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Abstract: We propose a new generalized family of distributions called the odd gener-
alized half logistic Weibull-G family of distributions. We also considered some special
cases when the baseline distribution are uniform, Weibull and normal distributions.
Structural properties of the new family of distributions including expansion of density,
distribution of order statistics, Rényi entropy, moments, probability weighted moments,
quantile and generating functions, and maximum likelihood estimates were derived. A
characterization based on conditional expectation is presented. A simulation study to
examine efficiency of the maximum likelihood estimates is also conducted. Finally,
a real data example is presented to illustrate the applicability and usefulness of the
proposed model.
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1 Introduction
Balakrishnan (1985) developed the half-logistic distribution by transforming the lo-
gistic distribution. This distribution was well received by physicists, statisticians and
hydrologists and can be applied in many areas of science and research. The half logis-
tic density function has uni-modal or reversed J-shaped and this is a limitation since
in most cases real data exhibits hazard rate functions that are often non-monotonic.
Due to the challenges faced mainly in lifetime data analysis, where data may be highly
skewed or heavy tailed, and where the hazard rate function is non-monotonic (uni-
modal, bathtub, upside bathtub or upside bathtub followed by bathtub), there is an
obvious need to add extra shape parameters to classical models so as to add flexibility
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in data fitting. Work on the generalization of classical distributions has received great
interest in areas of biology, engineering, hydrology, medicine, economics and finance.

Many generators are suggested in literature for adding extra parameters to clas-
sical distributions and these includes work by Eugene et al. (2002), Cordeiro and de
Castro (2011), Alexander et al. (2012), Zografos and Balakrishnan (2009), Ristić and
Balakrishnan (2012), Torabi and Montazari (2012), Alzaatreh et al (2013), Alzaghal et
al. (2013), Cordeiro et al. (2013), Bourguignon et al. (2014), Cordeiro et al. (2014) and
Gomes-Silva et al. (2017), to mention a few. Generalization of the half logistic model
includes the work by Afify et al. (2017), Cordeiro et al. (2014a), Cordeiro et al (2016),
El-sayed and Mahmoud (2019).

Cordeiro et al (2016) developed the type 1 half-logistic family of distributions with
the cdf and pdf given by

G(x;λ, θ) =

∫ − ln(1−F (x;θ))

0

2λ exp{−λx}
(1 + exp{−λx})2

dx

=
1− [1− F (x; θ)]λ

1 + [1− F (x; θ)]λ
, (1)

g(x;λ, θ) =
2λf(x; θ)[1− F (x; θ)]λ−1

{1 + [1− F (x; θ)]λ}2
, (2)

respectively, where F (x; θ) is the cdf of the baseline distribution and λ > 0, is the shape
parameter. We obtain a special case, namely, half-logistic-G (HL-G) model, with cdf

G(x; θ) =
F (x; θ)

1 + F (x; θ)
, (3)

by setting λ = 1 in Equation (1). The corresponding pdf of the HL-G model is given
by

g(x; θ) =
2f(x; θ)

(1 + F (x; θ))2
. (4)

Bourguignon et al. (2014) applied the Weibull generator to the odds ratio G(x; ξ)/
G(x; ξ), using the ideas from Gurvich et al. (1997), and Zografos and Balakrishnan
(2009). They developed the Weibull-G family of probability distributions with cdf and
pdf given by

F (x;α, β, ξ) = 1− exp
{
− α

[
G(x; ξ)

G(x; ξ)

]β}
, (5)

and

f(x;α, β, ξ) = αβg(x; ξ)
G(x; ξ)β−1

G(x; ξ)β+1
exp

{
− α

[
G(x; ξ)

G(x; ξ)

]β}
, (6)

respectively. This distribution can also be expressed as a linear combination of expo-
nentiated -G (Exp-G) distribution. In this paper, we develop the odd generalized half
logistic Weibull-G (OGHLW-G) family of distributions using the generalization studied
by Cordeiro et al (2016) and Bourguignon et al. (2014) (see Equations (3), (4), (5) and
(6)), respectively.
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This paper is organized as follows: In Section 2, we present the generalized family of
distributions and the expansion of its density. Some special cases and sub-models of the
new family are presented in Section 3. Structural properties including the distribution
of order statistics, Rényi entropy, moments, probability weighted moments, quantile
and generating functions are presented in Section 4. A characterization based on
truncated conditional expectation is presented in Section 5. In Section 6, we present
the maximum likelihood estimates. Monte Carlo simulation study is conducted to
examine the bias and mean square errors of the maximum likelihood estimators for
each parameter in Section 7. Application of the proposed model to real data is given
in Section 8, followed by concluding remarks.

2 The odd generalized half-logistic Weibull-G family
of distributions

In this section, we derive a new family of distributions, namely, the odd generalized half
logistic Weibull-G (OGHLW-G) distribution. We also derive the series representation
of this new distribution. The cdf and pdf of the OGHLW-G family of distributions are
respectively, given by

F (x;α, β, ξ) =
1− exp

{
− α

[G(x;ξ)

G(x;ξ)

]β}
1 + exp

{
− α

[G(x;ξ)

G(x;ξ)

]β} , (7)

f(x;α, β, ξ) =
2αβg(x; ξ)G(x; ξ)β−1 exp

{
− α

[G(x;ξ)

G(x;ξ)

]β}
G(x; ξ)β+1

(
1 + exp

{
− α

[G(x;ξ)

G(x;ξ)

]β})2 , (8)

where G(x; ξ) is the baseline cdf and g(x; ξ) is the derivative of the baseline cdf, α,
β > 0 are parameters and ξ is a vector of parameters from the baseline distribution. If
X is a random variable with density (8), we can write X ∼ OGHLW −G(α, β, ξ). The
survival function S(x), hazard rate function (hrf) and cumulative hazard rate function,
respectively, are given by

S(x;α, β, ξ) = 1−

[
1− exp

{
− α

[G(x;ξ)

G(x;ξ)

]β}
1 + exp

{
− α

[G(x;ξ)

G(x;ξ)

]β}
]
,

h(x;α, β, ξ) =
αβg(x; ξ)G(x; ξ)β−1

G(x; ξ)β+1
(
1 + exp

{
− α

[G(x;ξ)

G(x;ξ)

]β}) ,
H(x;α, β, ξ) = − log

(
1−

[
1− exp

{
− α

[G(x;ξ)

G(x;ξ)

]β}
1 + exp

{
− α

[G(x;ξ)

G(x;ξ)

]β}
])

.

