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Abstract: This paper introduces the problem of interval estimation for stress strength
reliability parameter P (X < Y ), where random variables X and Y stand for stress and
strength, respectively. In most of the research papers, the authors assumed that X
and Y come from the same family of distribution. By taking into account some situ-
ations arise, in this paper we assume that X and Y follow exponential and inverted
exponential distributions, respectively. Our goal is to construct a confidence interval
for reliability parameter in this model by using some (approximately) exact and strong
methods such as bootstrap, generalized and highest posterior distribution approaches.
Also, we compare these methods by means of the expected length and coverage prob-
ability criteria. Finally, a real data set is given and we apply the above methods of
estimation on it to inference about the parameter of interest.
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1 Introduction
In this paper we consider the problem of interval estimation of the stress-strength
reliability parameter P (X < Y ). In the theory of reliability analyze the random
variable X stands for stress factor and the random variable Y stands for strength of a
system. The reliability of a component is defined as the probability that strength Y be
greater than the stress X imposed to the component. So, the system is still working
whenever the strength exceeds the stress during the entire interval. In other words, the
reliability parameter R is defined as R := P (X < Y ) which means that if the stress
exceeds the strength then the component would fail.
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In recent years, the estimation of stress-strength parameter of the discrete and
continuous distributions and also a mixture of them has attracted the attention of
many researchers. The term stress-strength was first introduced by Birnbaum (1956).
There is an enormous amount of research papers for inference about the parameter
R. Here, we only refer to some of them for the following distributions: Owen et al.
(1964), Govidarajulu (1967), Downtown (1973) and Woodward and Kelley (1977) for
normal distribution, Tong (1977) considered this problem for exponential families, the
gamma case has been studied by Constantine and Karson (1986), Ismail et al. (1986)
and Constantine et al. (1990), McCool (1991) for Weibull distribution, Baklizi and
Quader El-Masri (2004) for two-parameter exponential distribution with common loca-
tion parameter, Genć (2013) for Topp-Leone distribution, Nadarajah (2004) for Laplace
distribution, Rezaei et al. (2010) consider this problem for generalized Pareto distribu-
tion, Kundu and Gupta (2005, 2006) considered generalized exponential and Weibull
Distributions cases, respectively, Krishnamoorthy et al. (2007) for the two-parameter
exponential distribution, Kakade et al. (2008) for Gumbel case, Babayi et al. (2014)
for generalized logistic distribution, Bai et al. (2019) for truncated proportional hazard
rate distribution under progressively type-II censored samples, Mahmoudi et al. (2019)
used minimum risk sequential point estimation for exponential distribution (ED) and
Khalifeh et al. (2020) used sequential fixed-accuracy confidence intervals (CIs) for the
ED.

For stress and stress follow some bivariate distribution, Pak et al. (2014), Nadarajah
(2005a,b), Nadarajah and Kotz (2006) considered bivariate Rayleigh, bivariate beta,
some bivariate gamma and some bivariate exponential distributions, respectively. For
both stress and strength follow discrete distributions one can see the papers of Maiti
(1995) and Ahmad et al. (1995) for the geometric distribution and Sathe and Dixit
(2001) for the negative binomial distribution and also for mixture of discrete and con-
tinuous distributions for inference about the reliability parameter we can refer to Jo-
vanović (2017) for geometric-exponential model.

In the stress-strength analysis, usually, it is assumed that X and Y come from
the same family of distribution. But there are situations that we can not consider
the same family of distribution for both stress and strength, such as conditions that
arise in Jovanović (2017) and Obradović et al. (2015). As an example of such models,
consider for example two groups of patients with a same type of disease and observe
that both groups would be subject to two different treatments, for example treatments
A and B. We want to determine that which group of patients, receiving one of the
treatments A and B, has higher survival probability than another group. A real data set
considered here is head and neck cancer (HNC) data which is used by some authors for
example, Efron (1988) and Makkar et al. (2014). Recently Sharma (2017) considered
the Bayesian analysis of reliability parameter for this data set. They assumed the
generalized inverse Lindley distribution for both stress and strength of model. In this
paper we take two different distributions for stress and strength. We assume that the
random variable X (stress) follows an ED and independent of X the random variable Y
(strength) follows an inverted exponential distribution (IED). Clearly we consider the
case that random variable X follows an ED with parameter θ denoted by X ∼ ED(θ)
and random variable Y follows an IED with parameter τ denoted by Y ∼ IED(τ).

