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Abstract: One of the practical and important issue in statistics is the fitness of regres-
sion models. Optimal design is a way to obtain suitable fitness of this type of models.
In addition, we need to use some criteria for attaining optimal design in regression
models. The D-optimality criterion is one of the most famous criteria which is used
here. An appropriate method to obtain the optimal designs is the Bayesian method
that need to the prior distribution for the parameters of the model (coefficient regres-
sion). In this paper, by using Bayesian methods, D-optimal designs are obtained for
quadratic beta regression model. Also, uniform and normal distributions are consid-
ered as the prior distributions and obtained results are analyzed.
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1 Introduction
In nonlinear models, Fisher information matrix is dependent on unknown parameters,
which causes the dependence of optimality criteria to the parameters of the model
because the considered criterion in this paper is a function of the information matrix.
However, the purpose of presenting an appropriate design is to find optimal points,
collect data, and estimate unknown parameters of the model. So dependency of op-
timality criteria to unknown parameters causes a kind of conflict. The first and the
easiest solution is to replace unknown parameters with the initial guesses. The designs
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obtained by this method are called locally optimal designs (Chernoff, 1953). Selection
of a suitable initial guess greatly affects the efficiency of local optimal design. If the
initial guess is far from its actual value, the optimal design which is obtained will not
be suitable. Furthermore, the parameter space often consists of an infinite number of
points, which cannot be considered all and only a limited number is investigated. Thus,
other methods were recommended to solve the problem such as Bayesian optimality
criteria. Instead of an initial guess, a prior distribution is used for unknown parameters
of the model in Bayesian method. The Bayesian optimal design will be obtained by
maximizing an appropriate optimality criterion based on a prior distribution. Lindley
(1972) proposed the decision theory and provided a mathematical foundation for the
selection of optimal Bayesian designs. Chaloner and Larntz (1989) presented a unified
theory for the Bayesian optimal design in nonlinear models. Chaloner and Verdinelli
(1995) conducted a general overview of Bayesian optimal designs.

This paper calculates the Bayesian D-optimal design of the quadratic beta regression
model, when the nuisance parameter is known. In addition, uniform and normal prior
distributions for unknown parameters are considered. Also, locally D-optimal design
for this model was proposed by Latif and ZafarYab (2014).

Given the statements, this paper is organized as follows: The beta regression model
is introduced in section 2 and the information matrix is calculated in section 3. The
Bayesian D-optimal design and the equivalence theorem for quadratic beta regression
model are introduced in section 4 and 5, respectively. Section 6 is dedicated to the cal-
culation of the Bayesian D-optimal design in the beta regression model and discussion
and conclusion obtained from the paper is provided in section 7.

2 Beta Regression Model
The beta random variable has a probability distribution with two parameters. This
variable is defined on the interval [0,1]. If Yi ∼ Beta(p, q); i = 1, 2, ..., n and n is the
number of observations, then the its density function is as follows;

fp,q(yi) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1
i (1− yi)

q−1 ; yi ∈ (0, 1), p, q > 0. (1)

Consider ϕ = p+ q, then the density function will be written as follows;

fµi,ϕ(yi) =
Γ(ϕ)

Γ(µiϕ)Γ((1− µi)ϕ)
yµiϕ−1
i (1− yi)

(1−µi)ϕ−1; yi ∈ (0, 1), 0 < µi < 1, ϕ > 0,

(2)
where ϕ is the nuisance parameter and µi is the expected value of random variable Yi,
such that:

µi = E(Yi) =
p

p+ q
.

Now, a link function is introduced as follows:

g(µi) = fT (xi)β,

where
fT (xi) = (f0(xi), f1(xi), · · · , fr−1(xi))

T ,β = (β0, β1, · · · , βr−1)
T ,
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and g(.),β, f(xi) and xi is an appropriate link function, vector of unknown parameters,
given vector of functions of predictors and predictors, respectively. We assume xi ∈
[0, 1] and since µi ∈ [0, 1], the appropriate link function that can be considered in this
case is the Logit link function, that is given by;

Logit(µi) = fT (xi)β.

