ3
.

Each of (1) and (2) can be used to calculate the bias correction of the parameter
θ. Using (2), we need i300(θ) = E

(
∂l
∂θ

)3, which its calculation is complex. Thus for
calculating the bias of the estimator of the parameter θ, we use (1). So we have

i200 = −i010 = −E (l′′(θ)) =
3n

2θ2
, i001(θ) = E (l′′′(θ)) =

3n

θ3
,

i110(θ) = E (l′(θ)l′′(θ)) = E

[(
3n

2θ
−

n∑
i=1

x2
i

)(
−3n

2θ2

)]
= 0.

Substituting calculated values in (1), we have:

b(θ̂) =
1

2
i200(θ)

−2 {2i110(θ) + i001(θ)} =
2θ

3n
. (16)

By comparing the (15) and (16), we can conclude that the two equations are almost
equivalent. On the other hand, we can use the bias obtained in (15) or (16) in bias
prevention method by Firth. By using the (7), we have: M(θ) = −b(θ)E (j(θ)) =
− 2θ

3n
3n
2θ2 = − 1

θ . So Firth,s bias prevention estimator is obtained by solving the following
equation:

U∗ (θ) = U (θ) +M (θ) =
3n

2θ
−

n∑
i=1

x2
i −

1

θ
= 0.

3.2 Two-parameter
If a random variable X is defined as X = M(θ)+µ with µ ∈ R, then X ∼ M(θ, µ) where
θ and µ are the scale and location parameters of a two-parameter Maxwell distribution,
respectively. Therefore, the probability density function (pdf) of X is

f(x; θ, µ) =
4√
π
θ

3
2 (x− µ)

2
e−θ(x−µ)2 , x > µ, θ > 0,
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and the corresponding cumulative distribution function (cdf) is

F (x; θ, µ) =
2√
π
Γ
(
3/2, θ (x− µ)

2
)
, x > µ.

Dey et al. (2016) studied the problem of estimating location and scale parame-
ters of the Maxwell distribution from both frequentist and Bayesian methods. They
studied and compared several different methods for estimating the parameters of this
distribution, namely, ML, method of moments, least square’s, weighted least square
and Bayesian method. After comparing these methods, the authors concluded that for
small samples, the estimate of location parameter µ will have a higher bias in compar-
ing to the estimate of scale parameter θ . Finally, they suggested for the parameters of
this distribution, it is better to use the MLEs or the Bayes estimators. By examining
the bias value of the MLE for the location parameter, it is considered that in this
distribution the bias correction estimator of this parameter is useful.

Note that while M(θ, µ) = µ+M(θ, 0), so the moments of the distribution M(θ, µ)
are easily calculated by using Lemma 3.1.

Now we calculate the MLE of the parameters θ and µ using a random sample of
size n from M(θ, µ). If both parameters of M(θ, µ) are unknown, the log-likelihood
function for the two-parameter Maxwell distribution is

logL (θ, µ) =
3n

2
log θ + 2

n∑
i=1

log (xi − µ)− θ

n∑
i=1

(xi − µ)
2
+ C,

where C is a constant. Normal equations that are used to estimate distribution pa-
rameters are

∂ logL

∂θ
=

3n

θ
−

n∑
i=1

(xi − µ)
2
= 0, (17)

∂ logL

∂µ
= −

n∑
i=1

2

(xi − µ)
+ 2θ

n∑
i=1

(xi − µ) = 0. (18)

If we wish to use the equation (4) to calculate the bias correction of θ and µ, for
example we need the expected value of

∂ logL

∂µ3
=

∂

∂µ

(
−

n∑
i=1

2

(xi − µ)
2 − 2nθ

)
= −

n∑
i=1

4

(xi − µ)
3 . (19)

But according to Lemma 3.1, since µ′
r can only be calculated for r > −3, the expected

value of (19) is not available. As a result, using the Bartlett method, the bias cal-
culation of the parameters of the location and the scale of this distribution are not
available. So proposing a new method to estimate bias of MLE using the expected
value of lower order derivatives will be useful.

