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Abstract: In this paper, a new discrete distribution is studied based on geometric
odds ratio. This new distribution has three parameters and can be a unimodal or a
bimodal discrete distribution. Some important distributional properties are studied.
For example, moments, the behaviour of the hazard rate function, stochastic orders,
mixing processes, infinite divisibility, Rényi and Shannon entropies and the distribu-
tions of order statistics are investigated. We will see that the hazard rate function
of the new discrete distribution can be monotonically increasing and decreasing and
bathtub-shaped. The parameters of the distribution are estimated by the maximum
likelihood method, and a real data set is analyzed in order to show the effectiveness of
the model.
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1 Introduction
Data may be discrete by nature and discrete data occur frequently in practice in various
fields. For example, the stress pattern in a step-stress accelerated life test can be treated
as a discrete random variable and the number of attempts needed to crack a password
are discrete in nature. In these cases it is better to deal with these data by a discrete
probability model.

Several attempts have been made to introduce different discrete probability distri-
butions and to develop and study their properties. For example, Gómez-Déniz (2010)
studied the generalized geometric (GG) distribution whose hazard rate function is

∗Corresponding author: v.nekoukhou@gmail.com

Research Paper



A new discrete distribution based on geometric odds ratio 154

monotone. Nekoukhou et al. (2013) introduced originally the discrete generalized
exponential (DGE) distribution, which can be considered as the discrete analog of
the well-known absolute continuous generalized exponential distribution of Gupta and
Kundu (1999). The hazard rate function of the DGE distribution can be increas-
ing, decreasing, or constant. So, the geometric distribution is a special case of the
DGE distribution. Nekoukhou and Bidram (2015) studied the exponentiated discrete
Weibull distribution, which is a generalization of the two-parameter discrete Weibull
distribution of Nakagawa and Osaki (1975).

The odds function is an important quantity in different aspects of Statistics. Spe-
cially, serious discussions are propounded in Distribution Theory and Reliability. For
example, Sankaran and Jayakumar (2008) gave some physical interpretations of the
Marshall-Olkin family of distributions using odds function. Gupta (2011) considered
a class of bivariate distributions by forming the odds of failure of a two-component
system. Unnikrishnan Nair and Sankaran (2015) considered the odds function in a
discrete setup.

Suppose that S(x) = P (X ≥ x) and F (x) = P (X ≤ x) are the survival and cumu-
lative distribution functions of a non-negative discrete random variable X, respectively.
The odds ratio of X, in the discrete setup, is defined as

ϕ(x) =
F (x)

S(x+ 1)
, x ∈ N0 = {0, 1, 2 . . .}, (1)

see Unnikrishnan Nair and Sankaran (2015).
In this paper, a new discrete distribution is introduced based on the odds function

of a geometric distribution. This distribution has some interesting properties and can
be adjusted to suit most discrete data sets. The survival and cumulative distribution
functions have analytical forms and the probability mass function can be unimodal
or bimodal. The rest of the paper is organized as follows. Section 2 introduces the
geometric odds ratio distribution, for the first time. Some important features and prop-
erties of the new discrete distribution such as the cumulative distribution and survival
functions are studied. In addition, the mean and variance of the distribution will be
obtained. The behavior of the hazard rate function is illustrated. We will see that
the new distribution exhibits bathtub, and monotonically increasing and decreasing
hazard rates. Rényi and Shannon entropies are obtained and the infinite divisibility
of the distribution in question is discussed. The distributions of order statistics will
be attained and some stochastic orders are also discussed. The estimation process of
the parameters is provided in Section 3. Additionally, the stress-strength parameter
is illustrated and the new model with a real data set is also examined in this section.
Some concluding remarks are given in Section 4.