The considered model in this paper is a quadratic beta regression model. Thus;

f(xi) = (1 xi x2
i )

T ; r = 3.

3 Fisher information matrix
Given that most of the optimality criteria are functions of information matrix (Atkinson
et al., 2007), at first, it is necessary to present Fisher information matrix related to
model (2). The Fisher information matrix is generally defined as follows:

M(β, xi) = −E

(
∂ ln(fβ(y | xi))

∂β∂βT

)
, (3)

where β and ln(.) are the vector of unknown parameters and natural logarithm, re-
spectively. Fisher information matrix is a symmetric matrix. Now, by using (3), the
Fisher information matrix for quadratic beta regression model with a known nuisance
parameter is as follows:

M(β, xi) =

(
M11 M12 M13

M22 M23
M33

)
, (4)

where

M11 = ϕ2µ2
i (1− µi)

2
[
Ψ

′
(µiϕ) + Ψ

′
((1− µi)ϕ)

]
M12 = ϕ2µ2

i (1− µi)
2
[
Ψ

′
(µiϕ) + Ψ

′
((1− µi)ϕ)

]
xi

M13 = ϕ2µ2
i (1− µi)

2
[
Ψ

′
(µiϕ) + Ψ

′
((1− µi)ϕ)

]
x2
i

M22 = ϕ2µ2
i (1− µi)

2
[
Ψ

′
(µiϕ) + Ψ

′
((1− µi)ϕ)

]
x2
i

M23 = ϕ2µ2
i (1− µi)

2
[
Ψ

′
(µiϕ) + Ψ

′
((1− µi)ϕ)

]
x3
i

M33 = ϕ2µ2
i (1− µi)

2
[
Ψ

′
(µiϕ) + Ψ

′
((1− µi)ϕ)

]
x4
i ,

and Ψ
′
(.) represents trigamma function (Ferrari and Cribari-Neto, 2004).

4 Bayesian D-optimal design
ξ is an arbitrary design as follows:

ξ =
{

x1 x2 ... xk
w1 w2 ... wk

}
∈ Ξ; k ≥ r, (5)
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where xi, wi, k and Ξ are the ith design point, weight of ith design point, the number
of design points and a set of all possible designs, respectively. Ξ is defined as follows:

Ξ =

{
ξ |

k∑
i=1

wi = 1, 0 ≤ wi ≤ 1

}
.

The information matrix related to design (5) is given by Atkinson et al. (2007);

M(β, ξ) =

k∑
i=1

wiM(β, xi),

The Bayesian D-optimality as an optimality criterion is defined as follows (Atkinson
et al., 2007);

Φπ(ξ) = Eπ(β)(− log det(M(β, ξ))) = −
∫

log det(M(β, ξ))π(β)dβ, (6)

where π(β) and det(.) are the prior joint probability function of unknown parameters
and determinant of a matrix, respectively. By using (6), ξ∗ is called a Bayesian D-
optimal design if and only if

ξ∗ = argmin
ξ∈Ξ

Eπ(β)(− log det(M(β, ξ))). (7)

Then,
ξ∗ =

{
x∗
1 x∗

2 ... x∗
m

w∗
1 w∗

2 ... w∗
m

}
;m ≤ k, (8)

where m is the number of points of optimal design. The number of points of the optimal
design satisfies in following inequality (Silvey, 1980);

r ≤ m ≤ r(r + 1)

2
.

5 Equivalence theorem
The equivalence theorem is an important tool for optimal designs. The theorem is used
to prove the optimality of the obtained designs and identify support points. Before
expressing the equivalence theorem, it is necessary to define the Frechet derivative.
The Frechet derivative of the criterion function Φ at ξ and in direction η is as follows:

FΦ(ξ, η) = lim
α→0+

1

α
(Φ ((1− α)ξ + αη)− Φ(ξ)).