Interpretation of the OGHLW-G family of distributions can be as follows: Let X
be a random variable, whose cdf is G(.) and describing a stochastic process. Let Y be
the odds, the risk that the system following the lifetime X will not be working at time
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x which is given by G(x; ξ)/(1−G(x; ξ)). The randomness of the odds can be modeled
by the OGHLW-G distribution. In this case, the cdf of X is given by

Pr(X ≤ x) =
1− exp

{
− α

[G(x;ξ)

G(x;ξ)

]β}
1 + exp

{
− α

[G(x;ξ)

G(x;ξ)

]β} .
2.1 Expansion of Density
We provide a linear representation of the OGHLW-G family of distributions. Equation
(8) can be written as

f(x;α, β, ξ) =
2αβg(x; ξ)G(x; ξ)β−1 exp

{
− α

[G(x;ξ)

G(x;ξ)

]β}(
1 + exp

{
− α

[G(x;ξ)

G(x;ξ)

]β})−2

G(x; ξ)β+1
.

Using the series expansion (1− x)−2 =
∑∞

n=1 nx
n−1, we have(

1 + exp
{
− α

[G(x; ξ)

G(x; ξ)

]β})−2

=

∞∑
n=1

(−1)n−1n
[
exp

{
− α

[G(x; ξ)

G(x; ξ)

]β}]n−1
,

so that

f(x;α, β, ξ) =

∞∑
n=1

(−1)n−1n
2αβg(x; ξ)G(x; ξ)β−1 exp

{
− αn

[G(x;ξ)

G(x;ξ)

]β}
G(x; ξ)β+1

.

Using series expansion

exp

{
− αn

[
G(x; ξ)

G(x; ξ)

]β}
=

∞∑
q=0

(−1)q(αn)q

q!

[
G(x; ξ)

G(x; ξ)

]βq
,

we can write

f(x;α, β, ξ) =

∞∑
q=0

∞∑
n=1

(−1)q+n−12β(αn)q+1

q!

g(x; ξ)G(x; ξ)β(1+q)−1

G(x; ξ)β(1+q)+1
,

and applying the following generalized binomial expansion

[G(x; ξ)]−(β(1+q)+1) =

∞∑
p=0

Γ(p+ β(1 + q) + 1)

Γ(β(1 + q) + 1)p!
Gp(x; ξ),

we have

f(x;α, β, ξ) =

∞∑
p,q=0

∞∑
n=1

(−1)q+n−12β(αn)q+1

p!q!

Γ(p+ β(1 + q) + 1)

Γ(β(1 + q) + 1)

×g(x; ξ)G(x; ξ)β(1+q)+p−1.
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We can therefore write the linear representation of Equation (8) as

f(x;α, β, ξ) =

∞∑
p,q=0

vp,qgβ(1+q)+p(x; ξ), (9)

where

vp,q =

∞∑
n=1

(−1)q+n−12β(αn)q+1

p!q!(β(1 + q) + p)

Γ(p+ β(1 + q) + 1)

Γ(β(1 + q) + 1)
(10)

and gβ(1+q)+p(x; ξ) = (β(1 + q) + p)g(x; ξ)[G(x; ξ)]β(1+q)+p−1 is an Exp-G with power
parameter (β(1+q)+p) > 0. The OGHLW-G distribution, therefore, is an infinite linear
combination of Exp-G densities. Thus, the mathematical and statistical properties of
the OGHLW-G distribution can be obtained directly from that of the Exp-G family of
distributions.

3 Some special cases
In this section, we present three special cases of the OGHLW-G family of distributions.
We considered baseline distributions that have simple analytic expressions so as to
maintain the tractability property.

3.1 The Odd generalized half logistic Weibull-uniform distribu-
tion

Consider the uniform distribution as the baseline distribution with pdf and cdf given
by g(x; θ) = 1/θ and G(x; θ) = x/θ, for 0 < x < θ, respectively. We can define the cdf
and pdf of the odd generalized half logistic Weibull-uniform (OGHLW-U) distribution
as

F
OGHLW−U

(x;α, β, θ) =
1− exp

(
− α

(
x

θ−x

)β)
1 + exp

(
− α

(
x

θ−x

)β) ,
f
OGHLW−U

(x;α, β, θ) =
2αβ(1/θ)(x/θ)β−1 exp

(
− α

(
x

θ−x

)β)
(1− x/θ)β+1

[
1 + exp

(
− α

(
x

θ−x

)β)]2 ,
respectively, for α, β, θ > 0.

3.1.1 Sub-models of OGHLW-U distribution

• We obtain the odd half logistic exponential-uniform distribution from the OGHLW-
U distribution by setting α = β = 1.

• When α = 1, we obtain a sub-model with the pdf given by

f(x;β, θ) =
2β(1/θ)(x/θ)β−1 exp

(
−
(

x
θ−x

)β)
(1− x/θ)β+1

[
1 + exp

(
−
(

x
θ−x

)β)]2 .
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• We also obtain the pdfs

f(x;α, θ) =
2α(1/θ) exp

(
− α

(
x

θ−x

))
(1− x/θ)2

[
1 + exp

(
− α

(
x

θ−x

))]2 , (11)

f(x;α, β) =
2αβ(x)β−1 exp

(
− α

(
x

1−x

)β)
(1− x)β+1

[
1 + exp

(
− α

(
x

1−x

)β)]2 ,
by setting β = 1 and θ = 1, respectively.

• Furthermore, other sub-models may be obtained by setting β = θ = 1 and
α = θ = 1.

Figure 1: The pdf and hrf plots of OGHLW-U distribution

Figures 1 shows the plots of pdfs and hrfs of OGHLW-U distribution for selected
parameters values. The pdf can take various shapes including uni-modal, left and right
skewed. Graphs of the hazard function shows the flexibility of the new family and
exhibit increasing, bathtub and upside down bathtub shapes.

3.2 The odd generalized half logistic Weibull-Weibull distribu-
tion

Consider the Weibull distribution as the baseline distribution with pdf and cdf given
by g(x;λ, γ) = λγxγ−1e−λxγ and G(x;λ, γ) = 1 − e−λxγ , respectively. We can define
the cdf and pdf of the odd generalized half logistic Weibull-Weibull (OGHLW-W)
distribution as

F
OGHLW−W

(x;α, β, λ, γ) =
1− exp

{
− α

[
1−e−λxγ

e−λxγ

]β}
1 + exp

{
− α

[
1−e−λxγ

e−λxγ

]β} ,

f
OGHLW−W

(x;α, β, λ, γ) =
2αβλγxγ−1e−λxγ

(1− e−λxγ

)β−1 exp
{
− α

[
1−e−λxγ

e−λxγ

]β}
e−(β+1)λxγ

(
1 + exp

{
− α

[
1−e−λxγ

e−λxγ

]β})2 ,
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respectively, for α, β, λ, γ > 0.