2 The geometric odds ratio distribution
2.1 Definition and interpretations
Let X denote the number of failures before the first success in a Bernoulli experiment
whose probability of success is p. In this case, the survival function (SF) of X is

S(x) = P (X ≥ x) = qx, x ∈ N0, (2)



155 V. Nekoukhou and H. Bidram

which is known as the geometric SF, and q = 1 − p. The cumulative distribution
function (CDF) of the above geometric random variable X(∼ G(p)), is

F (x) = P (X ≤ x) = 1− S(x+ 1) = 1− qx+1, x ∈ N0. (3)

Based on (1), the odds ratio of the G(p) distribution is given by

ϕ(x) =
1− qx+1

qx+1
, x ∈ N0. (4)

Definition 2.1. A discrete random variable X is said to be geometric odds ratio (GOR)
distributed, if its CDF has the following form

F (x; θ, q, α) = 1− θ

(
1−qx+1

qx+1

)α

, x ∈ N0, (5)

where 0 < θ < 1, 0 < q < 1 and α > 0 are the model parameters. A GOR distribution
with parameters θ, q and α will be denoted by GOR(θ, q, α) in the sequel.

It is easy to investigate that F in (5) is a bona fide CDF whose corresponding SF
is

S(x; θ, q, α) = θ

(
1−qx

qx

)α

, x ∈ N0. (6)

In addition, the probability mass function (PMF) of a GOR(θ, q, α) distribution, for
x ∈ N0, is

f(x; θ, q, α) = px = P (X = x) = S(x)− S(x+ 1) = θ

(
1−qx

qx

)α

− θ

(
1−qx+1

qx+1

)α

. (7)

A GOR distribution, depending on its parameters values, can have a unimodal or
a bimodal PMF. Figure 1, illustrates the PMF plots of GOR distributions for some
possible values of the parameters. Figure 1 shows that the GOR distribution can
be unimodal, right-skewed, left-skewed, almost symmetric and even bimodal. So, the
parameters of the GOR distribution can be adjusted to suit most discrete data sets.

The r-th moment of the GOR(θ, q, α) distribution is given by

E(Xr) =

∞∑
x=1

{xr − (x− 1)r}P (X ≥ x) =

∞∑
x=1

{xr − (x− 1)r}θ
(

1−qx

qx

)α

. (8)

Specially, the first and second moments are

E(X) =

∞∑
x=1

θ((1−qx)/qx)α (9)

E(X2) =

∞∑
x=1

(2x− 1)θ((1−qx)/qx)α , (10)

For different values of the parameters, the mean and variance of the GOR distribution
have been calculated in Table 1.
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Figure 1: PMF plots of a GOR(θ, q, α) distribution for some parameters values.

As we see, the mean increases when θ increases, or q increases. In addition, the
mean decreases when α increases. Because

∂

∂α
E(X) =

∞∑
x=1

θ((1−qx)/qx)α log
(
θ(1−qx)/qx

)
< 0,

∂

∂θ
E(X) =

∞∑
x=1

(
1− qx

qx

)α

θ((1−qx)/qx)α−1 > 0

∂

∂q
E(X) =

∞∑
x=1

−α log(θ)θ((1−qx)/qx)α
(
1− qx

qx

)α−1

×xq2(x−1) + (x− 1)qx−2(1− qx)

q2(x−1)
> 0.

The variance has the same manner, too. In addition, the variance can be larger,
equal, or greater than the mean. Therefore, the parameters of a GOR distribution can
be adjusted to suit over- and under-dispersed data sets. In addition, like the Poisson
distribution, it may have equal mean and variance.

The γ-th percentile point of a GOR(θ, q, α) distribution is also given by ξγ =

− log
(
q
{
1 + (log(1− γ)/log θ)

1/α
})

/log q.

Now, we show that the GOR distributions are closed under minimum. That is, the
minimum of a random sample of a GOR distribution, is itself a GOR variable. More
precisely, we have the following result.