According to conclusions of Dey et al. (2016), in Maxwell Distribution bias of MLE
for estimate location parameter is more significant relative to the scale parameter,
especially for small samples. So, estimation and bias correction of location parameter
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is useful in two-parameter Maxwell distribution. So, first the scale parameter should be
removed from two-parameter Maxwell distribution. We will use the following process:

Assume X has M (θ, µ), so Y = X
√
θ has a density of the form

f(y; θ, µ) =
4√
π

(
y − µ

√
θ
)2

e−(y−µ
√
θ)

2

, y > µ, θ > 0.

So, we can write: If, X ∼ M (θ, µ), then Y = X
√
θ ∼ M

(
1, µ

√
θ
)

. Now considering
the parameter µ′ = µ

√
θ as a new location parameter in the Maxwell distribution, we

try to estimate this parameter. We assume

f(y;µ′) =
4√
π
(y − µ′)

2
e−(y−µ′)

2

, y > µ′. (20)

In this case, the log-likelihood function of the form

l (µ′) = logL (µ′) = n log
4√
π
+ 2

n∑
i=1

log (yi − µ′)−
n∑

i=1

(yi − µ′)
2
.

Now, we follow method of section 2.4 to estimate bias of MLE of µ′ by solving the
following equation

U(µ′) =
∂ logL

∂µ′ = −
n∑

i=1

2

(yi − µ′)
+ 2

n∑
i=1

(yi − µ′) = 0,

and is calculated using numerical methods. To calculate the bias of MLE for µ′ us-
ing equation (11), we should calculate functions which are simply calculated using
numerical methods. For simplicity, we define the following functions:

f(µ′, µ1, µ2) = Eµ′ {l (µ1)U (µ2)}

= Eµ′

{(
n log

4√
π
+ 2

n∑
i=1

log (yi − µ1)−
n∑

i=1

(yi − µ1)
2

)

×

(
−

n∑
i=1

2

(yi − µ2)
+ 2

n∑
i=1

(yi − µ2)

)}

= n log
4√
π

[
−2nEµ′

(
1

Y − µ2

)
+ 2nEµ′ (Y − µ2)

]
(21)

−4n

{
Eµ′

(
log (Y − µ1)

Y − µ2

)
+(n− 1)Eµ′ (log (Y − µ1))Eµ′

(
1

Y − µ2

)}
+4n {Eµ′ ((Y − µ2) log (Y − µ1))

+(n− 1)Eµ′ (log (Y − µ1))Eµ′ (Y − µ2)}

+2n

{
Eµ′

(
(Y − µ1)

2

(Y − µ2)

)
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+(n− 1)Eµ′ (Y − µ1)
2
Eµ′

(
1

(Y − µ2)

)}
−2n

{
Eµ′

(
(Y − µ1)

2
(Y − µ2)

)
+(n− 1)Eµ′ (Y − µ1)

2
Eµ′ (Y − µ2)

}
g(µ′, µ1, µ2) = Eµ′ {U (µ1)U (µ2)}

= Eµ′

{(
−

n∑
i=1

2

(yi − µ1)
+ 2

n∑
i=1

(yi − µ1)

)

×

(
−

n∑
i=1

2

(yi − µ2)
+ 2

n∑
i=1

(yi − µ2)

)}
(22)

= 4n

{
Eµ′

(
1

(Y − µ1) (Y − µ2)

)
+(n− 1)Eµ′

(
1

(Y − µ1)

)
Eµ′

(
1

Y − µ2

)}
−4n

{
Eµ′

(
(Y − µ2)

(Y − µ1)

)
+ (n− 1)Eµ′

(
1

(Y − µ1)

)
Eµ′ (Y − µ2)

}
−4n

{
Eµ′

(
(Y − µ1)

(Y − µ2)

)
+ (n− 1)Eµ′

(
1

(Y − µ2)

)
Eµ′ (Y − µ1)