3.2.1 Sub-models of OGHLW-W distribution

• We obtain the odd half logistic exponential-Weibull distribution from the OGHLW-
W distribution by setting α = β = 1.

• When α = 1, we obtain a sub-model with the pdf given by

f(x;β, λ, γ) =
2αβλγxγ−1e−λxγ

(1− e−λxγ

)β−1 exp
{
−
[
1−e−λxγ

e−λxγ

]β}
e−(β+1)λxγ

(
1 + exp

{
−
[
1−e−λxγ

e−λxγ

]β})2 .

• We also obtain the pdfs

f(x;α, λ, γ) =
2αλγxγ−1e−λxγ

exp
{
− α

[
1−e−λxγ

e−λxγ

]}
e−2λxγ

(
1 + exp

{
− α

[
1−e−λxγ

e−λxγ

]})2 ,

f(x;α, β, γ) =
2αβγxγ−1e−xγ

(1− e−xγ

)β−1 exp
{
− α

[
1−e−xγ

e−xγ

]β}
e−(β+1)xγ

(
1 + exp

{
− α

[
1−e−xγ

e−xγ

]β})2 ,

by setting β = 1 and λ = 1, respectively.

• Furthermore, other sub-models may be obtained by setting β = λ = 1, α = λ = 1,
α = γ = 1 and β = γ = 1.

Figure 2: The pdf and hrf plots of OGHLW-W distribution

Figure 2 shows the plots of pdfs and hrfs of OGHLW-W distribution for selected
parameters values. The pdf can take various shapes including uni-modal, left and right
skewed. Graphs of the hazard rate function exhibit increasing and decreasing shapes.
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3.3 The odd generalized half logistic Weibull-normal distribu-
tion

By taking the normal distribution with pdf g(x;µ, σ) = σ−1ϕ
(
x−µ
σ

)
and cdf G(x;µ, σ) =

Φ
(
x−µ
σ

)
, for µ ∈ ℜ and σ > 0, as the baseline distribution, we obtain the odd gen-

eralized half logistic Weibull-normal (OGHLW-N) distribution with cdf and pdf given
by

F
OGHLW−N

(x;α, β, µ, σ) =

1− exp

{
− α

[
Φ
(

x−µ
σ

)
1−Φ

(
x−µ
σ

)]β}
1 + exp

{
− α

[
Φ
(

x−µ
σ

)
1−Φ

(
x−µ
σ

)]β} ,

f
OGHLW−N

(x;α, β, µ, σ) =

2αβϕ
(
x−µ
σ

)[
Φ
(
x−µ
σ

)]β−1

σ

[
1− Φ

(
x−µ
σ

)]β+1

exp

{
− α

[
Φ
(

x−µ
σ

)
1−Φ

(
x−µ
σ

)]β}(
1 + exp

{
− α

[
Φ
(

x−µ
σ

)
1−Φ

(
x−µ
σ

)]β})2
,

for α, β, σ > 0 and −∞ < µ < ∞.

3.3.1 Sub-models of OGHLW-N distribution

• We obtain the odd half logistic exponential-normal distribution from the OGHLW-
N distribution by setting α = β = 1.

• When α = 1, we obtain a sub model with the pdf given by

f(x;β, µ, σ) =

2βϕ
(
x−µ
σ

)[
Φ
(
x−µ
σ

)]β−1

σ

[
1− Φ

(
x−µ
σ

)]β+1

exp

{
−
[

Φ
(

x−µ
σ

)
1−Φ

(
x−µ
σ

)]β}(
1 + exp

{
−
[

Φ
(

x−µ
σ

)
1−Φ

(
x−µ
σ

)]β})2
.

• Furthermore, other sub-models may be obtained by setting β = 1, β = µ = 1,
α = µ = 1, α = σ = 1 and β = σ = 1.

Figure 3 shows the plots of the pdfs and hrfs of OGHLW-N distribution for selected
parameters values. The pdf can take various shapes including J-shaped, uni-modal and
left skewed. Graphs of the hazard rate function exhibit increasing, bathtub, upside
down bathtub followed by bathtub and upside down bathtub shapes.

4 Some properties
We study some properties of the OGHLW-G family of distributions, which includes
order statistics, entropy, moments, incomplete moments, probability weighted moments
(PWMs), quantiles and moment generating function (mgf).
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Figure 3: The pdf and hrf plots of OGHLW-N distribution

4.1 Distribution of order statistics
The pdf of the ith order statistic can be written as

fi:n(x) =
f(x)

B(i, n− i+ 1)

n−j∑
j=0

(
n− i

j

)
F (x)j+i−1,

where B(., .) is the beta function. Substituting Equations (7) and (8), we get

f(x)F (x)j+i−1 =
2αβg(x; ξ)G(x; ξ)β−1 exp

{
− α

[
G(x;ξ)

G(x;ξ)

]β}
G(x; ξ)β+1

(
1 + exp

{
− α

[
G(x;ξ)

G(x;ξ)

]β})j+i+1

×
(
1− exp

{
− α

[G(x; ξ)

G(x; ξ)

]β})j+i−1

.

Expanding(
1 + exp

{
− α

[G(x; ξ)

G(x; ξ)

]β})−(j+i+1)

=

∞∑
w=0

(
−(j + i+ 1)

w

)
exp

{
− αw

[G(x; ξ)

G(x; ξ)

]β}
,

(
1− exp

{
− α

[G(x; ξ)

G(x; ξ)

]β})(j+i−1)

=

∞∑
z=0

(−1)z
(
j + i− 1

z

)
exp

{
− αz

[G(x; ξ)

G(x; ξ)

]β}
,

yields

f(x)F (x)j+i−1 =

∞∑
w,z=0

(−1)z2αβ

(
−(j + i+ 1)

w

)(
j + i− 1

z

)
g(x; ξ)G(x; ξ)β−1

G(x; ξ)β+1

× exp
{
− α(1 + w + z)

[G(x; ξ)

G(x; ξ)

]β}
.

Also, expanding

exp
{
− α(1 + w + z)

[G(x; ξ)

G(x; ξ)

]β}
=

∞∑
m=0

(−1)mαm(1 + w + z)m

m!

[G(x; ξ)

G(x; ξ)

]βm
,
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and

[G(x; ξ)]−(β(m+1)+1) =

∞∑
d=0

Γ(d+ β(m+ 1) + 1)

Γ(β(m+ 1) + 1)d!
[G(x; ξ)]d,

concludes that

f(x)F (x)j+i−1 =

∞∑
d,m,w,z=0

(−1)m+z2βαm+1(1 + w + z)m

d!m!

(
−(j + i+ 1)

w

)

×
(
j + i− 1

z

)
Γ(d+ β(m+ 1) + 1)

Γ(β(m+ 1) + 1)
g(x; ξ)G(x; ξ)β(m+1)+d−1.