Theorem 2.2. If X1, . . . , Xn is a random sample from a GOR(θ, q, α) distribution,
then min{X1, . . . , Xn} follows a GOR(θn, q, α) distribution.
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Table 1: Mean (Variance) of the GOR(θ, q, α) distributions.
θ = 0.25

α/q 0.10 0.25 0.50 0.75
0.05 0.9109 (4.8134) 1.5952 (14.0195) 3.3209 (58.4249) 8.1961 (347.3344)
0.2 0.1515 (0.2074) 0.3316 (0.7022) 0.8103 (3.2834) 2.2045 (20.8394)
0.5 0.0156 (0.0154) 0.0953 (0.0956) 0.3713 (0.5485) 1.2635 (3.7993)
0.7 0.0016 (0.0016) 0.0503 (0.0480) 0.3048 (0.3308) 1.1777 (2.3037)

θ = 0.50
α/q 0.10 0.25 0.50 0.75
0.05 3.0445 (18.6848) 5.2217 (53.1816) 10.6990 (217.7728) 26.1488 (1281.4)
0.2 0.5940 (0.9301) 1.1507 (2.8690) 2.5740 (12.4456) 6.6244 (75.8395)
0.5 0.1260 (0.1122) 0.3734 (0.3869) 1.0546 (1.8076) 3.0549 (11.3436)
0.7 0.0397 (0.0381) 0.2340 (0.1991) 0.8013 (0.9378) 2.4949 (5.8340)

θ = 0.75
α/q 0.10 0.25 0.50 0.75
0.05 7.7665 (47.7174) 13.1476 (133.6933) 26.6736 (541.0240) 64.8076 (3161.8)
0.2 1.6746 (2.6564) 3.0293 (7.7121) 6.4477 (32.0562) 16.1055 (190.0473)
0.5 0.4791 (0.3643) 1.0479 (1.0754) 2.5072 (4.5422) 6.6601 (27.1394)
0.7 0.2628 (0.1953) 0.6903 (0.5299) 1.8071 (2.1890) 4.9083 (12.9507)

Proof. The proof is straightforward and the details are avoided.

The hazard rate function of the GOR(θ, q, α) distribution, for x ∈ N0, is given by

h(x) =
f(x; θ, q, α)

S(x; θ, q, α)
=

θ((1−qx)/qx)α − θ((1−qx+1)/qx+1)
α

θ((1−qx)/qx)α
. (11)

Figure 2 illustrates the behaviour of the hazard rate function of the GOR distribution.
This figure indicates that the hazard rate function of the GOR distribution is monoton-
ically increasing and decreasing, and bathtub-shaped. Hence, the GOR distributions
can analyze more failure rate data with respect to the geometric and DGE (or GG)
distributions whose hazard rate functions are constant and monotone, respectively.

2.2 Rényi and Shannon entropies
The entropy of a random variable X is a measure of uncertainty variation. The Rényi
and Shannon entropies are important in Statistics, Reliability and Quantum informa-
tion theory. The Rényi and Shannon entropies of a discrete random variable X, whose
PMF is P (X = x), in general, are given by

Rη =
1

1− η
log

∞∑
x=0

{P (X = x)}η , η ̸= 1

S = −
∞∑
x=0

P (X = x) logP (X = x),

For the GOR distribution, using the binomial expansion, we find that

{P (X = x)}η =
{
θ((1−qx)/qx)α − θ((1−qx+1)/qx+1)

α}η
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Figure 2: Hazard rate function plots of a GOR(θ, q, α) distribution for some parameters values.

=

∞∑
j=0

(−1)j
(
η

j

)
θj((1−qx+1)/qx+1)

α

θ(η−j)((1−qx)/qx)α . (12)

It must be mentioned that for an integer value of η,
∑∞

j=0 should be replaced by∑η
j=0 in (12). Therefore, the Rényi entropy of a GOR(θ, q, α) distribution is rewritten

as

Rη =
1

1− η
log

∞∑
x=0

∞∑
j=0

(−1)j
(
η

j

)
θj((1−qx+1)/qx+1)

α
+(η−j)((1−qx)/qx)α . (13)

For an integer η, the interior summation stops at η in the above relation.
The Shannon entropy of the GOR distribution is also given by

S = −
∞∑
x=0

(
θ((1−qx)/qx)α − θ((1−qx+1)/qx+1)

α)
log

(
θ((1−qx)/qx)α − θ((1−qx+1)/qx+1)

α)
.