The main aim of this paper is the investigation of constructing some CIs for the
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parameter R. So, the plan of the paper is as follows: In Section 2, we derive the
maximum likelihood estimator (MLE) of the parameter θ and τ and their sampling
distributions. Then, we derive the MLE of reliability parameter R and its asymptotic
distribution. In Section 3, we find some CIs such as asymptotic confidence interval
(ACI), bootstrap confidence interval (BCI) and generalized confidence interval (GCI).
In Bayesian viewpoint, we also discuss to construct a CI for parameter R by using the
highest posterior distribution (HPD) approach. We compare these CIs by using some
simulation studies in Section 4. In Section 5, for the HNC data as pointed out above,
we apply four different CIs (ACI, BCI, GCI and HPD) for this data to construct CIs
for parameter R. We finish the paper with our conclusions in Section 6.

2 Preliminary results
A random variable X ∼ ED(θ) has the probability density function (PDF)

fθ(x) = θe−θx;x > 0, θ > 0, (1)

and the cumulative distribution function (CDF) Fθ(x) = 1− e−θx.
The ED has many applications in statistical inference for life-time data analysis

and is defined as the time until the first success occurs. As we know that ED has a
constant failure rate. But there are some cases that in which the hazard rate initially
increases and reaches a peak after some finite period of time and then declines slowly.
For these cases we may fit the IED.

A random variable Y ∼ IED(τ) has the PDF

fτ (y) =
τ

y2
e−

τ
y ; y > 0, τ > 0. (2)

and the CDF Fτ (y) = e−
τ
y .

For more information and properties of IED, one an see Singh et al. (2013) and
references there in. Using (1) and (2), one can find that

P (X < Y ) = 1− θ

∫ ∞

0

e−(θx+ τ
x )dx := Rτ,θ. (3)

The following lemma shows that Rτ,θ can be presented as the modified Bessel
function of the second type (Kυ(z)).

Lemma 2.1. Let X ∼ ED(θ) and Y ∼ IED(τ). Then, we have

R = 1− 2
√
θτK1(2

√
θτ) =: Rτ,θ,

where Kυ(z) denotes the modified Bessel function of the second type.

Proof. It can be easily seen that Rτ,θ in (3) could be rewritten as

Rτ,θ = 1− τ

∫ ∞

0

1

y2
e−(θy+ τ

y )dy. (4)
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The following integral representation of Kυ(z) can be helpful (See, for example Watson,
1944, page 183),

(
1

2
)(
1

2
z)υ

∫ ∞

0

1

ξ(υ+1)
e−(ξ+ z2

4ξ )dξ = Kυ(z).

So, by taking z = 2
√
θτ for Rτ,θ in (4) we have

τ

∫ ∞

0

1

y2
e−(θy+ τ

y )dy =
z2

4θ

∫ ∞

0

1

y2
e−(θy+ z2

4θy )dy =
z2

4

∫ ∞

0

1

(θy)2
e−(θy+ z2

4θy )d(θy)

=

z2

4 ( 12 )(
1
2z)

∫∞
0

1
ξ2 e

−(ξ+ z2

4ξ )dξ

[( 12 )(
1
2z)]

= zK1(z).