If the criterion function Φ is convex, FΦ(ξ, η) ≥ 0 and if it is concave, FΦ(ξ, η) ≤ 0
(Silvey, 1980).
Theorem 5.1. If Φ is convex, then a Φ-optimal design ξ∗ can be equivalently charac-
terized by any of the three conditions (Whittle, 1973):
i) ξ∗ minimizes Φ(ξ)
ii) ξ∗ maximizes supx∈X FΦ(ξ, ηx)
iii) supx∈X FΦ(ξ

∗, ηx) = 0.
The values of x that condition (iii) is valid for them, are called support points.
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The Frechet derivative for (6) is calculated as follows:

FΦ(ξ, ηx) = −Eπ(β)

{
tr
(
M−1(ξ)M(ηx)

)}
+ p, (9)

where tr(.) indicate the trace of a matrix and p is the number of unknown parameters
in the model. In equation (9), Eπ(β)

{
tr
(
M−1(ξ)M(ηx)

)}
is called sensitivity function

and displayed by the symbol d(x, ξ). Thus,

d(x, ξ) = Eπ(β)

{
tr
(
M−1(ξ)M(ηx)

)}
=

∫
tr
(
M−1(ξ)M(ηx)

)
π(β)d(β). (10)

According to condition (i) in equivalence theorem, the following equation should be
valid to prove the optimality of the designed obtained, d(x, ξ∗) ≤ p. The equality holds
for the support points.

6 The Bayesian D-optimal design in quadratic beta
regression model

According to the model (2), Jafari and Pirmohammadi (2016) calculated the Bayesian
D-optimal design for a simple beta regression model.

In this section Bayesian D-optimal designs are calculated for the quadratic beta
regression model based on equation (7) and matrix (4). Two values of 50 and 100 are
considered for ϕ. Also, various uniform and normal distributions are considered as
prior distributions of other parameters of the model (coefficients regression). Unknown
parameters of the model are independent. Therefore, prior joint probability functions
are products of their marginal prior probability functions. Since there is no closed form
for the optimality criterion, numerical methods are used to solve the integral of the
expected value in (6), and this paper uses the Simpson method by R package.

The Bayesian D-optimal designs in the quadratic beta regression model are three
point designs as follows: (

0 x∗
2 1

0.333 0.333 0.333

)
.

x∗
2 is presented in Tables 1-7 and 8-14 for ϕ = 50 and ϕ = 100 by considering different

prior distributions, respectively.
Before analyzing the obtained designs, it is necessary to investigate the optimality

of the designs according to equivalence theorem. There are three parameters in the
quadratic beta regression model. Each of the computed designs based on part (i) of
the equivalence theorem is Bayesian D-optimal if d(x, ξ∗) ≤ 3, where

d(x, ξ∗) =

∫
tr
(
M−1(ξ)M(ηx)

)
π(β)d(β). (11)

Since the integral in (11) can not be solved by usual methods, there is no closed form
for d(x, ξ∗) and calculations were done by using numerical methods of the software R
i386 3.2.0. It can be concluded that these designs are Bayesian D-optimal designs.
A) ϕ = 50 : According to Table 1, β0, β1, β2 ∼ U(−a, a); a = 1, 5, 9. By fixing the
distribution of β0 and β1 and increasing domain of β2 distribution, x∗

2 is decreased.
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In addition, by fixing the distributions of β0 and β2 and increasing domain of β1

distribution, x∗
2 is decreased and gets closer to zero. Similarly, various trends of x∗

2 can
be seen in Tables 2-8 by changing distributions of parameters. For example, in Table
2, by increasing the location parameter in the distribution of β1 as β0, β2 ∼ N(5, 1),
x∗
2 increases and gets closer to one. In addition, when β0 ∼ N(10, 1) and the location

parameter in the distribution of β2 increases, x∗
2 = 0.500 is repeated without any

changes. Also, we can fix distribution of β1 or β2 and see trend of x∗
2, when β0 is

changing.
B) ϕ = 100 : It is shown, in Table 8, that by fixing the distribution of β0 and β1 and
increasing domain of β2 distribution x∗

2 is decreased and vice versa. Similar to tables
for ϕ = 50, there are different trends in this case. In addition, we can compare tables
when ϕ changes.

