
Journal of Statistical Modelling: Theory and Applications
Vol. 1, No. 2, 2020, pp. 59-76
Yazd University Press 2020

Modeling spatial patterns and species associations in a
Hyrcanian forest using a multivariate log-Gaussian Cox process

Abdollah Jalilian∗1, Amir Safari2, Hormoz Sohrabi3
1Department of Statistics, Razi University, Kermanshah, Iran

2Natural resources and watershed management
general office of Kermanshah, Iran

3Department of forestry, Tarbiat Modares University, Tehran, Iran

Received: October 26, 2019/ Revised: December 18, 2019 / Accepted: February 11, 2020

Abstract: This paper aims to conduct a model-based analysis of the spatial patterns
of three tree species in a Hyrcanian forest and investigate their associations. There
are many known and unknown mechanisms that influence the spatial forest structure
and species associations. These complex and mainly unobservable mechanisms can
be modeled by hidden Gaussian random fields and log-Gaussian Cox process models
are appropriate for linking them to the spatial patterns of tree species. We consider
a multivariate log-Gaussian Cox process model that can take into account the overall
mixed effects of all influential factors on spatial distributions of species and quantify
species associations in terms of some parameters. This construction provides a suitable
framework for modeling and analyzing spatial patterns of several species. We also dis-
cuss modeling tree diameters, parameter estimation and goodness of fit methods and
apply them to the data. Results from fitting the model to the data show that there
is a significant negative association between two light-demanding species. Finally, a
Gamma intensity-dependent model is considered to model spatial correlation in tree
diameters of one of the species.

Keywords: Cross-pair correlation function; Hidden Gaussian random field; Intensity-
dependent marking model; Mark variogram.
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1 Introduction
Statistical analysis of spatial point patterns of trees can extract information about for-
est dynamics and mechanisms (Stoyan and Penttinen, 2000; Comas and Mateu, 2007).
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A model-based approach in statistical analysis of spatial patterns of tree locations
tries to construct and develop parametric spatial point process models for the observed
data and explain the underlying process that leads the spatial forest structure (see e.g.
Waagepetersen, 2007; Picard et al., 2009; Grabarnik and Särkkä, 2009; Illian et al.,
2013). This approach reveals identifiable random and non-random spatial structures
in the data and describes the behaviour of the whole system in terms of a set of param-
eters and functional relationships (Law et al., 2009; Illian et al., 2009; Jalilian et al.,
2012). In fact, a suitable multivariate point process model can provide a mathemati-
cal explanation for the complex unobservable underlying mechanisms that create the
spatial forest structure and cause species associations (Comas and Mateu, 2007; Picard
et al., 2009; Grabarnik and Särkkä, 2009). In addition, such a model can be used
to assess relevant biological theories and hypotheses (Wiegand et al., 2007; Illian and
Burslem, 2007). For these reasons, spatial point process models recently gained much
attention in forestry and plant ecology.

Environmental variables and direct plant-to-plant interactions are known to be
the most influential factors in distribution of trees in a given forest stand and hence
they must be included in any model for the spatial forest structure (Wiegand et al.,
2007; Illian and Burslem, 2007; Law et al., 2009). However, modeling the impact
of environment on distribution of trees and measuring interactions between trees of
the same (intra-specific interactions) and different (inter-specific interactions) species
are not straightforward. Soil and topographical conditions, dispersal mechanisms and
limitations, infectious diseases, competition or facilitation among species and other
known and unknown factors can change the environment and direct interactions among
trees in many complex ways and gradually form the spatial forest structure and species
associations (Luo et al., 2012).

Nevertheless, spatial Cox processes provide a framework for modeling the over-
all effect of a complex set of factors in terms of a hidden random field (Møller and
Waagepetersen, 2007). Among Cox process models, the log-Gaussian Cox processes,
introduced by Møller et al. (1998), are mathematically flexible models that can be
used for modeling spatial patterns of single or several tree species. A log-Gaussian Cox
process is a special case of latent Gaussian models and the integrated nested Laplace
approximation (INLA) method (Rue et al., 2009) can be used to fit log-Gaussian Cox
processes with complex dependence structures at small and larger spatial scales (Illian
et al., 2012, 2013). Although flexible and computationally efficient, the log-Gaussian
Cox processes considered in Illian et al. (2012) and Illian et al. (2013) do not have
pair correlation functions with closed analytical forms. Instead, as suggested by Møller
et al. (1998) and Waagepetersen et al. (2016), we consider parametric multivariate
log-Gaussian Cox models that are constructed by linear combinations of independent
hidden Gaussian random fields. This structure provides models with tractable auto-
and cross-pair correlation functions and allows for parametric explanation of associa-
tions within and among species using the correlation functions of the hidden Gaussian
random fields (Møller et al., 1998; Brix and Møller, 2001).