2.1 Maximum likelihood estimator of Rτ,θ

Let X1, X2, . . . , Xn1
and Y1, Y2, . . . , Yn2

be two independent random samples from
ED(θ) and IED(τ), respectively. As we know that the MLE of parameters θ and
τ are as

θ̂ =
n1∑n1

i=1 Xi
=

1

X
and τ̂ =

n2∑n2

i=1(
1
Yi
)
. (5)

So, by using the invariance property of MLEs, the MLE of Rτ,θ is

R̂τ,θ = 1− 2
√
θ̂τ̂K1(2

√
θ̂τ̂) (6)

It is easily verified that, if X ∼ ED(θ) then 2θX ∼ χ2
(2), so, for θ̂ we have

2n1θ

θ̂
∼ χ2

(2n1)
. (7)

In a similar manner as above, for τ̂ we find that

2n2τ

τ̂
∼ χ2

(2n2)
. (8)

The following equations which are related to Kυ(z) can be used to obtain promising
results. These equations are indeed the derivative of function Kυ(z) on z. By referring
to relation 202 of Andrews (1985), the partial derivative of Rτ,θ in both τ and θ can
be obtained as

i)
∂Rτ,θ

∂θ
= 2τK0(2

√
θτ), (9)

ii)
∂Rτ,θ

∂τ
= 2θK0(2

√
θτ). (10)

The above equations may be useful to simplifying the asymptotic variance of the R̂τ,θ

in the next part of the paper.
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2.2 Asymptotic distribution of R̂τ,θ

It is well known that under the regularity condition, the asymptotic distribution of
the MLE of model parameters is multivariate normal with mean vector and variance-
covariance matrix equal to vector of corresponding parameters and inverse of Fisher
information matrix, respectively. So, for the asymptotic distribution of MLE of param-
eters in this paper, let I1(θ) =

1
θ2 and I2(τ) =

1
τ2 be the expected Fisher information

with respect to density functions fθ(x) and fτ (y), respectively. Then, it is verified
that,

√
n1(θ̂ − θ) =⇒ N(0, I−1

1 (θ)), (11)
√
n2(τ̂ − τ) =⇒ N(0, I−1

2 (τ)), (12)

where =⇒ stands for convergence in law. So, we can state the following theorem for
obtaining the asymptotic distribution of R̂τ,θ.

Theorem 2.2. Let X1, X2, . . . , Xn1
and Y1, Y2, . . . , Yn2

be two independent samples
from ED(θ) and IED(τ), respectively. Then the asymptotic distribution of R̂τ,θ is

√
n1 + n2

(
R̂τ,θ −Rτ,θ

)
=⇒ N

(
0, σ2

R

)
, (13)

as n1 → ∞, n2 → ∞ , n1

n1+n2
→ λ, where σ2

R = 1
λ(1−λ)

(
2θτK0(2

√
θτ)
)2

.

Proof. According to Kotz et al. (2003) page 122, since fθ(x) (fτ (y)) is the function of θ
(τ) only, so the asymptotic distribution of R̂τ,θ is normal with mean Rτ,θ and variance
σ2
R, where

σ2
R =

1

(λI1(θ))

(
∂Rτ,θ

∂θ

)2

+
1

((1− λ)I2(τ))

(
∂Rτ,θ

∂τ

)2

,

and I1(θ) (I2(τ)) is the expected Fisher information with respect to fθ(x) (fτ (y)). So,
the proof is completed using (9) and (10).

Remark 2.3. Another asymptotic distribution for R̂τ,θ can be obtained via the following
manner. Using (12) by considering n1 −→ ∞, n2 −→ ∞ and n1

n2
−→ p, it is observe

that √
n1(τ̂ − τ) =⇒ N(0, pτ2), (14)

and then because of independence of θ̂ and τ̂ ,

√
n1

(
θ̂ − θ
τ̂ − τ

)
=⇒ N

[(
0
0

)
,

(
θ2 0
0 pτ2

)]
. (15)

So, using Section 7 of Ferguson (1996), we can conclude that

√
n1

(
R̂τ,θ −Rτ,θ

)
=⇒ N

(
0, σ2

R

)
, (16)

where σ2
R = (1 + p)

(
2θτK0(2

√
θτ)
)2

.
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3 Interval estimation for Rτ,θ

In this section we construct a 100(1−α)% for parameter Rτ,θ based on the asymptotic
distribution of R̂τ,θ which stated in Theorem 2.2. As we will see in the next section
simulation study shows that the CI for Rτ,θ based on the asymptotic distribution of R̂τ,θ

is suitable only for larger sample size. So, we introduce some well known computational
methods to improve the CI for the involved parameter. These methods are bootstrap,
generalized and Bayesian CIs and we consider them in this section.