(12)

Therefore, the ith order statistic from the OGHLW-G distribution can be expressed as

fi:n(x) =
1

B(i, n− i+ 1)

∞∑
d,m=0

∞∑
w,z=0

n−i∑
j=0

(−1)j+m+z2βαm+1(1 + w + z)m

d!m!(β(m+ 1) + d)

×
(
n− i

j

)(
−(j + i+ 1)

w

)(
j + i− 1

z

)
Γ(d+ β(m+ 1) + 1)

Γ(β(m+ 1) + 1)

×(β(m+ 1) + d)g(x; ξ)G(x; ξ)β(m+1)+d−1

=

∞∑
d,m=0

v∗d,mgβ(m+1)+d(x; ξ), (13)

where gβ(m+1)+d(x; ξ) = (β(m + 1) + d)g(x; ξ)[G(x; ξ)]β(m+1)+d−1 is an Exp-G distri-
bution with power parameter β(m+ 1) + d > 0 and

v∗d,m =
1

B(i, n− i+ 1)

∞∑
w,z=0

n−i∑
j=0

(−1)j+m+z2βαm+1(1 + w + z)m

d!m!(β(m+ 1) + d)

×
(
n− i

j

)(
−(j + i+ 1)

w

)(
j + i− 1

z

)
Γ(d+ β(m+ 1) + 1)

Γ(β(m+ 1) + 1)
.

(14)

It follows that the pdf of the ith order statistic from the OGHLW-G distribution can
be expressed as an infinite linear combination of Exp-G densities.

4.2 Entropy
Rényi entropy is defined by

IR(ν) = (1− ν)−1 log

[∫ ∞

0

fν
θ
(x)dx

]
, v ̸= 1, v > 0. (15)

There are two main types of entropy, Shannon entropy and Rényi entropy. Shannon
entropy is due to Shannon (1951) and Rényi entropy is due to Rényi (1960). Shannon
entropy is given by E {− log[f(X)]}. In view of the fact that Shannon entropy is a
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special case of Rényi entropy, we only derive expressions for Rényi entropy for the
OGHLW-G distribution. Using Equation (8), fν(x), can be written as

fν(x) =
2νανβνgν(x; ξ)G(x; ξ)(β−1)ν exp

{
− αν

[
G(x;ξ)

G(x;ξ)

]β}
G(x; ξ)(β+1)ν

(
1 + exp

{
− α

[
G(x;ξ)

G(x;ξ)

]β})2ν .

Expanding(
1 + exp

{
− α

[G(x; ξ)

G(x; ξ)

]β})−2ν

=
∞∑
i=0

(
−2ν

i

)
exp

{
− αi

[G(x; ξ)

G(x; ξ)

]β}
,

exp
{
− α(ν + i)

[G(x; ξ)

G(x; ξ)

]β}
=

∞∑
j=0

(−1)j(ν + i)jαj

j!

[G(x; ξ)

G(x; ξ)

]βj
,

yields

fν(x) =

∞∑
i,j=0

(−1)j(ν + i)j(2β)ναν+j

j!G(x; ξ)(β(ν+j)+ν)

(
−2ν

i

)
gν(x; ξ)[G(x; ξ)](β(ν+j)−ν).

Applying the generalized binomial expansion as

[G(x; ξ)]−(β(ν+j)+ν) =

∞∑
k=0

Γ(k + β(ν + j) + ν)

Γ(β(ν + j) + ν)k!
G(x; ξ)k,

concludes that

fν(x) =

∞∑
i,j,k=0

(−1)j(ν + i)j(2β)ναν+j

j!k!

Γ(k + β(ν + j) + ν)

Γ(β(ν + j) + ν)

(
−2ν

i

)
×gν(x; ξ)[G(x; ξ)](β(ν+j)−ν+k).

Rényi entropy of OGHLW-G distribution can be written as

IR(ν) = (1− ν)−1 log

 ∞∑
i,j,k=0

wi,j,ke
(1−ν)IREG

 , v ̸= 1, v > 0, (16)

where

wi,j,k =
(−1)j(ν + i)j(2β)ναν+j

j!k!

Γ(k + β(ν + j) + ν)

Γ(β(ν + j) + ν)

(
−2ν

i

)
×
( ν

β(ν + j)− ν + k
+ 1
)ν

, (17)

and IREG =
∫∞
0

[(β(ν+j)−ν+k
ν + 1

)
g(x; ξ)[G(x; ξ)]

β(ν+j)−ν+k
ν

]ν
dx is Rényi entropy of

Exp-G distribution with parameter β(ν+j)−ν+k
ν . It follows that Rényi entropy of

OGHLW-G family of distributions can be derived directly from Rényi entropy of Exp-G
distribution.
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4.3 Moments
The sth ordinary moment is derived from Equation (9) as

µ′
s = E(Xs) =

∞∑
p,q=0

vp,qE(Y s
β(1+q)+p), (18)

where Yβ(1+q)+p follows an Exp-G distribution with power parameter (β(1 + q) + p)

and vp,q is as defined in Equation (10). The nth central moment of X is given by

µn =

n∑
s=0

(
n

s

)
(−µ′

1)
n−sE(Xs) =

n∑
s=0

∞∑
p,q=0

vp,q

(
n

s

)
(−µ′

1)
n−sE(Y s

β(1+q)+p).

The cumulants of X follow recursively from

kn = µ′
n −

n−1∑
s=0

(
n− 1

s− 1

)
ksµ

′
n−s,

where k1 = µ′
1, k2 = µ′

2 − µ′2
1 , k3 = µ′

3 − 3µ′
2µ

′
1 + µ′3

1 , etc. Ordinary moments may
also be used to calculate the measures of dispersion, namely, variance, skewness and
kurtosis.

The rth incomplete moment of X is given by

ϕr(z) =

∫ z

−∞
xrf(x)dx =

∞∑
p,q=0

vp,q

∫ z

−∞
xrgβ(1+q)+p(x; ξ)dx. (19)

The incomplete moment can be used to derive quantities which have wide application
in demography, economics, insurance, medicine and reliability. These quantities are
the Lorenz and Bonferroni curves for a given probability p, L(p) = ϕ1(q)/µ

′
1 and

B(p) = ϕ1(q)/(pµ
′
1), respectively, where µ′

1 is given by Equation (18), with s = 1 and
q = Q(p) is the quantile function of X at p. Equation (19) can be expressed as

ϕr(z) =

∞∑
p,q=0

vp,qHβ(1+q)+p(z), (20)

where Hβ(1+q)+p(z) =
∫ z

−∞ xrgβ(1+q)+p(x; ξ)dx is the rth incomplete moment of the
Exp-G distribution.