}
+4n{Eµ′((Y − µ1)(Y − µ2)) + (n− 1)Eµ′(Y − µ1)Eµ′(Y − µ2)},

h(µ′, µ1) = Eµ′ {U (µ1)}

= Eµ′

(
−

n∑
i=1

2

(yi − µ1)
+ 2

n∑
i=1

(yi − µ1)

)
(23)

= −2nEµ′

(
1

Y − µ1

)
+ 2nEµ′ (Y − µ1) ,

m(µ′, µ1) = Eµ {l (µ1)}

= Eµ′

(
n log

4√
π
+ 2

n∑
i=1

log (yi − µ1)−
n∑

i=1

(yi − µ1)
2

)

= n log
4√
π
+ 2nEµ′ (log (Y − µ1))− nEµ′ (Y − µ1)

2
. (24)

In functions (21)-(24) we calculate Eµ′ based on pdf in (20) numerically. According to
equation (11) and given functions (21)-(24) we have

bias(µ̂′) = E (µ̂′ − µ′)

≈ 1

h(µ′,−µ′2)
(2f(µ′,−µ′,−µ′)− 2f(µ′,−µ′, µ′)

−4m(µ′,−µ′)h(µ′,−µ′)− 2f(µ′, µ′,−µ′) + 2f(µ′, µ′, µ′)

+4m(µ′, µ′)h(−µ′, µ′) + 2µ′g(µ′,−µ′,−µ′)

−2µ′g(µ′,−µ′, µ′)− 4µ′h(µ′,−µ′2)). (25)
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So, the bias correction of µ̂′ is calculated using equation

µ̃′ = µ̂′ − bias (µ̂′) |µ̂. (26)

In practice we need µ̂′ to estimate bias of µ′ using equation (26). To calculate µ̂′

first we use ML method and solve equations (17) and (18) and calculate µ̂ and θ̂ and
then estimate µ̂′ via µ̂

√
θ̂. Of course, for the more precise estimation of θ̂ we can also

use Firth,s bias prevention for x − θ̂. Finally, having calculated corrected estimate of
µ′ using equation (26), we calculate parameter µ using Equation µ̃ = µ̂− µ̃′√

θ̂
.

4 Simulation studies
To compare the estimates of the Maxwell distribution parameters, we use the Monte
Carlo simulation. This simulation was performed using R software. We selected sample
sizes of n = 10, 20, 40, 60, 100 with θ = 1 and µ = 0, 1. The two- parameter Maxwell
distribution was simulated using lemma 1 and definition 1. The Monte Carlo sample
repeat count and bootstrap repeat count per (n, θ, µ) are M = 5000 and B = 1000,
respectively. In simulation to evaluate the mean bias and the mean squared error
(MSE), per βest parameter estimate of β we use the following relations, respectively:

Bias(β̂est) =
1

M

M∑
i=1

(β̂est − β), MSE(β̂est) =
1

M

M∑
i=1

(β̂est − β)2.

Table 1 and 2 represent the mean bias and the mean squared error percent. For
example, the mean square error percent for β is obtained by relation 100×MSE(β̂est).
We use the method proposed in the Section 2 for each random and independent sample,
so, for a sample of x = (x1, x2, . . . , xn) we use five methods to estimate (θ, µ).
Method 1: Using the ML method, this is obtained using equations (17) and (18). In
this case we use nlm function in R software. We show this estimate as (θ̂, µ̂).
Method 2: Using bootstrap bias correction for the MLE in the Section 2.3. The
estimation is shown as (θ̂B , µ̂B).
Method 3: Using the bias correction of MLE in the new method for µ. In this method
first the MLEs (θ̂, µ̂) is calculated for x. Then, using relation µ̂′ = µ̂

√
θ̂, and using the

method in Section 3.2 we calculate µ̃′ = µ̂′ − bias (µ̂′) and then µ̃ = µ̂ − µ̃′/
√
θ̂. The

estimates are shown as (θ̂, µ̃).
Method 4: Using the bias correction of the MLE in the new method and the Bartlett
bias correction method, first it is calculated the MLE of µ as µ̂. Then, using Bartlet’s
bias correction and using the equation 14 we calculate the corrected parameter estimate
θ̂, namely θ̂BC = θ̂− 2θ̂