3.1 Asymptotic confidence interval
In Theorem 2.2, we showed that

√
n1 + n2

(
R̂τ,θ −Rτ,θ

)
=⇒ N

(
0, σ2

R

)
.

For constructing an asymptotic CI, we need to estimate the σ2
R. A natural consistent

estimator for σ2
R is

σ̃2
R =

1

λ̃(1− λ̃)

(
2θ̂τ̂K0(2

√
θ̂τ̂)
)2

, (17)

where λ̃ = n1

n1+n2
. So, a two sided 100(1− α)% CI for Rτ,θ is

Rτ,θ ∈

(
R̂τ,θ ±

√
χ2
(1,1−α)

σ̃R√
(n1 + n2)

)
, (18)

where χ2
(ν,γ) is the γ-th quantile of a chi-square distribution with ν degrees of freedom.

Remark 3.1. Also a 100(1− α)% one sided lower CI for Rτ,θ is

Rτ,θ ∈

(
R̂τ,θ −

√
χ2
(1,1−2α)

σ̃R√
(n1 + n2)

, 1

)
. (19)

3.2 Bootstrap confidence interval for Rτ,θ

The bootstrap approach is a computer-based method which was introduced by Efron
and Tibshirani (1994) that is applied to the observed data by Monte Carlo simulation.
As we will see in the simulation section, the asymptotic CI does not act well in both
coverage probability and expected length for small sample sizes. Bootstrap procedure
provides a better approximation to exactness in most situations. In this section we
utilize a bootstrap-t methods introduced by Hall (1988). Let X1, X2, . . . , Xn1 and
Y1, Y2, . . . , Yn2

be two independent samples from ED(θ) and IED(τ), respectively. By
the following Algorithm one can use bootstrap-t method to construct a bootstrap-t CI
for parameter Rτ,θ.

Algorithm 3.2. The algorithm is carried out in five steps:
Step 1. Obtain R̂τ,θ using (6).
Step 2. Generate bootstrap samples x∗

1, x
∗
2, . . . , x

∗
n1

and y∗1 , y
∗
2 , . . . , y

∗
n2

from ED(θ) and
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IED(τ), respectively.
Step 3. Obtain τ̂∗ and θ̂∗ based on the bootstrap samples by (5) and Compute R̂∗

τ,θ by
replacing τ̂∗ and θ̂∗ instead of τ̂ and θ̂ in (6), respectively.
Step 4. Repeat Steps 2 and 3 for M times (M = 100; 000) and obtain the value of R̂∗

τ,θ

for each repetition, say R̂
∗(1)
τ,θ , ..., R̂

∗(M)
τ,θ .

Step 5. A 100(1− α)% BCI for Rτ,θ is given by(
R̂τ,θ − T ∗

(1−α/2)

√
V ar(R̂∗

τ,θ), R̂τ,θ − T ∗
(α/2)

√
V ar(R̂∗

τ,θ)

)
, (20)

where V ar(R̂∗
τ,θ) is the variance of the values R̂

∗(1)
τ,θ , ..., R̂

∗(M)
τ,θ and T ∗

(γ) denotes the γ-th

quantile of T ∗
i =

R̂∗
τ,θ−R̂τ,θ√
V ar(R̂∗

τ,θ)
, i = 1, 2, ...,M .

Remark 3.3. Also a 100(1− α)% one-sided lower bootstrap-t CI for Rτ,θ is(
R̂τ,θ − T ∗

(1−α)

√
V ar(R̂∗

τ,θ), 1

)
. (21)

3.3 Generalized confidence interval for Rτ,θ

This section utilizes the generalized variable (GV) method for parameters τ , θ and
then of the Rτ,θ to construct the GCI for Rτ,θ. The concepts of generalized pivotal
variable defined by Weerahandi (1993) and this approach is very applicable in statistical
inference. To understand how GV methods can be applied in statistical problems one
can see the book of Weerahandi (1995).