In the present work, we use such a multivariate log-Gaussian Cox process to simul-
taneously model spatial patterns of three tree species in a forest park in the north of
Iran. Our main objective is to assess and find significant associations among the species.
We also investigate spatial correlations between diameters of trees of each species and
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propose models for tree diameters. The remainder of the paper is organized as follows:
Sections 2 and 3 introduce the study area, available data and modelling approach.
Section 4 gives some background on log-Gaussian Cox processes and introduces the
considered model. Modelling the diameter of trees is discussed in Section 5. The re-
sults from fitting the model to the data are presented in Section 6. The paper concludes
in Section 7 with some discussions on limitations and advantages of the fitted model.

2 Data
The broad-leaved deciduous Hyrcanian (Caspian) forests cover an area of about 1.9
million hectares between the northern slopes of the Alborz Mountains and the southern
shores of the Caspian Sea in North of Iran (Ramezani et al., 2013). These mixed forests
are the most important natural forests in Iran and different aspects of them have been
studied in the past two decades, see e.g. Sheykholislami et al. (2009); Esmailzadeh et al.
(2011); Akhavan et al. (2012); Salehi et al. (2013); Ramezani et al. (2013).
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Figure 1: Spatial point pattern of locations of Fraxinus excelsior, Populus caspica and
Pterocarya fraxinifolia trees in a polygonal plot in the Nour forest park, Mazandaran,
Iran. The sizes of representing points are proportional to the diameter at breast height
(DBH) of trees.

The study area is located in the South-East of the Nour forest park, forest reserve
of Populus caspica, Mazandaran, Iran (36◦34′N, 51◦50′E). It is situated in the central
Hyrcanian forests where the elevation varies between 20 m and 43 m from the sea level
and the slope gradient is 3-5%, which suggests a rather topographically homogeneous
landscape. The area has a humid subtropical climate. The annual mean precipitation
and temperature at the nearest meteorological station (Noshahr, Iran) are 1310 mm
and 16.1◦C, respectively.

In order to investigate spatial distributions and coexistence of species, a 18-hectare
forest plot (see 1) inside the study area was established and surveyed in 2011. The
irregular polygonal plot was chosen due to lack of human disturbance and ease of oper-
ation. In the survey, Cartesian (rectangular) coordinates for all trees were determined
using distance and azimuth from a starting point. In addition to spatial location, di-
ameter at breast height (DBH) and species of each tree were recorded. The study is
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focused on three species: Pterocarya fraxinifolia (Lam.) Spach. (Caucasian wingnut),
an Arcto-Tertiary relict species (Ramezani et al., 2013), Populus caspica Born, an en-
demic and endangered Popolar species (Salehi et al., 2013), and Fraxinus excelsior
L. (common ash), a major charismatic species in Asia and Europe (Pautasso et al.,
2013). 1 shows locations of trees of these species in the plot and 1 summaries their
observed characteristics. For these species, we focus on analysis and modeling species
associations and distribution and spatial correlation of tree diameters.

Table 1: The number of observed trees, Ni, estimated intensity (tree per ha), ρ̂i, and
average, mi, variance, σ̂2