Table 1 lists the first five moments together with the standard deviation (SD or
σ), coefficient of variation (CV), coefficient of skewness (CS) and coefficient of kurtosis
(CK) of the OGHLW-N distribution for selected values of the parameters.

4.4 Probability weighted moments
Probability Weighted Moments (PWMs) is mainly used to estimate parameters of a
distribution whose inverse form cannot be expressed explicitly. The (j, i)th PWM, say
ηj,i of X ∼ OGHLW-G(α, β; ξ) is defined by

ηj,i = E(XjF (X)i) =

∫ ∞

−∞
xjf(x)F (x)idx.
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Table 1: Moments of the OGHLW-N distribution for some parameters values
(0.9,1.5,0.5,0.5) (0.5,1,1.5,0.5) (1,0.5,0.5,1.5) (1,1.5,0.5,0.5) (1.1,0.5,1.1,0.5)

EX 0.50445 0.03573 0.10925 0.48371 0.22290
EX2 0.29872 0.02920 0.07443 0.27735 0.16146
EX3 0.18910 0.02477 0.05653 0.17045 0.12704
EX4 0.12536 0.02155 0.04559 0.10990 0.10486
EX5 0.08610 0.01908 0.03821 0.07350 0.08933
SD 0.21035 0.16711 0.24999 0.20825 0.33432
CV 0.41699 4.67730 2.28816 0.43053 1.49988
CS -0.66927 4.65791 2.22378 -0.62663 1.10306
CK 2.87012 23.37119 6.60431 2.77412 2.58679

Using Equation (12), we can write

f(x)F (x)i =

∞∑
d,m,w,z=0

(−1)m+z2βαm+1(1 + w + z)m

d!m!

(
−(i+ 1)

w

)

×
(
(i− 1)

z

)
Γ(d+ β(m+ 1) + 1)

Γ(β(m+ 1) + 1)
g(x; ξ)[G(x; ξ)]β(m+1)+d−1,

which can be expressed as

f(x)F (x)i =

∞∑
d,m,w,z=0

γ∗
d,m,w,zgβ(m+1)+d(x; ξ),

where

γ∗d,m,w,z =
(−1)m+z2βαm+1(1 + w + z)m

d!m!(β(m+ 1) + d)

(
−(i+ 1)

w

)
×
(
(i− 1)

z

)
Γ(d+ β(m+ 1) + 1)

Γ(β(m+ 1) + 1)
.

Therefore, the PWM is given by

ηj,i =

∞∑
d,m,w,z=0

γ∗
d,m,w,z

∫ ∞

−∞
xjgβ(m+1)+d(x; ξ)dx

=

∞∑
d,m,w,z=0

γ∗
d,m,w,zE(T j

(β(m+1)+d)),

where T j
(β(m+1)+d) is jth power of an Exp-G distributed random variable with power

parameter (β(m+ 1) + d) > 0.
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4.5 Quantile and generating functions
We obtain the quantile function by inverting Equation (7). We invert the function

1− exp

{
− α

[
G(x;ξ)

G(x;ξ)

]β}
1 + exp

{
− α

[
G(x;ξ)

G(x;ξ)

]β} = u.

After simplifying, we find that

1− u = (1 + u) exp

{
− α

[
G(x; ξ)

G(x; ξ)

]β}
,

which can be written as[
ln(1 + u)− ln(1− u)

α

]1/β
=

G(x; ξ)

G(x; ξ)
.

The equation simplifies to

G(x; ξ) =

[
ln(1+u)−ln(1−u)

α

]1/β
1 +

[
ln(1+u)−ln(1−u)

α

]1/β .
The quantiles of the OGHLW-G family of distributions may be determined by solving
the equation

x(u) = G−1

[ [
ln(1+u)−ln(1−u)

α

]1/β
1 +

[
ln(1+u)−ln(1−u)

α

]1/β
]
, (21)

using iterative methods.
The moment generating function (mgf) is given by

Mx(t) = E(etX) =

∞∑
p,q=0

vp,qMβ(1+q)+p(t),

where Mβ(1+q)+p(t) is the mgf of Exp-G with power parameter β(1 + q) + p > 0.
Therefore, the mgf of OGHLW-G distribution can be derived from that of the Exp-G
distribution.

Table 2 shows some quantiles for selected parameters values for the OGHLW-N
distribution.

5 Characterization
We characterize the OGHLW-G family of distributions via truncated conditional ex-
pectation in this Section.
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Table 2: Quantiles for Selected Parameters of OGHLW-N Distribution
u (1.5,1.5,1.5,0.5) (0.5,1,1.5,0.2) (1.1,0.5,1.5,0.5) (0.5,1.5,1.5,0.5) (1.1,0.9,1,0.1)

0.1 1.09216 1.38721 0.57535 1.31054 0.88793
0.2 1.23031 1.47376 0.91154 1.45624 0.93194
0.3 1.31626 1.52675 1.14770 1.54460 0.96024
0.4 1.38100 1.56577 1.33722 1.60993 0.98185
0.5 1.43500 1.59760 1.49921 1.66363 0.99992
0.6 1.48352 1.62555 1.64441 1.71128 1.01607
0.7 1.53037 1.65192 1.78137 1.75678 1.03155
0.8 1.57965 1.67900 1.92009 1.80410 1.04768
0.9 1.64039 1.71148 2.08135 1.86176 1.06719

5.1 Characterization based on conditional expectation
Proposition 5.1. Let X : Ω → (0,∞) be a continuous random variable with cdf F (x),
(0 < F (x) < 1 for x ≥ 0), then X belongs to the family with the cdf in Equation (7)
if and only if

E(Y |X < t) = −2

(
1 + exp

{
− α

[
G(x)

G(x)

]β})
. (22)

where Y =

(
1 + exp

{
− α

[
G(X)

G(X)

]β})2

.

We replace G(x; ξ) from (7) by G(x) for computational purposes.

Proof. If pdf of X is defined by Equation (8), then

E(Y |X < t) =
1

F (t)

∫ t

0

(
1 + exp

{
− α

[
G(x)

G(x)

]β})2

f(x)dx

=
1

F (t)

∫ t

0

(
1 + exp

{
− α

[
G(x)

G(x)

]β})2

×
2αβg(x)G(x)β−1 exp

{
− α

[G(x)

G(x)

]β}
G(x)β+1

(
1 + exp

{
− α

[G(x)

G(x)

]β})2 dx

=
1

F (t)

∫ t

0

2αβg(x)G(x)β−1

G(x)β+1
exp

{
− α

[
G(x)

G(x)

]β}
dx

= −2

(
1 + exp

{
− α

[
G(x)

G(x)

]β})
,

after integration by parts. Conversely, if (22) holds, then∫ t

0

(
1 + exp

{
− α

[
G(x)

G(x)

]β})2

f(x)dx = −2F (t)

(
1 + exp

{
− α

[
G(t)

G(t)

]β})
. (23)

Differentiation (23) with respect to t, we obtain(
1 + exp

{
− α

[
G(t)

G(t)

]β})2

f(t) = −2f(t)

(
1 + exp

{
− α

[
G(t)

G(t)

]β})
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+2F (t)

βαg(t)G(t)β−1 exp

{
− α

[
G(t)

G(t)

]β}
Ḡ(t)β+1

,

which after simplification and integration, results in

F (t) =
1− exp

{
− α

[G(t)

G(t)

]β}
1 + exp

{
− α

[G(t)

G(t)

]β} .