(14)
The Rényi and Shannon entropies of the GOR distribution have been calculated in

Table 2 for some values of the parameters. According to the results of Table 2, we see
that when η → 1, the values of Rényi entropy are approximately equivalent to that
of Shannon entropy. Therefore, the known relation between these two entropies, i.e.
S = limη→1 Rη, is investigated in a GOR distribution, too.

2.3 Stochastic orders
Numerous stochastic orders between random variables X and Y have been introduced
in the literature. For details, see, e.g., Shaked and Shanthikumar (2007). We first need
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Table 2: Rényi and Shannon entropies of the GOR distribution.
η (θ, q, α) Rényi Shannon

0.50 (0.9, 0.95, 0.8) 4.5564 4.4873
0.995 (0.8, 0.95, 0.7) 4.3944 4.3939
1.005 (0.75, 0.95, 0.7) 4.2847 4.2853
2.2 (0.1, 0.95, 0.8) 2.3495 2.7253
0.50 (0.8, 0.75, 0.2) 3.9312 3.7225
0.995 (0.85, 0.85, 0.1) 5.0025 4.9989
1.005 (0.85, 0.99, 0.5) 6.4387 6.4394
2.2 (0.4, 0.65, 0.005) 0.9398 2.7398
0.50 (0.95, 0.85, 0.1) 5.5987 5.4663
0.995 (0.99, 0.8, 0.1) 5.3368 5.3356
1.005 (0.85, 0.95, 0.1) 6.0530 6.0584
2.2 (0.9, 0.9, 0.005) 4.2405 0.5131

to review some notions of stochastic orders, in the discrete setup, which are relevant
in the context of the present paper.
Simple stochastic order: X is said to be stochastically smaller than Y (written as
X ≤st Y ) if for all integer values of x, SX(x+ 1) ≤ SY (x+ 1), where SX and SY are
the SFs of X and Y , respectively.
Hazard rate order: X is smaller than Y in the hazard rate order (written as X ≤hr Y ),
if hX(x) ≥ hY (x). hX and hY are the hazard rate functions of X and Y , respectively.
Odds ratio order: The discrete random variable X is smaller than Y in the odds ratio
order, denoted by X ≤odd Y , if and only if for all integer values of x, ϕX(x) ≤ ϕY (x),
where ϕ is given by (1). In addition, X ≤st Y ⇔ X ≤odd Y ; see, Unnikrishnan Nair
and Sankaran (2015).

Here, some new findings regards to the stochastic orders of the GOR distributions
are proved which are useful for comparing them.

Theorem 2.3. Let X ∼ GOR(θ1, q, α) and Y ∼ GOR(θ2, q, α). If θ1 ≤ θ2, then
X ≤hr Y .

Proof. If θ1 ≤ θ2, it is obvious that

θ
((1−qx+1)/qx+1)

α−((1−qx)/qx)α

1 ≤ θ
((1−qx+1)/qx+1)

α−((1−qx)/qx)α

2 ,

or equivalently,

1− θ
((1−qx+1)/qx+1)

α−((1−qx)/qx)α

1 ≥ 1− θ
((1−qx+1)/qx+1)

α−((1−qx)/qx)α

2 ,

which means that hX(x) ≥ hY (x).

Theorem 2.4. Let X ∼ GOR(θ, q1, α) and Y ∼ GOR(θ, q2, α). If q1 ≤ q2, then
X ≥st Y .

Proof. If q1 ≤ q2, it is easy to show that θ((1−qx+1
1 )/qx+1

1 )
α

≥ θ((1−qx+1
2 )/qx+1

2 )
α

, or
equivalently, SX(x+ 1) ≥ SY (x+ 1).
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Remark 2.5. Under the conditions of Theorem 3, we see that X ≥odd Y .