mi
, and maximum, maxj mij , of DBH (cm) and mean basal

area (m2) for each species.
Species Ni ρ̂i mi σ̂2

mi
maxj mij basal area

Fraxinus excelsior 368 20.4 38.55 298.8 136 7.8× 10−3

Populus Caspica 286 15.8 72.95 694.5 220 26.2× 10−3

Pterocarya Fraxinifolia 613 34.1 34.16 269.2 153 6.3× 10−3

3 Preliminary analysis
The first step in analyzing spatial patterns of several species in a forest stand is to use
empirical summary statistics, such as intensities, nearest neighbor functions, Ripley’s
K-function and the pair correlation function, and essentially describe features of the
observed data (see e.g. Hou et al., 2004; Hao et al., 2007; Martínez et al., 2010).
Let W ⊂ R2 denote the polygonal study plot (observation window) in 1 and uij =
(uij1, uij2) and m(uij) be, respectively, the location and DBH of the j-th tree, j =
1, . . . , Ni, from the i-th species, i = 1, 2, 3. For i = 1, 2, 3, we assume that Xi is the
underlying spatial point process that governs the spatial distribution of tree locations
uij , j = 1, . . . , Ni, over W , see Comas and Mateu (2007) and Law et al. (2009).
Thus Xi is the stochastic mechanism that has generated the observed spatial point
pattern xi = {ui1, . . . ,uiNi

} of the i-th species. Since the study area is topographically
homogeneous and no data on soil conditions of the study area were collected, we let
Xi to be a stationary point process with constant intensity ρi > 0 which controls the
abundance of Xi. Estimates of ρi’s are given in 1.

The overall pairwise intra- and inter-specific associations can be quantified and
analyzed using second-order point process characteristics such as Ripley’s K-function
and the pair correlation function (Stoyan and Penttinen, 2000; Comas and Mateu,
2007). Due to the cumulative nature of K-function, the pair correlation function is
preferable (Wiegand and Moloney, 2004; Illian et al., 2008). The auto- (or univariate)
pair correlation function gii(r) of the i-th species is a suitable tool in assessing and
modeling pairwise correlations between points of Xi and the cross-pair correlation
function (also known as bivariate or partial pair correlation function) gij(r) of the i-th
and j-th species is useful in assessing pairwise correlations between points of Xi and
Xj (Comas and Mateu, 2007; Illian et al., 2008; Law et al., 2009).

Plots of the empirical (nonparametric) estimates (see e.g. Møller andWaagepetersen,
2004, Sections 4.3.5 and 4.4.3) of auto- and cross-pair correlation functions for Fraxi-
nus excelsior, Populus Caspica and Pterocarya Fraxinifolia species are shown in 2. The
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Figure 2: Empirical estimates of auto- (upper panels) and cross- (lower panels) pair
correlation functions along with 95% simulation envelopes (grey areas) under the CSR
model and p-values of corresponding deviation tests.

plots also show 95% pointwise simulation envelopes obtained under the null model of
complete spatial randomness (CSR). The simulation envelopes are useful to investigate
departures of ĝij(r) values from the reference value gij(r) ≡ 1 (Wiegand and Moloney,
2004). The agreement between the empirical ĝij(r) and their corresponding theoretical
values under the null model of CSR, gij(r) ≡ 1, is also checked using deviation tests
with studentized scaling integral deviation measure (see Myllymäki et al., 2015)

∫ 50

0

[
ĝij(r)− 1√
Varĝij(r)

]2
dr,

where Varĝij(r) is the variance of ĝij(r) under the null model of CSR and is estimated
using 5000 simulations. The p-values of the deviation tests are presented at the top of
the plots in 2.

The p-values and plots of the auto-pair correlation functions show that ĝii(r), i =
1, 2, 3, is significantly larger than one. This, in turn, indicates that there are positive
intra-specific correlations, or aggregation, within trees of each species, although the
range and strength of clustering is different for each species. This fact can also be
seen from clustered patterns of the three species in 1 and it is a common pattern for
species in naturally regenerated forests (see Hao et al., 2007; Zhang et al., 2010; Lee
et al., 2012; Luo et al., 2012). The cross-pair correlation function for species Populus
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Caspica and Pterocarya Fraxinifolia is constantly below the lower envelope which means
that ĝ23(r) is significantly (with p-value=0.001) less than one, and hence there are
negative inter-specific association, or competition, between Populus Caspica trees and
Pterocarya Fraxinifolia trees when they are less than 50 meters apart. The cross-pair
correlation functions for Fraxinus excelsior and Populus Caspica and Fraxinus excelsior
and Pterocarya Fraxinifolia lie inside the envelopes which suggests no significant (with
p-values > 0.05) inter-specific correlations.