For constructing generalized pivot quantity for parameter Rτ,θ we should first con-
struct the generalized pivot quantities for parameters τ and θ. Let θ̂0 and τ̂0 be the
observed values of θ̂ and τ̂ , respectively. From (7) and (8), the GV quantities for τ

and θ are Gθ = 2n1θ

θ̂

θ̂0
2n1

= θ̂0V1

2n1
and Gτ = τ̂0V2

2n2
,

where V1 ∼ χ2
(2n1)

, V2 ∼ χ2
(2n2)

. So, a generalized pivotal variable for Rτ,θ can
be obtained by replacing the parameters in the form of the Rτ,θ by their generalized
pivotal variables as below

GRτ,θ
= 1− 2

√
GτGθK1(2

√
GτGθ). (22)

Using the following algorithm we can construct a 100(1 − α)% GCI for parameter of
interest Rτ,θ .
Algorithm 3.4. For given random samples (x1, x2, . . . , xn1

) and (y1, y2, . . . , yn2
), com-

pute the MLEs θ̂0 and τ̂0.
Step 1. Generate V1 ∼ χ2

(2n1)
and V2 ∼ χ2

(2n2)
.

Step 2. Compute GRτ,θ
in (22).

Step 3. Repeat the steps 1 and 2 a large number of times, say, M = 100, 000 times.
Then from these M values, the 100(α/2)th and 100(1− α/2)th percentile of GRτ,θ

is a
100(1− α)% CI for Rτ,θ.
Remark 3.5. The 100αth percentiles of these M generated GRτ,θ

is a 100(1 − α)%
lower confidence limit for Rτ,θ.
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3.4 Highest posterior distribution approach
In this section we construct a CI for parameter Rτ,θ using the method of highest
posterior distribution (HPD). Indeed in this section we try to use the Bayesian method
for constructing a 100(1 − α)% CI for the model parameter. Two types of useful
Bayesian CIs are Bayesian credible and HPD CIs. The Bayesian credible intervals
are easy to obtained. Let π(θ) be a prior of parameter θ. So, by using the density
f(data; θ) the posterior density of θ is π(θ|data). Let {θi, i = 1, 2, . . . ,M} be a Markov
chain Monte Carlo (MCMC) from π(θ|data). Then a 100(1− α)% credible interval is(

θ[(α
2 )M], θ[(1−α

2 )M]

)
, (23)

where θ[αM ] is the [αM ]th smallest of {θi}. These intervals are easy to obtain. One
can use another more complicated Bayesian intervals such as HPD intervals.

Definition 3.6. A region C is called a HPD region of content 1− α if
a)
∫
C
π(θ|data)dθ = 1− α,

b) for any θ ∈ C and θ∗ /∈ C, we have π(θ|data) ≥ π(θ∗|data).

For more details see Berger (1985) and Knight (2000) books. If the posterior
π(θ|data) is unimodal then C will be an HPD interval. In this part we consider two in-
dependent gamma priors for parameters θ and τ . We assume that θ ∼ gamma(a1, a2)
and τ ∼ gamma(b1, b2), where a1,a2,b1 and b2 are positive known constants. So, it can
be shown that the posterior distribution of θ and τ are

π(θ|data) = (n1 + a1)
(a2+tx)

Γ(n1 + a1)
θn1+a1−1exp{−(a2 + tx)θ}, (24)

π(τ |data) = (n2 + b1)
(b2+ty)

Γ(n2 + b1)
τn2+b1−1exp{−(b2 + ty)τ}, (25)

where tx =
∑

xi and ty =
∑

1
yi

.
Chen and Shao (1999) introduce an approximate HPD CI. This kind of inter-

val is based on all Bayesian credible intervals of content 1 − α. Then the HPD
CI is one which has the shortest length. This method also can be used to con-
struct a HPD CI for a function of the parameters. We briefly explain this approach
for our problem. Let {(θi, τi), i = 1, 2, . . . ,M} be an ergodic MCMC samples from
π(θ, τ |data) = π(θ|data)π(τ |data) (because of independence of θ and τ) and generate
Ri

τ,θ = 1−2
√
(θiτi)K1(2

√
(θiτi)) for i = 1, 2, . . . ,M . Then compute all Bayesian cred-

ible CI of content 1−α for Rτ,θ as (R(j)
τ,θ, R

(j+[(1−α)M ])
τ,θ ), for j = 1, 2, . . . ,M−[(1−α)M ]

where R
(i)
τ,θ are the ordered values of Ri

τ,θ. Then the approximate HPD CI for Rτ,θ is
shortest length interval between all above Bayesian credible intervals of content 1−α.