3n where n is the sample size. Now, using relation µ̂′BC
= µ̂

√
θ̂BC

and by using the section 2 method, we calculate µ̃BC = µ̂′BC − bias
(
µ̂′BC

)
. We show

this estimate as (θ̂BC , µ̃BC).
Method 5: Using the bias correction of the MLE in the new method and the Firth’s
bias prevention, first it is calculated the MLE of µ as µ̂. Then, using Firth,s bias
prevention and using equation 7 we calculate the prevention of the parameter estimate
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θ̂F . Then using µ̂′BC
= µ̂

√
θ̂F and using the previous section method we calculate

µ̃F = µ̂′F − bias
(
µ̂′F ); these estimates are shown as (θ̂F , µ̃F ).

Table 1 shows the bias percent of the parameters estimation of M(1, 0) using meth-
ods 1 to 5. Based on this table, the bias of maximum likelihood estimates of (θ, µ),
namely (θ̂, µ̂) are always positive. Also, the bias and MSE are large for a small sample
size and decrease with increasing sample size. On the other hand, for a constant sample
size, the bias and MSE of θ̂ are larger than µ̂.

Table 1: Bias percent [MSE %] estimates of distribution parameters M(1,0).
n θ̂ θ̂B θ̂BC θ̂F µ̂ µ̂B µ̃ µ̃BC µ̃F

10 24.55 −3.87 1.12 2.31 19.71 5.24 4.87 5.09 4.59
[32.15] [17.36] [15.04] [14.47] [23.10] [15.83] [13.63] [14.72] [15.96]

20 12.02 −2.91 0.71 0.70 10.92 −4.11 3.92 3.07 3.82
[18.96] [12.02] [11.93] [10.08] [14.10] [13.16] [12.74] [12.67] [13.75]

30 11.78 1.20 0.59 0.83 8.43 3.281 −2.19 3.02 −3.01
[17.24] [11.50] [9.01] [11.70] [12.48] [12.63] [12.36] [11.97] [12.09]

40 9.54 0.19 −0.06 0.07 5.97 2.93 −2.02 −2.99 2.54
[13.08] [9.38] [6.78] [5.52] [9.68] [8.61] [9.32] [7.15] [11.31]

50 7.94 0.15 0.04 0.07 5.02 −2.42 1.99 −2.35 −2.41
[12.97] [8.05] [5.91] [5.00] [8.00] [7.65] [5.67] [7.06] [10.40]

60 5.37 −0.01 0.04 0.02 4.12 −2.01 1.83 −2.25 2.36
[10.07] [4.38] [4.31] [4.79] [7.95] [6.95] [5.51] [6.72] [9.13]

70 4.87 0.09 −0.03 0.05 4.09 1.75 1.53 1.41 1.39
[6.65] [3.65] [3.61] [4.01] [7.17] [6.00] [5.32] [5.42] [8.83]

80 4.54 −0.08 0.03 −0.04 3.65 −1.59 −0.91 1.27 −1.19
[5.02] [3.00] [2.26] [2.17] [6.84] [5.68] [4.70] [5.07] [6.94]

90 3.92 0.05 −0.02 −0.02 2.79 0.94 0.89 −0.93 1.06
[3.20] [2.92] [1.51] [1.84] [5.32] [5.50] [4.02] [4.95] [6.44]

100 3.59 0.03 0.01 0.02 2.06 0.64 0.57 0.42 −0.97
[2.89] [1.51] [1.79] [2.88] [3.72] [2.97] [2.07] [2.87] [4.40]

Simulation studies on table 1 showed that bias of (θ̂B , µ̂B) is sometimes positive
and sometimes negative. But for constant sample these bias are smaller than the bias
of θ̂, µ̂) in term of absolute value. This also applies to the MSE value of these estimates.
In this case on the contrary of the previous case, bias of µ̂B especially on large sample
size is bigger than the bias of θ̂B . This result shows that the bootstrap,s bias correction
is useful for his distribution.