6 Maximum likelihood estimation
Let Xi ∼ OGHLW − G(α, β; ξ) and ∆ = (α, β; ξ)T be the parameters vector. The
log-likelihood ℓ = ℓ(∆) based on a random sample of size n is given by

ℓ = n log(2α) + n log β +

n∑
i=1

log[g(x; ξ)] + (β − 1)

n∑
i=1

log[G(x; ξ)]

−α

n∑
i=1

[G(x; ξ)

G(x; ξ)

]β
− (β + 1)

n∑
i=1

log[G(x; ξ)]

−2

n∑
i=1

log
(
1 + exp

{
− α

[G(x; ξ)

G(x; ξ)

]β})
.

Elements of the score vector U = ( ∂ℓ
∂α ,

∂ℓ
∂β ,

∂ℓ
∂ξk

) are given by:

∂ℓ

∂α
=

n

α
−

n∑
i=1

[G(x; ξ)

G(x; ξ)

]β
+ 2

n∑
i=1

G(x; ξ)β exp
{
− α

[
G(x;ξ)

G(x;ξ)

]β}
(
1 + exp

{
− α

[
G(x;ξ)

G(x;ξ)

]β})
[G(x; ξ)]β

,

∂ℓ

∂β
=

n

β
+

n∑
i=1

log[G(x; ξ)]−
n∑

i=1

log[G(x; ξ)]−
n∑

i=1

α
[G(x; ξ)

G(x; ξ)

]β
log
[G(x; ξ)

G(x; ξ)

]

+2

n∑
i=1

α log
[
G(x;ξ)

G(x;ξ)

]
exp

{
− α

[
G(x;ξ)

G(x;ξ)

]β}
[
1 + exp

{
− α

[
G(x;ξ)

G(x;ξ)

]β}]
[G(x; ξ)]β

,

∂ℓ

∂ξk
=

n∑
i=1

1

g(x; ξ)

∂g(x; ξ)

∂ξk
+ (β − 1)

n∑
i=1

1

G(x; ξ)

∂G(x; ξ)

∂ξk

−(β + 1)

n∑
i=1

1

G(x; ξ)

∂G(x; ξ)

∂ξk

−α

n∑
i=1

βG(x; ξ)βG(x; ξ)β−1 + βG′(x; ξ)G(x; ξ)βG(x; ξ)

G(x; ξ)2β
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−2

n∑
i=1

1(
1 + exp

{
− α

[
G(x;ξ)

G(x;ξ)

]β}) ∂
(
1 + exp

{
− α

[
G(x;ξ)

G(x;ξ)

]β})
∂ξk

.

The values of the parameters α, β, ξk are found using MATLAB or NLMIXED in
SAS or R software via iterative methods.

7 Simulation study
A simulation study was conducted to evaluate efficiency of the maximum likelihood
estimators for the OGHLW-N distribution. The simulation study was repeated for
N=1000 times with sample size n= 30, 60, 120, 240, 480, 960 and 1920. Tables 3 and 4
indicate the mean MLEs of the model parameters along with the respective root mean
square errors (RMSE) and average bias for the OGHLW-N distribution for selected
parameters values. From the results, we can verify that as the sample size increases,
the mean estimates of the parameters tend to be closer to the true parameters values,
since RMSEs and average bias decays toward zero for all the parameters.

Table 3: Monte Carlo Simulation Results for OGHLW-N Distribution: Mean, RMSE
and Average Bias (Av. Bias).

α = 1.5, β = 1.5, µ = 0.5, σ = 0.1 α = 1.0, β = 1.0, µ = 1.0, σ = 0.1
Parameter n Mean RMSE Av. Bias Mean RMSE Av. Bias

30 4.569059 16.349983 3.069059 2.757701 7.378323 1.757701
60 3.540066 9.560091 2.040066 2.945819 7.885353 1.945819
120 3.088283 7.796252 1.588283 2.080138 5.107825 1.080138

α 240 2.593596 5.817122 1.093596 1.461129 2.205485 0.461129
480 2.331828 5.126737 0.831828 1.330378 1.643822 0.330378
960 1.878588 2.540492 0.378588 1.099201 0.442613 0.099201
1920 1.633484 0.701397 0.133484 1.057133 0.274805 0.057133
30 5.127208 14.088604 3.627208 3.193842 15.095538 2.193842
60 3.849348 9.505456 2.349348 3.537458 11.132416 2.537458
120 2.982137 5.577696 1.482137 2.003886 5.262557 1.003886

β 240 2.543898 5.285319 1.043898 1.502349 3.489703 0.502349
480 2.079795 3.328097 0.579795 1.257670 1.824428 0.257670
960 1.732601 1.404187 0.232601 1.054419 0.375433 0.054419
1920 1.600485 0.514960 0.100485 1.038597 0.218928 0.038597
30 0.485765 0.072142 -0.014236 1.003237 0.085955 0.003237
60 0.495944 0.057353 -0.004056 1.012316 0.070020 0.012316
120 0.498752 0.046781 -0.001248 1.006380 0.061478 0.006380

µ 240 0.499040 0.041580 -0.000960 1.003917 0.041803 0.003917
480 0.503818 0.025855 0.003818 1.005272 0.032034 0.005272
960 0.501681 0.020089 0.001681 1.002184 0.019844 0.002184
1920 0.501540 0.011683 0.001540 1.001741 0.013472 0.001741
30 0.290333 0.693584 0.190333 0.301832 1.471941 0.201832
60 0.237549 0.542196 0.137548 0.322692 0.971631 0.222692
120 0.189905 0.331462 0.089905 0.189306 0.463920 0.089306

σ 240 0.165326 0.328750 0.065325 0.145136 0.305232 0.045136
480 0.136807 0.209965 0.036807 0.124337 0.169925 0.024337
960 0.115129 0.089107 0.015129 0.105341 0.034552 0.005341
1920 0.106623 0.032778 0.006623 0.103721 0.020092 0.003721
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Table 4: Monte Carlo Simulation Results for OGHLW-N Distribution: Mean, RMSE
and Average Bias (Av. Bias).