4 Modelling tree locations
The null model of CSR assumes that there are no intra- and inter-specific associa-
tions (see Illian et al., 2008, Section 7.4.1). This model implies that X1, X2 and X3 are
independent stationary Poisson processes which is clearly not a suitable model for the
clustered data in 1. Instead of Poisson processes, Cox processes can be employed to
model clustering behaviour in spatial patterns of species (Møller and Waagepetersen,
2004, 2007). Thus we assume that the spatial distribution of trees of each species fol-
lows a Cox process. Because of possible inter-specific associations, these Cox processes
are not necessarily independent. A Cox process model assumes that for each species
there is an unobservable random field (surface) that creates the spatial pattern of the
species and it is the variations and associations of these random fields that generate
the spatial forest structure and control species coexistence mechanisms. The overall
mixed impact of ecological processes such as reproduction, growth, mortality, interac-
tions, dispersal, resource use, gap formation and understory development (see Wiegand
et al., 2007; Zhang et al., 2010) and other influential factors can be represented by the
hidden random fields of the Cox processes.

4.1 Cox model
If Xi, i = 1, 2, 3, be a Cox process then there is a hidden (unobservable) random
field Λi(u) on W and Xi is a Poisson process with the random intensity function
Λi(u) (Møller and Waagepetersen, 2004, 2007). The random field Λi(u) represents the
overall mixed impact of all influential factors in distribution ofXi, including unobserved
environmental variabilities, seed dispersal and intra- and inter-specific associations. 3
illustrates the effect of Λi(u) on points of Xi.

For a Cox process Xi with stationary and isotropic Λi(u), the intensity is given by
the mean of Λi(u); i.e. ρi = EΛi(u), and

gij(r) = 1−
Cov

[
Λi(u),Λj(v)

]
ρiρj

, i, j = 1, 2, 3, (1)

where r = ∥u − v∥ is the distance between u,v ∈ W and Cov
[
Λi(u),Λj(v)

]
is the

covariance of Λi(u) and Λj(v). This means that the dependence structure between
and within random fields Λ1(u), Λ2(u) and Λ3(u) determines intra- and inter-specific
associations and hence define the structure of the auto- and cross-pair correlation func-
tions. Therefore, to explain species associations, it suffices to determine and model
the spatial variations and associations of the hidden random fields Λ1(u),Λ2(u) and
Λ3(u).



65 A. Jalilian, A. Safari, H. Sohrabi

Figure 3: The hidden random field (surface) Λi(u) controls the abundance and distri-
bution of points of the Cox process Xi.

4.2 Log-Gaussian Cox model
If (log Λ1(u), log Λ2(u), log Λ3(u)) is a multivariate Gaussian random field, then X1,
X2 and X3 are called log-Gaussian Cox processes (Møller et al., 1998; Brix and Møller,
2001). To obtain a valid multivariate log-Gaussian Cox process model for X = (X1,
X2, X3), an approach is to use a log-Gaussian Cox process for the spatial pattern of all
tree locations, regardless of species, as a plant establishment process and then, given
the spatial pattern, fit a multinomial regression model to the species with the spatial
coordinates as covariates (Illian et al., 2013). The INLA method (Rue et al., 2009) can
be used to fit such models to the data using the R package R-INLA, see Illian et al.
(2012). However, this approach does not provide explicit expressions for the auto- and
cross-pair correlation functions of species which are convenient tools in forestry and
ecological studies.

As Møller et al. (1998) and Waagepetersen et al. (2016) suggest, another approach
is to let log Λi(u) be a linear combination of independent Gaussian random fields.
Let Z1(u), Z2(u) and Z3(u) be independent zero-mean Gaussian random fields with
covariance functions

Ri(r;ωi) = Cov(Z(u), Z(v)) = exp

(
−∥u− v∥

ωi

)
, i = 1, 2, 3,

where r = ∥u− v∥ is the distance between u,v ∈ W . This implies that Zi(u) is a sta-
tionary and isotropic Gaussian process with unit variance and exponential correlation
function Ri(r;ωi) with the scale parameter ωi > 0. We assume that X1, X2 and X3

are Cox processes driven by random fields

Λi(u) = exp

(
βi +

3∑
k=1

αikZk(u)