Table 1: x∗
2: β0, β1, β2 ∼ U(−a, a); a = 1, 5, 9

β1
U(−1, 1) U(−5, 5) U(−9, 9)

β0 ∼ U(−1, 1)
U(−1, 1) 0.493 0.421 0.348

β2 U(−5, 5) 0.455 0.407 0.344
U(−9, 9) 0.409 0.381 0.336

β0 ∼ U(−5, 5)
U(−1, 1) 0.499 0.487 0.456

β2 U(−5, 5) 0.494 0.480 0.452
U(−9, 9) 0.481 0.468 0.443

β0 ∼ U(−9, 9)
U(−1, 1) 0.500 0.500 0.498

β2 U(−5, 5) 0.500 0.500 0.497
U(−9, 9) 0.500 0.499 0.495

Table 2: x∗
2: β0, β1, β2 ∼ N(a, 1); a = 0, 5, 10

β1
N(0, 1) N(5, 1) N(10, 1)

β0 ∼ N(0, 1)
N(0, 1) 0.484 0.348 0.233

β2 N(5, 1) 0.415 0.283 0.206
N(10, 1) 0.342 0.247 0.188

β0 ∼ N(5, 1)
N(0, 1) 0.508 0.497 0.500

β2 N(5, 1) 0.480 0.499 0.500
N(10, 1) 0.492 0.500 0.500

β0 ∼ N(10, 1)
N(0, 1) 0.500 0.500 0.500

β2 N(5, 1) 0.500 0.500 0.500
N(10, 1) 0.500 0.500 0.500
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Table 3: x∗
2: β0, β1, β2 ∼ N(0, a); a = 1, 4, 9

β1
N(0, 1) N(0, 4) N(0, 9)

β0 ∼ N(0, 1)
N(0, 1) 0.484 0.460 0.432

β2 N(0, 4) 0.472 0.451 0.426
N(0, 9) 0.455 0.438 0.418

β0 ∼ N(0, 4)
N(0, 1) 0.491 0.475 0.456

β2 N(0, 4) 0.483 0.469 0.452
N(0, 9) 0.471 0.460 0.445

β0 ∼ N(0, 9)
N(0, 1) 0.495 0.486 0.475

β2 N(0, 4) 0.490 0.482 0.472
N(0, 9) 0.483 0.476 0.467

Table 4: x∗
2: β0, β1 ∼ U(−a, a); a = 1, 5, 9, β2 ∼ N(a, 1); a = 0, 5, 10

β1
U(−1, 1) U(−5, 5) U(−9, 9)

β0 ∼ U(−1, 1)
N(0, 1) 0.489 0.420 0.347

β2 N(5, 1) 0.410 0.382 0.337
N(10, 1) 0.334 0.327 0.310

β0 ∼ U(−5, 5)
N(0, 1) 0.499 0.486 0.456

β2 N(5, 1) 0.483 0.468 0.444
N(10, 1) 0.443 0.432 0.417

β0 ∼ U(−9, 9)
N(0, 1) 0.500 0.500 0.498

β2 N(5, 1) 0.500 0.499 0.495
N(10, 1) 0.499 0.496 0.485

Table 5: x∗
2: β0, β2 ∼ N(a, 1); a = 0, 5, 10, β1 ∼ U(−a, a); a = 1, 5, 9

β1
U(−1, 1) U(−5, 5) U(−9, 9)

β0 ∼ N(0, 1)
N(0, 1) 0.491 0.428 0.361

β2 N(5, 1) 0.417 0.392 0.350
N(10, 1) 0.342 0.336 0.323

β0 ∼ N(5, 1)
N(0, 1) 0.505 0.541 0.551

β2 N(5, 1) 0.479 0.485 0.507
N(10, 1) 0.493 0.481 0.477

β0 ∼ N(10, 1)
N(0, 1) 0.500 0.500 0.508

β2 N(5, 1) 0.500 0.500 0.501
N(10, 1) 0.500 0.500 0.500
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Table 6: x∗
2: β0, β1 ∼ N(0, a); a = 1, 4, 9, β2 ∼ U(−a, a); a = 1, 5, 9