α = 2.0, β = 0.5, µ = 2.0, σ = 0.4 α = 0.5, β = 0.3, µ = 0.5, σ = 0.1
Parameter n Mean RMSE Av. Bias Mean RMSE Av. Bias

30 5.204730 14.927740 3.204730 0.642515 0.368557 0.142515
60 4.474557 11.503408 2.474557 0.570638 0.214631 0.070638
120 3.059420 7.110755 1.059420 0.552686 0.151035 0.052686

α 240 2.595238 5.533821 0.595238 0.534412 0.107953 0.034412
480 2.119376 0.852056 0.119376 0.539224 0.080650 0.039224
960 1.999315 0.381351 -0.000685 0.530025 0.058517 0.030025
1920 2.017128 0.250004 0.017128 0.474874 0.025126 -0.025126
30 1.777097 11.811309 1.277097 0.483465 1.376860 0.183465
60 0.449129 0.273661 -0.050871 0.318877 0.179377 0.018877
120 0.465599 0.206981 -0.034401 0.306559 0.140396 0.006559

β 240 0.471970 0.154216 -0.028030 0.300277 0.093176 0.000277
480 0.475200 0.113472 -0.024800 0.293343 0.072947 -0.006657
960 0.479810 0.079473 -0.020190 0.282012 0.046941 -0.017988
1920 0.483180 0.056793 -0.016820 0.286733 0.013267 -0.013267
30 2.096376 0.524046 0.096376 0.535403 0.081549 0.035403
60 2.094982 0.474805 0.094982 0.521969 0.054883 0.021969
120 2.047267 0.336500 0.047267 0.519046 0.042421 0.019046

µ 240 2.018797 0.254908 0.018797 0.513182 0.029317 0.013182
480 2.005962 0.137615 0.005962 0.515552 0.023221 0.015552
960 1.992404 0.083035 -0.007596 0.510715 0.015819 0.010715
1920 2.000390 0.056328 0.000390 0.495734 0.004266 -0.004266
30 1.083896 6.345428 0.683896 0.124526 0.204818 0.024526
60 0.379241 0.202829 -0.020759 0.099830 0.035445 -0.000170
120 0.383363 0.150307 -0.016637 0.098023 0.028744 -0.001977

σ 240 0.385034 0.112777 -0.014966 0.098122 0.019431 -0.001878
480 0.384296 0.080770 -0.015704 0.096130 0.015631 -0.003870
960 0.385967 0.054994 -0.014033 0.094712 0.010495 -0.005288
1920 0.388835 0.039230 -0.011165 0.096875 0.003125 -0.003125

8 Applications
We applied the OGHLW-W distribution to real data sets in order to assess the flexi-
bility of the new family of distributions. Model performance was assessed by the use
of goodness-of-fit statistics that includes: -2loglikelihood (−2ℓ), Akaike Information
Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Informa-
tion Criterion (BIC), Cramer von Mises (W ∗), Andersen-Darling (A∗), Kolmogorov
Smirnov (KS) and sum of squares (SS) from probability plots.

We present two applications of the OGHLW-W distribution. We compared the new
distribution with its nested models and non-nested models. We considered compet-
ing non-nested models, namely, exponentiated Weibull (EW), Beta-Weibull (BW) by
Cordeiro et al. (2013), Kumaraswamy-Weibull (KwW) by Cordeiro et al. (2010), odd
log-logistic exponentiated Weibull (OLLEW) by Afify et al. (2018) and odd exponen-
tiated half logistic-Burr XII (OEHLBXII) by Aldahlan et al. (2018) distributions.

We estimated the model parameters using the subroutine NLMIXED in SAS and
the function nlm in R. Parameter estimates (standard error in parenthesis) for the two
data sets are given in Tables 5 and 8. Likelihood ratio (LR) test was used to compare
the fit of the OGHLW-W distribution with it’s sub-models for a given data set. Plots
of the fitted densities, the histogram of the data and probability plots (Chambers et
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al., 1983) are given in Figures 4 and 5.
The goodness-of-fit statistics W ∗ and A∗, described by Chen and Balakrishnan

(1985) are also presented in Tables 6 and 9. These statistics can be used to verify
that the distribution in question gives a satisfactory fit to the data. In general, smaller
values of W ∗, A∗, KS and SS, indicate a better fit.

8.1 Kevlar 49/epoxy strands failure at 90% data
The data set consist of 101 observations representing the stress-rupture life of kevlar
49/epoxy strands which are subjected to constant sustained pressure at the 90% stress
level until all had failed. The failure times are in hours and are shown below (see
Andrews and Herzberg (2012) or Barlow et al. (1984), for details). 0.01, 0.01, 0.02,
0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 0.09, 0.09, 0.10, 0.10, 0.11, 0.11,
0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43,
0.52, 0.54, 0.56, 0.60, 0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80,
0.80, 0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 1.11, 1.15,
1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 1.52, 1.53, 1.54, 1.54, 1.55,
1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20,
4.69, 7.89.

Table 5: Parameter estimates for various models fitted for Kevlar data set.
Model α β λ γ
OGHLW-W 4.9604e−5 5.9916e−2 1.7139e2 7.8775e−2

(1.1862e−4) (1.3985e−2) (3.069e−6) (1.930e−2)
OGHLW-W(1, β, λ, γ) 1 4.5354e−3 1.6542e2 5.6603e−1

- (3.1520e−4) (8.2054e−9) (4.3548e−2)
OGHLW-W(α, β, 1, 1) 0.9361 0.4232 1 1

(0.0999) (0.0243) - -
OGHLW-W(1, β, 1, γ) 1 1.7879 1 0.2265

1 (0.1039) 1 (0.0215)
OGHLW-W(α, 1, λ, 1) 1.6719 1 0.3980 1

(0.2771) - (0.0272) -
OGHLW-W(1, 1, λ, γ) 1 1 1.0782 0.3696

- - (0.0449) (0.0292)
α β δ -

EW 4.4795 0.1966 33.3692 -
(0.6721) (0.0400) (22.6988) -

a b λ k
BW 0.7491 15.3390 0.0614 1.1079

(0.3063) (4.5347e−5) (0.0178) (0.2942)
a b α β

KwW 0.7019 53.7926 0.0129 1.3065
(0.7932) (0.0018) (0.0044) (1.4548)