)
, i = 1, 2, 3,
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where
α =

[α11 α12 α13
α21 α22 α23
α31 α22 α33

]
is the matrix of coefficients. The random fields Z1(u), Z2(u) and Z3(u) can be thought
of as three independent (orthogonal) unknown linear combinations of all sources of
variations in spatial distributions of species, which summarize all influential factors
at different spatial scales; i.e. ω1, ω2 and ω3. The coefficient αik represents the con-
tribution of the Gaussian random field Zk(u) in the spatial distribution of trees of
the i-th species. 4 illustrates how under this model the multivariate point process
X = (X1, X2, X3) is constructed by the hidden Gaussian random fields Z1(u), Z2(u)

and Z3(u) and the coefficient matrix α. Here βi = log ρi −
∑3

k=1 α
2
ik is a constant

term related to the intensity of Xi, ρi.
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Figure 4: A schematic diagram of relations among the observable point processes X1,
X2 and X3 and the hidden Gaussian random fields Z1(u), Z2(u) and Z3(u).

According to this model,X1,X2 andX3 are log-Gaussian Cox processes with (Møller
et al., 1998)

gij(r;α,ω) = exp

(
3∑

k=1

αikαjkRk(r;ωk)

)
, (2)

where ω = (ω1, ω2, ω3) is the vector of scale parameters. Particularly, the auto-pair
correlation functions

gii(r;α,ω) = exp

(
3∑

k=1

α2
ikRk(r;ωk)

)
> 1, (3)

for all r ≥ 0, which means intra-specific correlations are always positive and hence
Xi, i = 1, 2, 3, produces clustered point patterns. For i ̸= j, the cross-pair correlation
function gij(r;α,ω) < 1 if

∑3
k=1 αikαjk < 0 and gij(r;α,ω) > 1 if

∑3
k=1 αikαjk > 0.
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Thus, the sign and magnitude of
∑3

k=1 αikαjk, which is the ij entry of the matrix
Σ = ααT, determines the type and strength of associations between the i-th and
j-th species. Furthermore, the parameters ωi along with αik and αjk, k = 1, 2, 3,
control the correlation range between species i and j. Therefore, the above considered
log-Gaussian Cox model formulates the type, strength and range of intra- and inter-
specific associations in terms of the parameters α and ω. The model imposes positive
intra-specific associations, or clustering, for each species but allows positive, negative
or even neutral inter-specific associations between pairs of species. This provides a
flexibility in modeling the possible associations among species and makes the model a
very suitable model for the data.

In general, the number of hidden Gaussian random fields Zi(u)’s is unknown and
it may not be equal to the number of species. In fact, when the number of species is
large, considering smaller number of hidden Gaussian random fields leads to a more
parsimonious model (Waagepetersen et al., 2016). As discussed in Waagepetersen et al.
(2016), for large number of species, the number of hidden Gaussian random fields can
be estimated using, for example, a cross-validation criterion. However, since there
are only three species in the considered forest plot, here we let the number of hidden
Gaussian random fields to be equal to the number of species.

5 Modelling tree DBHs
Besides tree locations, we need to analyze tree diameters. 5 shows the DBH his-
tograms of species in 5 cm classes. The histograms suggest that the DBH distributions
of species are not symmetric (normal or bell shape) but skewed to the right. We use the
conditional Gamma intensity-dependent marking suggested by Myllymäki and Pent-
tinen (2009) to model the DBH of the species. Given the spatial tree locations xi =
{ui1, . . . ,uiNi} and random intensity function Λi(u), the DBHs mi(ui1), . . . ,mi(uiNi)
are assumed to be independent and each mi(uij) is distributed according to a Gamma
distribution with shape parameter νi > 0 and scale parameter 1/

[
τi + ηiΛi(uij)

]
> 0.

Thus given Λi(ui1), . . . ,Λi(uiNi
), the model for mi(ui1), . . . ,mi(uiNi

) can be fitted
as a generalized linear model (GLM) with Gamma distributed errors and inverse link
function

1

E[mi(uij)|Λi(uij), Xi = xi]
=

τi
νi

+
ηi
νi
Λi(uij). (4)

If ηi = 0, then Λi(uij) does not affectmi(uij) and hence conditional on xi, mi(ui1), . . . ,
mi(uiNi

) are independent and identically distributed Gamma random variables with
shape parameter νi and scale parameter 1/τi. But ηi > 0 implies that mi(uij) is recip-
rocally related to the random intensity Λi(uij) and hence mi(ui1), . . . ,mi(uiNi) are,
unconditionally, spatially correlated due to interactions with the conspecific neighbor-
ing trees through the random field Λi(u).