β1
N(0, 1) N(0, 4) N(0, 9)

β0 ∼ N(0, 1)
U(−1, 1) 0.487 0.462 0.434

β2 U(−5, 5) 0.456 0.439 0.418
U(−9, 9) 0.414 0.405 0.392

β0 ∼ N(0, 4)
U(−1, 1) 0.493 0.477 0.457

β2 U(−5, 5) 0.472 0.460 0.445
U(−9, 9) 0.440 0.433 0.424

β0 ∼ N(0, 9)
U(−1, 1) 0.496 0.487 0.475

β2 U(−5, 5) 0.484 0.477 0.467
U(−9, 9) 0.462 0.458 0.452

Table 7: x∗
2: β0, β2 ∼ U(−a, a); a = 1, 5, 9, β1 ∼ N(0, a); a = 1, 4, 9

β1
N(0, 1) N(0, 4) N(0, 9)

β0 ∼ U(−1, 1)
U(−1, 1) 0.485 0.457 0.426

β2 U(−5, 5) 0.451 0.432 0.410
U(−9, 9) 0.406 0.396 0.383

β0 ∼ U(−5, 5)
U(−1, 1) 0.498 0.494 0.486

β2 U(−5, 5) 0.493 0.488 0.480
U(−9, 9) 0.480 0.475 0.467

β0 ∼ U(−9, 9)
U(−1, 1) 0.500 0.500 0.500

β2 U(−5, 5) 0.500 0.500 0.500
U(−9, 9) 0.500 0.500 0.499

Table 8: x∗
2: β0, β1, β2 ∼ U(−a, a); a = 1, 5, 9

β1
U(−1, 1) U(−5, 5) U(−9, 9)

β0 ∼ U(−1, 1)
U(−1, 1) 0.493 0.418 0.336

β2 U(−5, 5) 0.454 0.402 0.332
U(−9, 9) 0.406 0.376 0.323

β0 ∼ U(−5, 5)
U(−1, 1) 0.499 0.479 0.441

β2 U(−5, 5) 0.489 0.471 0.437
U(−9, 9) 0.471 0.456 0.427

β0 ∼ U(−9, 9)
U(−1, 1) 0.500 0.500 0.496

β2 U(−5, 5) 0.500 0.499 0.495
U(−9, 9) 0.500 0.498 0.491
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Table 9: x∗
2: β0, β1, β2 ∼ N(a, 1); a = 0, 5, 10

β1
N(0, 1) N(5, 1) N(10, 1)

β0 ∼ N(0, 1)
N(0, 1) 0.483 0.339 0.219

β2 N(5, 1) 0.411 0.275 0.195
N(10, 1) 0.338 0.239 0.179

β0 ∼ N(5, 1)
N(0, 1) 0.410 0.490 0.500

β2 N(5, 1) 0.453 0.497 0.500
N(10, 1) 0.471 0.499 0.500

β0 ∼ N(10, 1)
N(0, 1) 0.500 0.500 0.500

β2 N(5, 1) 0.500 0.500 0.500
N(10, 1) 0.500 0.500 0.500

Table 10: x∗
2: β0, β1, β2 ∼ N(0, a); a = 1, 4, 9

β1
N(0, 1) N(0, 4) N(0, 9)

β0 ∼ N(0, 1)
N(0, 1) 0.483 0.457 0.426

β2 N(0, 4) 0.470 0.448 0.420
N(0, 9) 0.453 0.434 0.410

β0 ∼ N(0, 4)
N(0, 1) 0.489 0.471 0.448

β2 N(0, 4) 0.480 0.464 0.443
N(0, 9) 0.467 0.454 0.453

β0 ∼ N(0, 9)
N(0, 1) 0.495 0.483 0.468

β2 N(0, 4) 0.489 0.479 0.464
N(0, 9) 0.481 0.471 0.459

Table 11: x∗
2: β0, β1 ∼ U(−a, a); a = 1, 5, 9, β2 ∼ N(a, 1); a = 0, 5, 10

β1
U(−1, 1) U(−5, 5) U(−9, 9)