According to table 1 the bias of (θ̂BC , µ̃BC) is also sometimes positive or negative.
But the biasedness of (θ̂BC , µ̂BC) are smaller than the biasedness of (θ̂B , µ̂B) in term
of absolute for constant sample. But this is not true for MSE value of these estimates,
especially for large sample. This result shows that the Bartlet’s bias correction com-
pared to bootstrap’s bias correction is only logical in terms of reducing the biasedness
of this distribution. Accordingly, the comparison between bias of µ̃ and µ̃BC also shows
that µ̃ has priority compared to µ̃BC in reducing biasedness in most samples.

The comparison between bias and MSE of θ̂F and other estimates of θ shows that
this estimate has priority in term of bias and MSE compared to θ̂ and θ̂B , but has not
priority relative to θ̂BC . Finally, the comparison between bias and MSE estimates of
µ̃F and other estimates shows this estimate has not priority relative to other estimates
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in MSE but it has priority relative to other estimate of µ in biasedness.
Table 2 shows that the percent of biasedness in [MSE %] estimation of distribu-

tion parameters M(1, 1) using methods 1 to 5. The table 2 confirms the results of
table 1, but the important point is that bias and MSE of parameters estimates of this
distribution are considerably more than M(1, 0).

Generally, simulation shows that (θ̂BC , µ̃) is prefered to (θ̂F , µ̃) relative to biased-
ness criterian but not in MSE.

Table 2: Bias percent [MSE %] estimates of distribution parameters M(1,1).
n θ̂ θ̂B θ̂BC θ̂F µ̂ µ̂B µ̃ µ̃BC µ̃F

10 26.13 5.98 3.32 4.64 20.40 8.97 6.07 6.37 5.99
[35.72] [17.30] [16.24] [15.33] [26.83] [22.60] [19.41] [18.73] [17.04]

20 15.06 −4.37 2.97 −2.09 19.03 8.01 −5.80 5.50 −5.37
[23.95] [15.49] [15.97] [14.01] [18.73] [17.34] [16.31] [17.93] [15.07]

30 13.41 4.05 −2.46 2.00 15.36 −7.64 −5.68 −5.43 5.27
[19.15] [14.62] [14.02] [13.73] [17.93] [12.06] [12.67] [13.23] [14.02]

40 10.75 3.97 −2.34 −1.99 14.30 −6.93 5.01 −4.93 5.09
[18.25] [14.01] [13.55] [14.65] [17.02] [11.94] [10.68] [12.97] [11.96]

50 9.00 3.61 2.10 −1.96 12.65 6.32 −4.82 −4.86 4.73
[13.28] [13.87] [12.87] [12.40] [16.05] [11.38] [10.26] [9.92] [11.35]

60 7.43 −2.42 1.91 1.93 12.04 5.84 4.38 4.02 −3.93
[12.02] [10.86] [12.03] [12.01] [15.32] [10.62] [9.66] [9.86] [10.27]

70 5.65 2.06 −1.89 1.93 11.61 −4.52 3.23 −3.11 3.51
[10.38] [9.67] [11.93] [11.32] [15.07] [9.41] [9.51] [9.39] [9.30]

80 4.32 −1.97 1.66 −1.90 10.86 3.07 2.92 2.97 −2.83
[7.11] [9.00] [11.04] [10.95] [14.90] [9.00] [9.35] [8.92] [8.28]

90 3.68 1.74 1.00 0.93 10.60 2.62 2.31 2.62 2.38
[3.01] [8.41] [9.34] [9.82] [13.95] [8.70] [8.56] [8.45] [7.80]

100 3.51 −1.16 0.95 0.93 10.27 −1.80 −1.51 1.32 1.92
[2.97] [6.32] [8.97] [9.02] [12.69] [6.04] [5.04] [4.92] [5.10]
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