The mark variogram is a useful tool in studying spatial correlation between the sizes
of trees at close proximity (Stoyan and Penttinen, 2000; Pommerening and Särkkä,
2013). When mi(ui1), . . . ,mi(uiNi

) are uncorrelated (ηi = 0), then γmi
(r) ≡ σ2

mi

where σ2
mi

= νi/τ
2
i is the variance of mi(ui1), . . . ,mi(uiNi

) (see Illian et al., 2008, Sec-
tion 5.3.3). In order to check the spatial correlation of mi(ui1), . . . ,mi(uiNi

), the em-
pirical mark variograms of the three species and their corresponding 95% pointwise sim-
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Figure 5: Histograms (upper panels) and mark variograms (lower panels), their 95%
pointwise simulation envelopes (grey area) and p-values of corresponding deviation
tests for DBH of each species.

ulation envelops under the assumption of uncorrelated DBHs are shown in lower panels
of 5. Also, the agreement between the empirical variograms γ̂mi

(r) and their corre-
sponding theoretical values under the uncorrelated DBH assumption, γmi

(r) = σ2
mi

, are
checked using deviation tests with studentized scaling integral deviation measure (see
Myllymäki et al., 2015) ∫ 50

0

[
γ̂mi(r)− Eγ̂mi(r)√

Varγ̂mi(r)

]2
dr,

where Eγ̂mi
(r) and Varγ̂mi

(r) are the mean and variance of γ̂mi
(r) under the assump-

tion of uncorrelated DBHs and are estimated using 5000 simulations. The p-values of
the deviation tests are presented in 5. The plots and p-values of the deviation tests
indicate that the DBH of Fraxinus excelsior and Populus Caspica trees can be con-
sidered spatially uncorrelated (η1 = η2 = 0) because their empirical mark variograms
lie inside the envelopes. The mark variogram of Pterocarya Fraxinifolia is below the
lower envelope for 0 < r < 25 and hence the DBH of trees have significant (with p-
value=0.008) positive spatial correlation (see Pommerening and Särkkä, 2013). This
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means that the DBH of Pterocarya Fraxinifolia trees depend on the DBH of their
conspecific neighboring trees (η3 > 0).

6 Results
6.1 Estimates of model parameters
The model parameters α and ω can be estimated by minimizing the contrast func-
tion (see Møller and Waagepetersen, 2004, Section 10.1)

M(α,ω) =

∫ 50

1

 3∑
i=1

3∑
j=1

{[
ĝij(r)

]1/4 − [gij(r;α,ω)
]1/4}2

 dr

with respect to α and ω. Here ĝij(r) is the empirical estimates of the pair correlation
functions and gij(r;α,ω) is the theoretical pair correlation function of the model, given
in (2). Also, the maximum pairwise dependence range between trees of the same and
different species is assumed to be 50 m. In addition, since the empirical estimates
ĝij(r) are not reliable at r values near zero (Illian et al., 2008, pp. 234-235), we only
considered 1 < r < 50 in the integral of the contrast function. Using this minimum
contrast method, the estimated parameters are

α̂ =

[
1.13 (.24) −0.29 (.51) 0.09 (.42)
0.23 (.62) 1.52 (.32) −0.22 (.40)
−0.30 (.56) −0.77 (.42) 1.41 (.31)

]
and

ω̂ =
(
21.25 (8.98), 16.72 (7.43), 35.44 (15.74)

)
,

where the small numbers in the parenthesis are parametric bootstrap (also known as
Monte Carlo) standard errors of the estimates which are obtained by 500 simulations
from the fitted log-Gaussian Cox model.