4 Simulation study
In this section, some simulation studies carried out to compare the sufficiency of the
asymptotic confidence interval (ACI), bootstrap confidence interval (BCI), generalized
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confidence interval (GCI) and highest posterior distribution (HPD) approaches for pro-
ducing some CIs for reliability parameter Rτ,θ. Comparing of these above approaches
are based on their expected lengths (EL) and coverage probabilities (CP). We run the
simulations by producing two random samples n1 and n2 from ED(θ) and IED(τ),
respectively. Also, and let (n1, n2) and (θ, τ) vary in the sets {(10, 10), (10, 15), (15, 10),
(15, 15), (20, 20)} and {(3.5, 0.5), (1, 0.5), (0.25, 0.25)}, respectively. Also, for using the
method of HPD, the parameters of the prior distributions are taken as a1 = 0.001,
a2 = 0.1, b1 = 0.001 and b2 = 0.1. Note that the values of Rτ,θ for different quantities
of (θ, τ) in {(3.5, 0.5), (1, 0.5), (0.25, 0.25)} are 0.83, 0.55 and 0.17, respectively.

The results are given in Table 1. In this table, for the above four approaches the
values of CPs as well as the values of ELs in parenthesis were obtained. The following
results were conducted from Table 1:
i) It is observed that in each cases, if Rτ,θ decreases then the CPs of ACI and BCI are
close to confidence coefficient (COC) 95%. For example from Table 1, for (n1, n2) =
(10, 10) and (τ, θ) = (3.5, 0.5), (1, 0.5), (0.25, 0.25) the CPs are 0.873, 0.928 and 0.947
and the values of Rτ,θ are 0.83, 0.55 and 0.17, respectively.
ii) The CPs of GCI are close to COC for all cases. Indeed the GCI is an exact method
to constructing the CI for parameter Rτ,θ.
iii) Although the act of HPD approach is approximately acceptable, the CPs of HPD
method are less than the COC, in all cases.
iv) It is observed that the ELs of all approaches decrease whenever the sample size
increases.
v) For cases with Rτ,θ > 0.5, the ELs of all approaches are greater than that of with
Rτ,θ < 0.5. For example, the ELs of the case (τ, θ) = (3.5, 0.5) with Rτ,θ = 0.83 are
greater than that of case (τ, θ) = (0.25, 0.25) with Rτ,θ = 0.17, for all approaches.

5 Real data
The following real data set represents the survival times of two groups of patients suf-
fering from HNC disease. The first group of patients, denoted by X, was treated with
radiotherapy and the second group of patients, denoted by Y , was treated with com-
bined radiotherapy and chemotherapy. As noted before, these data set was considered
by Sharma (2017) and it was assumed that both stress (X) and strength (Y ) of model
follow the generalized inverse Lindley distribution with utilizing the Bayesian analysis
for reliability parameter for this data set. In this paper we assume X and Y follow ED
and IED, respectively. It is important to detect that the combined radiotherapy and
chemotherapy treatment has more effect on survival times of the HNC patients rather
than the radiotherapy treatment. The data sets are as follows:
Data (X):
6.53, 7, 10.42, 14.48, 16.10, 22.70, 34, 41.55, 42, 45.28, 49.40, 53.62, 63, 64, 83, 84, 91,
108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157, 160, 160, 165, 146, 149, 154,
157, 160, 160, 165, 173, 176, 218, 225, 241, 248, 273, 277, 297, 405, 417, 420, 440, 523,
583, 594, 1101, 1146, 1417
Data (Y):
12.20, 23.56, 23.74, 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 68.46, 78.26,
74.47, 81, 43, 84, 92, 94, 110, 112, 119, 127, 130, 133, 140, 146, 155, 159, 173, 179, 194,
195, 209, 249, 281, 319, 339, 432, 469, 519, 633, 725, 817, 1776
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Table 1: Coverage probabilities as well as expected lengths in parenthesis of ACI, BCI,
GCI and HPD approaches for various sample sizes and parameters values.