Now, we want to state that the CDF of a GOR distribution, given by (3), can be
expanded to a general family of discrete odds ratio distributions. More precisely, for
non-negative integer values of x, suppose that G(x; ξ) is an arbitrary discrete CDF and
S(x; ξ) is its corresponding SF. Then,

F (x; ξ, θ, α) = 1− θ(
G(x;ξ)

S(x+1;ξ) )
α

, x ∈ N0, 0 < θ < 1, α > 0, (15)

defines a general family of discrete odds ratio (DOR) distributions, in which contains
the GOR distribution as a special case. Let us consider the notation DOR(θ,G, α) to
represent the CDF (15), which is introduced for the first time here.

Theorem 2.6. Let X ∼ DOR(θ,G1, α) and Y ∼ DOR(θ,G2, α). If G1 ≤st G2, then
FX ≥st FY , where FX and FY are the CDFs of X and Y , respectively.

Proof. G1 ≤st G2 means that G1(x) ≥ G2(x) and S1(x+1) ≤ S2(x+1), where Si, i =
1, 2, corresponds to Gi. Hence, we see that G1(x)

S1(x+1) ≥ G2(x)
S2(x+1) . Therefore, we conclude

that θ

(
G1(x)

S1(x+1)

)α

≥ θ

(
G2(x)

S2(x+1)

)α

. The above relation, yields that FX(x) ≤ FY (x).

2.4 Order statistics
Order statistics are among the most fundamental tools in Non-parametric statistics
and Inference. They usually enter the problems of estimation and hypothesis testing.
Here, we want to establish some general relations regarding the GOR distributions.
More precisely, let Fi:n(x; θ, q, α) and fi:n(x; θ, q, α) denote the CDF and PMF of the
i-th order statistic of a random sample of size n from the GOR(θ, q, α) distribution.

In general, the CDF of the i-th order statistic, is

Fi:n(x; ξ) =

n∑
k=i

(
n

k

)
{F (x; ξ)}k{1− F (x; ξ)}n−k

=

n∑
k=i

(
n

k

)
{F (x; ξ)}k{S(x+ 1; ξ)}n−k, (16)

where ξ is the parameters vector of F . If F corresponds to the GOR distribution, the
CDF of the i-th order statistic is rewritten as

Fi:n(x; θ, q, α) =

n∑
k=i

(
n

k

)
{F (x; θ, q, α)}k{S(x+ 1; θ, q, α)}n−k

=

n∑
k=i

(
n

k

)
θ(n−k)((1−qx+1)/qx+1)

α {
1− θ((1−qx+1)/qx+1)

α}k

. (17)

By using the binomial expansion, Fi:n can be written as

Fi:n(x; θ, q, α) =

n∑
k=i

k∑
j=0

(−1)j
(
k

j

)(
n

k

)
θ(n−k+j)((1−qx+1)/qx+1)

α

. (18)
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The PMF of the i-th order statistic for non-negative integer values of x, fi:n(x) =
Fi:n(x)− Fi:n(x− 1), is then given by

fi:n(x; θ, q, α) =

n∑
k=i

k∑
j=0

(−1)j
(
k

j

)(
n

k

){
θ(n−k+j)((1−qx+1)/qx+1)

α

−θ(n−k+j)((1−qx)/qx)α
}

=

n∑
k=i

k∑
j=0

(−1)j+1

(
k

j

)(
n

k

){
θ(n−k+j)((1−qx)/qx)α

−θ(n−k+j)((1−qx+1)/qx+1)
α}

=

n∑
k=i

k∑
j=0

(−1)j+1

(
k

j

)(
n

k

)
fGOR(x; θ

n−k+j , q, α). (19)

Therefore, the PMFs of different order statistics can be written as linear combinations of
the GOR PMFs. This is a useful advantage. Some characteristics of the order statistics’
PMFs, can be obtained from those of GOR PMFs, immediately. For example, different
moments of the order statistics, which is widely used in L-moments, can be obtained
by means of the GOR moments. For instance, the mean of the i-the order statistic is
obtained as