Given α̂, estimate of the association parameter matrix

Σ̂ = α̂α̂T =

[
1.38 (.38) −0.21 (.51) 0.01 (.38)
−0.21 (.51) 2.42 (.55) −1.55 (.48)
0.01 (.38) −1.55 (.48) 2.67 (.52)

]
is obtained. According to σ̂ij values, there is a considerable negative association
(σ̂23 = −1.55) between Populus Caspica and Pterocarya Fraxinifolia species but the as-
sociation between Fraxinus excelsior and Pterocarya Fraxinifolia species (σ̂13 = −0.21)
and specially Fraxinus excelsior and Populus Caspica (σ̂12 = 0.01) species are small. To
explicitly check the hypothesis H0 : σij = 0, i ̸= j, we used the parametric bootstrap
with 500 simulations from the fitted model and obtained the 95% bootstrap percentile
confidence intervals for the association parameters σij . The confidence intervals are
reported in 2. The association between Fraxinus excelsior and Populus Caspica and
Fraxinus excelsior and Pterocarya Fraxinifolia are not significant at the 5% level be-
cause their corresponding confidence intervals contain zero. However, the confidence
interval of σ23 does not contain zero which implies that the association between Popu-
lus Caspica and Pterocarya Fraxinifolia species is significantly negative. Therefore, as
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Table 2: The 95% bootstrap percentile confidence intervals for the association param-
eters σij obtained using 500 simulations from the fitted log-Gaussian Cox model.

species parameter 95% CI
Fraxinus excelsior & Populus Caspica σ12 (-1.54, 0.50)
Fraxinus excelsior & Pterocarya Fraxinifolia σ13 (-0.75, 0.66)
Populus Caspica & Pterocarya Fraxinifolia σ23 (-2.81, -0.98)

Table 3: The maximum-likelihood estimates of Gamma model parameters for DBH of
Fraxinus excelsior, Populus Caspica and Pterocarya Fraxinifolia. The standard errors
are given in the parenthesise.

species parameters
Fraxinus excelsior ν̂1 = 4.38 (0.31), τ̂1 = 0.11 (0.009)
Populus Caspica ν̂2 = 7.38 (0.60), τ̂2 = 0.10 (0.009)
Pterocarya Fraxinifolia ν̂3 = 7.63 (0.42), τ̂3 = 0.0194 (0.0008), η̂3 = 0.393 (0.029)

anticipated from plots of the empirical pair correlation functions in 2, the associations
between Fraxinus excelsior and Populus Caspica and Fraxinus excelsior and Pterocarya
Fraxinifolia species are not strong enough to be distinguished from the neutral case
but there is a distinguishable negative association between Populus Caspica and Pte-
rocarya Fraxinifolia species. Both Populus Caspica and Pterocarya Fraxinifolia are
hygrophyte species and hence they are expected to co-occur in moist sites. However,
the two species are also both light-demanding species and their competition for light
is a source of the negative associations.

The maximum-likelihood estimates of parameters of the Gamma models for DBH
distributions of species Fraxinus excelsior and Populus Caspica are reported in 3. In
order to fit the GLM model (4) to the DBHs of Pterocarya Fraxinifolia trees, the latent
random intensity function Λ3(u3j) needs to be predicted by E[Λ3(u3j)|X3 = x3] which
can not be expressed in a closed analytical form (Møller and Waagepetersen, 2004).
Thus, the observation window W is discretized by a 512 × 256 grid and a MCMC
algorithm, described in Taylor et al. (2013), with 100000 iterations and 10000 burn-in
is used to approximate E[Λ3(u)|X3 = x3] over W (see middle panel of 7). Then the
GLM model (4) is used to obtain maximum-likelihood estimates of parameters ν3, τ3
and η3 (see 3).

6.2 Model checking
To assess the goodness of fit of the fitted log-Gaussian Cox model, we compare empirical
and model based estimates of the auto- and cross-pair correlation functions. Plots of
these functions, their 95% simulation envelopes under the fitted model and p-values of
the corresponding deviation tests are shown in 6. The plots and p-values show that
there is no significant disagreement between empirical auto- and cross-pair correlation
functions and their corresponding theoretical values from the fitted model. Thus the
fitted log-Gaussian Cox model can adequately explain the intra- and inter-specific
associations in the observed point patterns x1, x2 and x3 and it is likely that the
fitted model generates point patterns with spatial structures similar to the observed
point pattens in Figure 1.
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Figure 6: Estimated auto- and cross-pair correlation functions along with 95% Monte
Carlo envelopes (grey area) under the fitted log-Gaussian Cox model and p-values of
corresponding deviation tests.