(θ, τ)
(n1, n2) Approach (3.5,0.5) (1,0.5) (0.25,0.25)
(10,10) ACI 0.873 (0.2937) 0.928 (0.4055) 0.947 (0.2174)

BCI 0.993 (0.4970) 0.974 (0.4866) 0.950 (0.2223)
GCI 0.950 (0.3129) 0.951 (0.3948) 0.948 (0.2097)
HPD 0.941 (0.3028) 0.939 (0.3884) 0.942 (0.2028)

(10,15) ACI 0.897 (0.2760) 0.937 (0.3729) 0.955 (0.1960)
BCI 0.982 (0.4195) 0.968 (0.4309) 0.958 (0.1991)
GCI 0.947 (0.2908) 0.958 (0.3646) 0.957 (0.1903)
HPD 0.944 (0.2790) 0.935 (0.3587) 0.941 (0.1853)

(15,10) ACI 0.875 (0.2757) 0.904 (0.3717) 0.959 (0.1970)
BCI 0.986 (0.4183) 0.950 (0.4321) 0.964 (0.2001)
GCI 0.942 (0.2903) 0.939 (0.3640) 0.955 (0.1911)
HPD 0.936 (0.2772) 0.935 (0.3588) 0.941 (0.1847)

(15,15) ACI 0.914 (0.2479) 0.943 (0.3355) 0.949 (0.1718)
BCI 0.980 (0.3436) 0.966 (0.3743) 0.952 (0.1734)
GCI 0.963 (0.2586) 0.954 (0.3293) 0.953 (0.1678)
HPD 0.950 (0.2510) 0.939 (0.3242) 0.943 (0.1648)

(20,20) ACI 0.915 (0.2186) 0.927 (0.2919) 0.937 (0.1476)
BCI 0.972 (0.2754) 0.946 (0.3158) 0.940 (0.1486)
GCI 0.952 (0.2254) 0.945 (0.2879) 0.937 (0.1448)
HPD 0.945 (0.2186) 0.937 (0.2835) 0.943 (0.1427)

To check the correctness of fitting ED and IED to X and Y , we report one sample
Kolmogorov-Smirnov (K-S) statistic with its p-value. The K-S statistics as well as
their p-values in parenthesis of fitting the ED and IED to X and Y are D = 0.1257
(p-value = 0.3957) and D = 0.0947 (p-value = 0.7783), respectively. So, we can not
reject the ED and IED for distributions of X and Y , respectively. Then, we can
compute the various CIs utilized in this paper for parameter Rτ,θ. For HPD approach,
the parameters a1, a2, b1, b2 in the prior density functions π(θ) and π(τ) are considered
as 10, 4, 10, 0.1, respectively. The MLE of Rτ,θ is 0.6028 and the 95% CIs for reliability
parameter Rτ,θ based on ACI, BCI, GCI and HPD are as (0.5062, 0.6993), (0.5027,
0.7028), (0.4983, 0.6927) and (0.5183, 0.6906), respectively.

6 Conclusion
In this paper, we considered the problem of constructing the CI for reliability parameter
in stress-strength models and we assumed that the stress and strength of model follow
ED and IED distributions, respectively. We utilized four methods ACI, BCI, GCI and
HPD for constructing the CI for reliability parameter Rτ,θ and the performance of these
methods were examined via some simulation studies and we see that the performance
of GCI and HPD methods are better than ACI and BCI for all cases, but the CP of
GCI approach is approximately close to confidence coefficient. So, we recommend to
use GCI and also in the Bayesian viewpoint, HPD approach is suitable. At the end,
all four approaches were used to constructing the CI for reliability parameter Rτ,θ in
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HNC real data example. From obtained results for this data set, we can conclude that
combined radiotherapy and chemotherapy treatment has more effect on survival times
of the HNC patients rather than the radiotherapy treatment alone.
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