µi:n =

∞∑
x=1

n∑
k=i

k∑
j=0

(−1)j+1

(
k

j

)(
n

k

)
θ(n−k+j)((1−qx)/qx)α . (20)

2.5 Infinite divisibility
Here we make the following note in regards to the famous structural property of infinite
divisibility of the GOR distribution. Infinite divisibility has a close relation to the
central limit theorem (CLT) and waiting time distributions. Hence, it is an important
question in modelling to know whether a given distribution is infinitely divisible or not.
First note that in a GOR(θ, q, p) distribution,

p0 = P (X = 0) = 1− θ((1−q)/q)α > 0,

p1 = P (X = 1) = θ((1−q)/q)α − θ((1−q2)/q2)α > 0.

In addition,
px+1

px
=

θ((1−qx+1)/qx+1)α − θ((1−qx+2)/qx+2)α

θ((1−qx)/qx)α − θ((1−qx+1)/qx+1)α
.

In Table 3, px+1/px has been calculated for x = 0, 1, 2, 3, 4 and some different values
of the parameters. In general, increasing trends are not seen in the sequences. So, it
seems that the GOR distributions are not infinitely divisible in general. Remember
that according to Warde and Katti (1971), a PMF is infinitely divisible if px+1/px
forms a monotone increasing sequence, for all x ∈ N0.

Since the classes of self-decomposable and stable distributions, in their discrete
concepts, are subclasses of infinitely divisible distributions, one can conclude that the
GOR distributions can be neither self-decomposable nor stable in general.
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Table 3: The behaviour of px+1/px.
(θ, q, α) p1/p0 p2/p1 p3/p2 p4/p3 p5/p4

(0.85, 0.99, 0.5) 0.4130 0.7685 0.8453 0.8839 0.9074
(0.1, 0.3, 0.6) 0.0221 0.0045 2.6× 10−5 4.9× 10−10 8.2× 10−20

(0.6, 0.3, 0.2) 0.2241 0.9137 0.9510 0.9106 0.8409

2.6 Mixing process
Sometimes it is important to consider that one or more parameters of a distribution vary
according to the certain given probability distribution, called the mixing distribution.
For instance, such situations occur in problems associated with accident proneness and
entomological field data.

Here, it is supposed that θ is itself a continuous random variable specified by the
generalized beta (GB) distribution, introduced by McDonald (1984), as

π(θ) =
ζθaζ−1(1− θζ)b−1

B(a, b)
, 0 < θ < 1,

where a > 0, b > 0, ζ > 0 and B(a, b) is the known beta function.

Theorem 2.7. Let X ∼ GOR(θ, q, α) and θ follows the GB distribution with ζ =
j + 1; j = 0, 1, . . . . The marginal distribution of X is given by

m(x) =
B(kx

ζ + a, b)−B(kx+1

ζ + a, b)

B(a, b)
, x ∈ N0,

where kx = ((1− qx)/qx)α.

Proof. The proof is straightforward and the details are avoided.

3 Statistical inference
3.1 Maximum likelihood estimation
Let X ∼ GOR(θ, q, α). In addition, let us consider Ω = (θ, q, α)T . The likelihood
function of a single observation x is given by

L(Ω) = θ

(
1−qx

qx

)α

− θ

(
1−qx+1

qx+1

)α

. (21)

The derivatives of the likelihood function with respect to the parameters involved are
given by

∂L

∂θ
= θ((1−qx)/qx)α−1((1− qx)/qx)α − θ((1−qx+1)/qx+1)α−1((1− qx+1)/qx+1)α,

∂L

∂q
= −α log(θ)θ((1−qx)/qx)α((1− qx)/qx)α−1x{q−1 + q−(x+1)(1− qx)}

−α log(θ)θ((1−qx+1)/qx+1)α((1− qx+1)/qx+1)α−1(x+ 1)
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×{q−1 + q−(x+2)(1− qx+1)}
∂L

∂α
= log

(
θ((1−qx)/qx)

)
θ((1−qx)/qx)α − log

(
θ((1−qx+1)/qx+1)

)
θ((1−qx+1)/qx+1)α .