To check the DBH models, we use the Q-Q plot of the fitted Gamma models to
the DBH distributions of Fraxinus excelsior and Populus Caspica species. These plots
are shown in upper panels of 7. Except for several outliers, the plotted quantile points
lie approximately on a straight line which means that it is plausible that the DBH
data follow the fitted Gamma distributions. The scatter plot of the DBH of Pterocarya
Fraxinifolia trees versus the predicted random intensity function E[Λ3(u3j)|X3 = x3]
and the fitted Gamma GLM model with inverse link function (4) are shown in the
left lower panel of 7. The scatter plot shows a negative nonlinear relation between
the DBH and predicted random intensity of Pterocarya Fraxinifolia and the model
seems to reasonably capture this relationship. The right lower panel of 7 shows the
empirical variogram and the mean and 95% confidence intervals of variograms of 5000
simulations from the fitted GLM model. The p-value of the corresponding deviation
test is also reported at the top of the plot. The empirical variogram lies between the
95% simulation envelopes meaning that the model can be said to adequately describe
the spatial correlation in the DBH of Pterocarya Fraxinifolia trees.

All calculations were carried out with the R language (R Core Team, 2013) using
the spatial statistics package spatstat (Baddeley and Turner, 2005) and the package
lgcp (Taylor et al., 2013).
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Figure 7: Q-Q plots of the fitted Gamma distributions to the DBH of Fraxinus ex-
celsior (left upper panel) and Populus Caspica (right upper panel), predicted random
intensity function for Pterocarya Fraxinifolia (middle panel) on a grid over W , DBH of
Pterocarya Fraxinifolia versus its predicted random intensity function at tree locations
and the fitted GLM model (left lower panel) and empirical, mean and 95% simulation
envelopes under the fitted Gamma intensity-dependent model to the DBH of Ptero-
carya Fraxinifolia species (right lower panel).

7 Conclusion
In this article, we studied the spatial distributions and associations of species Fraxinus
excelsior, Populus caspica and Petrocarya fraxinifolia in a Hyrcanian forest in North
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of Iran. Fraxinus excelsior is a flexible species that can be found over a range of
growing conditions. It often occurs in mixed forests but rarely become a dominant
species. The seeds of Fraxinus excelsior are lightweight and can be carried by the wind.
However, they only grow in areas with appropriate conditions and create clustered
patterns (Pautasso et al., 2013). Pterocarya fraxinifolia is a fast growing species and
prefers flat ground and deep moist soils (Sheykholislami et al., 2009). Regeneration of
Populus caspica and Petrocarya fraxinifolia are mostly by root propagation and seed
dispersal and thus their seedlings establish near the parent trees, which cause clustered
patterns.

We used a multivariate log-Gaussian Cox process model with tractable and flexible
parametric auto- and cross-pair correlation functions which explain intra- and inter-
specific correlations. The associations among species were quantified in terms of some
parameters. Using this model, we were able to detect a significant negative associ-
ations, or competition, between Populus caspica and Petrocarya fraxinifolia species.
The negative association was expected because the two species compete for the light.

After modeling tree locations, we used a mark variogram to analyze spatial correla-
tion in diameters of trees of each species. The results showed that DBH of Petrocarya
fraxinifolia trees are influenced by their conspecific neighboring trees but the DBH of
trees of other species can be considered independent and identically distributed. We
used a conditional Gamma intensity-dependent marking model for the DBH of Petro-
carya fraxinifolia trees and fitted Gamma distributions to DBH of Fraxinus excelsior
and Populus caspica trees. All fitted models were checked for goodness of fit.

Through this analysis we showed that the considered multivariate log-Gaussian Cox
process model, suggested by Møller et al. (1998), can be a flexible and powerful tool
in modeling spatial point patterns of several species. We discussed how the model can
take into account the overall mixed effect of all known and unknown influential factors
in spatial forest structure and species associations using hidden Gaussian random fields.
The multivariate log-Gaussian model can be extended and modified to cover spatial
patterns of several species with different features. For example, the model can be ex-
tended to the inhomogeneous case if the environment is inhomogeneous and spatial
covariates on soil and topographical conditions are available. In the inhomogeneous
case, the intensity function of each species can be a parametric function of the covari-
ates. Also, for data with more complex spatial dependence structures the exponential
correlation functions of the hidden Gaussian random fields of the model can be replaced
with other correlation functions; for instance the general class of Matérn correlation
functions.
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