β0 ∼ U(−1, 1)
N(0, 1) 0.489 0.416 0.336

β2 N(5, 1) 0.408 0.377 0.323
N(10, 1) 0.331 0.321 0.296

β0 ∼ U(−5, 5)
N(0, 1) 0.498 0.479 0.441

β2 N(5, 1) 0.472 0.457 0.427
N(10, 1) 0.424 0.415 0.397

β0 ∼ U(−9, 9)
N(0, 1) 0.500 0.500 0.496

β2 N(5, 1) 0.500 0.498 0.491
N(10, 1) 0.498 0.491 0.479
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Table 12: x∗
2: β0, β2 ∼ N(a, 1); a = 0, 5, 10, β1 ∼ U(−a, a); a = 1, 5, 9

β1
U(−1, 1) U(−5, 5) U(−9, 9)

β0 ∼ N(0, 1)
N(0, 1) 0.490 0.423 0.346

β2 N(5, 1) 0.414 0.385 0.334
N(10, 1) 0.339 0.329 0.306

β0 ∼ N(5, 1)
N(0, 1) 0.506 0.546 0.555

β2 N(5, 1) 0.452 0.470 0.501
N(10, 1) 0.473 0.457 0.460

β0 ∼ N(10, 1)
N(0, 1) 0.500 0.501 0.518

β2 N(5, 1) 0.500 0.500 0.502
N(10, 1) 0.500 0.500 0.500

Table 13: x∗
2: β0, β1 ∼ N(0, a); a = 1, 4, 9, β2 ∼ U(−a, a); a = 1, 5, 9

β1
N(0, 1) N(0, 4) N(0, 9)

β0 ∼ N(0, 1)
U(−1, 1) 0.487 0.459 0.427

β2 U(−5, 5) 0.454 0.435 0.411
U(−9, 9) 0.410 0.399 0.384

β0 ∼ N(0, 4)
U(−1, 1) 0.491 0.473 0.450

β2 U(−5, 5) 0.468 0.454 0.436
U(−9, 9) 0.432 0.424 0.412

β0 ∼ N(0, 9)
U(−1, 1) 0.496 0.485 0.469

β2 U(−5, 5) 0.482 0.472 0.459
U(−9, 9) 0.456 0.449 0.441

Table 14: x∗
2: β0, β2 ∼ U(−a, a); a = 1, 5, 9, β1 ∼ N(0, a); a = 1, 4, 9

β1
N(0, 1) N(0, 4) N(0, 9)

β0 ∼ U(−1, 1)
U(−1, 1) 0.485 0.455 0.421

β2 U(−5, 5) 0.449 0.430 0.404
U(−9, 9) 0.404 0.393 0.377

β0 ∼ U(−5, 5)
U(−1, 1) 0.497 0.490 0.479

β2 U(−5, 5) 0.488 0.481 0.471
U(−9, 9) 0.469 0.464 0.455

β0 ∼ U(−9, 9)
U(−1, 1) 0.500 0.500 0.500

β2 U(−5, 5) 0.500 0.500 0.499
U(−9, 9) 0.500 0.499 0.498
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7 Discussion and conclusions
In this paper, Bayesian D-optimal designs in a quadratic beta regression model are
obtained. By using these designs, a researcher finds that what proportions of which
regressors should be used to get proper estimates of coefficient regression. We use
Bayesian methods in the quadratic beta regression model for achieving optimal de-
signs. Since, there are three parameters in the quadratic beta regression model, the
optimal designs can be three points to six point designs. By considering uniform and
normal prior distributions, all obtained Bayesian D-optimal designs are three points.
In this study, interval [0, 1] is assumed for regressors. First and third points in Bayesian
D-optimal designs are zero and one, respectively. These points are fixed in all designs.
However, by changing prior distributions of unknown parameters, second point of op-
timal designs changes. Trend of these changes are shown in presented tables. It should
be noticed that every optimal point has same optimal weight. Therefore, these points
should be used with the same proportions. As a future work, statisticians can use other
prior distributions in this model.
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