Now, let x1, x2, . . . , xn be observations of a random sample drawn from a GOR(θ, q, α)
distribution. In this case, the total likelihood function is

Ln(Ω) =

n∏
k=1

L[k](Ω),

where L[k](Ω); k = 1, 2, . . . , n, is given by Eq. (21). The maximum likelihood es-
timate (MLE) of Ω, say Ω̂, is obtained by solving the nonlinear equation Mn =
(∂Ln/∂θ, ∂Ln/∂q, ∂Ln/∂α)

T = 0. It is obvious that a numerical method must be used
in order to solve the above equation.

The Fisher information matrix is also given by
I(Ω) = [Iωi,ωj ]3×3; i, j = 1, 2, 3,

whose components can be calculated, numerically, by the relation Iωi,ωj
= E(−∂2L(Ω)

∂ωi∂ωj
),

i, j = 1, 2, 3. The total Fisher information matrix is given by In(Ω) = nI(Ω) which
can be approximated by In(Ω̂) ≈ [−∂2Ln(Ω)

∂ωi∂ωj
|Ω=Ω̂]3×3, i, j = 1, 2, 3.

Under some regularity conditions given, e.g., in Ferguson (1996), Ω̂ has an asymp-
totic normal distribution as N3(Ω, In(Ω̂)−1). Asymptotic normal distributions are
usually used for constructing approximate confidence intervals, confidence regions, and
testing hypotheses of the parameters.

3.2 Stress-strength parameter
The stress-strength parameter R = P (X ≥ Y ) is a measure of component reliability
and its estimation problem when X and Y are independent and follow a specified
common distribution has been widely discussed in the literature. Suppose that the
random variable X is the strength of a component which is subjected to a random
stress Y . Estimation of R when X and Y are independent and identically distributed
following a well-known distribution has been considered in the literature. A relatively
small amount of work is devoted to discrete or categorical data. Hence, the estimation
of R in regards to a GOR distribution is now considered.

The stress-strength parameter, in the discrete setup, is defined as

R = P (X ≥ Y ) =

∞∑
x=0

fX(x)FY (x),

where fX and FY denote the PMF and CDF of the independent discrete random
variables X and Y , respectively.

Now, let X ∼ GOR(Ω1) and Y ∼ GOR(Ω2), where Ω1 = (θ, q1, α1)
T and Ω2 =

(θ, q2, α2)
T . In this case, we find that

R = 1−
∞∑
x=0

θ((1−qx1 )/q
x
1 )

α1+((1−qx+1
2 )/qx+1

2 )α2
+

∞∑
x=0

θ((1−qx+1
1 )/qx+1

1 )α1+((1−qx+1
2 )/qx+1

2 )α2
.

(22)
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Assume that x1, x2, . . . , xn and y1, y2, . . . , ym are independent observations from
X ∼ GOR(Ω1) and Y ∼ GOR(Ω2), respectively. The total likelihood function is
LR(Ω

∗) = Ln(Ω1)Lm(Ω2), where Ω∗ = (Ω1,Ω2). The score vector is given by

MR(Ω
∗) = (∂LR/∂θ, ∂LR/∂q1, ∂LR/∂α1, ∂LR/∂q2, ∂LR/∂α2),

and the MLE of Ω∗, say Ω̂∗, may be attained from that of nonlinear equation MR(Ω
∗) =

0. Hence, by substituting the MLEs in (22), the stress-strength parameter R will be
estimated.

3.3 Data analysis

Here, the GOR distribution is examined for a real data set, given by Consul and Jain
(1973). These data consider the results of ten shots fired from a rifle at each of 100
targets. Gómez-Déniz (2010) used these data in order to study its generalization of the
geometric distribution.

Now, we want to compare the capacity of the GOR distribution with some of its rival
models. The discrete Weibull (DW) distribution of Nakagawa and Osaki (1975), the
two-parameter DGE distribution of Nekoukhou et al. (2013) which is a generalization
of the geometric distribution, the exponentiated discrete Weibull (EDW) distribution
studied by Nekoukhou and Bidram (2015), and also the generalized geometric (GG)
distribution of Gómez-Déniz (2010) are the rival models. These distributions will be
briefly introduced in the Appendix.

The parameters of the GOR distribution have been estimated by the maximum
likelihood method when the Newton-Raphson procedure converges in MATLAB. Com-
paring the GOR distribution with its rival models is performed by using the Akaike
information criterion (AIC) and kolmogorov-Smirnov (K-S) test statistic. Table 4 in-
dicates the fitting computations.

Table 4: Summary of computations.
Models MLEs AIC K-S statistic
GOR (θ̂, q̂, α̂) = (0.46, 0.89, 1.47) 48.2928 0.1088
EDW (α̂, γ̂, p̂) = (3.72, 1.05, 0.99) 54.1788 0.2814
DGE (â, p̂) = (18.51, 0.53) 53.9190 0.2424
DW (α̂, p̂) = (3.80, 0.99) 51.9968 0.2819
GG (α̂, θ̂) = (394.75, 0.33) 52.3626 0.3004

According to the AICs and the values of K-S test statistics in Table 4, one can
conclude that the GOR distribution gives a satisfactory fit to these data.

One can construct approximate confidence intervals for the parameters of the GOR
distribution. Such confidence intervals are attained by means of asymptotic covariance
matrix of the MLEs of the GOR parameters when the Newton-Raphson procedure
converges. For instance, 95% asymptotic confidence intervals for the GOR parameters
are calculated as θ ∈ (0.46∓ 0.176), q ∈ (0.89∓ 0.078) and α ∈ (1.47∓ 0.255).
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4 Conclusions
A new discrete distribution, called the geometric odds ratio (GOR) distribution, mo-
tivated by the odds ratio of the geometric distribution and the fact that it provides
greater flexibility in order to analyze various discrete data is introduced. Moreover, the
GOR distribution is a special member of a general class of discrete odds ratio (DOR)
distributions, which was introduced for the first time in the present paper. The GOR
distribution is appropriate for modeling both over- and under-dispersed data and can be
a unimodal or a bimodal discrete distribution. Moreover, the hazard rate function of a
GOR distribution can be increasing, decreasing and bathtub-shaped. That is, the GOR
distributions can be used as improved models for analyzing failure data in discrete case.

Appendix
Here the rival models, indicated in Table 4, are briefly introduced.
1) The exponentiated discrete Weibull (EDW) distribution of Nekoukhou and Bidram
(2015), for y ∈ N0, has the following PMF

f(y; p, α, γ) = {1− p(y+1)α}γ − {1− py
α

}γ

=

∞∑
j=1

(−1)j+1

(
γ

j

)
{pjy

α

− pj(y+1)α},

where 0 < p < 1, α > 0, γ > 0 and
(
γ
j

)
= Γ(γ+1)

Γ(γ+1−j)j! . For integer γ > 0, the above sum
stops at γ.
2) Discrete Weibull distribution of Nakagawa and Osaki (1975), with PMF

f(y; p, α) = (1− p(y+1)α)− (1− py
α

),

is a special case of the EDW distribution, when γ = 1.
3) Discrete generalized exponential distribution, DGE(γ, p), of Nekoukhou et al. (2013)
with PMF

f(y; p, γ) = {1− p(y+1)}γ − {1− py}γ ,
can be considered as another special case of the EDW distribution, by choosing α = 1.
4) A generalization of the geometric distribution has been introduced by Gómez-Déniz
(2010). The generalized geometric (GG) distribution of Gómez-Déniz (2010), for y ∈
N0, has the following PMF

f(y;α, θ) =
αθy(1− θ)

{1− (1− α)θy+1} {1− (1− α)θy}
in which α > 0 and 0 < θ < 1 are the model parameters.
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