α β γ θ
OLLEW 1.6251 1.1121 0.6080 1.1686

(2.6169) (0.4425) (0.9013) (0.9465)
α λ a b

OEHLBXII 0.1451 0.7319 5.1144 0.2036
(0.0421) (0.8593) (1.4689) (0.0954)
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Table 6: Goodness-of-fit statistics for various models fitted for Kevlar data set
Model −2 log L AIC CAIC BIC W ∗ A∗ KS P − value SS
OGHLW-W 205.9 213.9 214.4 224.4 0.1004 0.6903 0.0699 0.7058 0.1044
OGHLW-W(1, β, λ, γ) 336.3 342.3 342.6 350.2 0.2703 2.1685 0.4842 < 2.2 ×10−16 7.6216
OGHLW-W(α, β, 1, 1) 595.9 599.9 600.1 605.2 0.5117 3.4046 0.1676 0.0069 0.5039
OGHLW-W(1, β, 1, γ) 292.2 296.2 296.3 301.4 0.1341 0.8296 0.3662 3.421 ×10−12 5.3424
OGHLW-W(α, 1, λ, 1) 649.2 653.2 653.3 658.4 0.3253 2.2920 0.2198 0.0001 2.5996
OGHLW-W(1, 1, λ, γ) 349.6 353.6 353.7 358.8 0.1094 0.7359 0.2412 1.574 ×10−05 2.0814
EW 239.3 245.3 245.5 253.1 0.7401 3.9791 0.1805 0.0027 0.7967
BW 205.5 213.5 213.9 223.9 0.1614 0.9412 0.0833 0.4845 0.1597
KwW 205.9 213.9 214.3 224.4 0.1947 1.0932 0.0905 0.3799 0.1891
OLLEW 205.5 213.5 213.9 223.9 0.1616 0.9432 0.0798 0.5407 0.1548
OEHLBXII 215.6 223.6 224.1 234.1 0.1636 0.9641 0.0964 0.3042 0.2291

The variance-covariance matrix is given by 1.4070× 10−08 −1.6577× 10−06 −3.6132× 10−10 2.1499× 10−06

−1.6577× 10−06 1.9559× 10−04 4.2546× 10−08 −2.5497× 10−04

−3.6132× 10−10 4.2546× 10−08 9.4185× 10−12 −5.2904× 10−08

2.1499× 10−06 −2.5497× 10−04 −5.2904× 10−08 3.7250× 10−04


and the 95% confidence intervals for the model parameters are given by
α ∈ [4.9604 × 10−05 ± 2.3248 × 10−04], β ∈ [5.9916 × 10−02 ± 2.7411 × 10−02], λ ∈
[1.7139× 1002 ± 6.0152× 10−06] and γ ∈ [2.1499× 10−06 ± 3.7829× 10−02].

8.1.1 Likelihood ratio test for Kevlar 49/epoxy strands failure at 90% data

We present results of the likelihood ratio (LR) test for testing if the OGHLW-W model
for kevlar 49/Epoxy Strands Failure at 90% data is the best fit compared to its nested
models. The results are shown in Table 7.

Table 7: Likelihood ratio test results for Kevlar data
Model Chi-Square df p-value
OGHLW-W(1, β, λ, γ) 130.4 1 < 0.00001
OGHLW-W(α, β, 1, 1) 390.0 2 < 0.00001
OGHLW-W(1, β, 1, γ) 86.3 2 < 0.00001
OGHLW-W(α, 1, λ, 1) 443.3 2 < 0.00001
OGHLW-W(1, 1, λ, γ) 143.7 2 < 0.00001

From the results of the likelihood ratio test, we conclude that there is a signifi-
cant difference between the OGHLW-W model and its nested models for the kevlar
49/Epoxy strands failure at 90% data. The OGHLW-W model performs better than
the non-nested EW, BW, KwW, OLLEW and OEHLBXII distributions based on the
goodness-of-fit statistics (W ∗, A∗, KS and its P-value) presented in Table 6. Also, we
can conclude from Figure 4 that the OGHLW-W model fit the kevlar data better than
the nested models.

8.2 Breaking stress of carbon fibres of 50 mm length data
The second data set is on breaking stress of carbon fibres of 50 mm length (GPa).
Cordeiro and Lemonte (2011) also analyzed the same data set. The data are as follows:
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Figure 4: Fitted densities (left) and probability plots (right) for OGHLW-W distribution on kevlar
data set

0.39, 0.85, 1.08 ,1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05,
2.12, 2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81,
2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09 ,3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22,
3.27, 3.28, 3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42,
4.70, 4.90.

Table 8 show the parameter estimates (standard errors in parentheses) for the
OGHLW-W model on carbon fibres data set. Goodness-of-fit statistics for the carbon
data set are presented in Table 9.

Table 8: Parameter estimates for various models fitted for carbon fibres data set
Model α β λ γ
OGHLW-W 2.0903e−5 0.4108 20.0470 0.2686

(9.6968e−6) (9.5277e−3) (1.9100e−4) (1.3083e−2)
OGHLW-W(α, β, λ, 1) 6.7703e−2 4.7190e−2 20.5840 1

(2.3071e−2) (4.3646e−3) (9.9124e−6)
OGHLW-W(α, β, 1, 1) 0.0697 0.9731 1 1

(0.0236) (0.0895) - -
OGHLW-W(α, 1, λ, 1) 0.0579 1 1.0230 1

(0.0209) - (0.0912) -
OGHLW-W(1, 1, λ, γ) 1 1 0.2319 1.3716

- - (0.0412) (0.1337)
α β δ -

EW 1.3185 0.9022 14.2572 -
(0.4391) (0.1896) (7.3551) -

a b α β
KwW 130.98 5666.1 645.16 0.1336

(2.3367e−07) (6.4716e−10) (1.8198e−08) (6.7393e−04)
α λ a b

OEHLBXII 0.2814 0.0001 7.9391 0.8501
(0.0811) (0.0003) (0.0169) (0.1948)
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Table 9: Goodness-of-fit statistics for various models fitted for carbon fibres data set
Model −2 log L AIC CAIC BIC W ∗ A∗ KS P − value SS
OGHLW-W 171.4 179.4 180.1 188.2 0.0644 0.4438 0.0882 0.6827 0.0678
OGHLW-W(α, β, λ, 1) 181.6 187.6 188.0 194.2 0.1525 1.1182 0.1115 0.3840 0.1483
OGHLW-W(α, β, 1, 1) 192.3 196.3 196.5 200.6 0.1322 0.9494 0.1109 0.3908 0.1203
OGHLW-W(α, 1, λ, 1) 192.3 196.3 196.5 200.7 0.1445 1.0301 0.1168 0.3292 0.1487
OGHLW-W(1, 1, λ, γ) 265.7 269.7 269.9 274.1 0.0720 0.4874 0.2537 0.0004 1.4278
EW 203.2 209.2 209.6 215.8 0.3958 2.1888 0.1794 0.0286 0.4827
KwW 174.8 182.8 183.5 191.6 0.1349 0.7297 0.0974 0.5578 0.1177
OEHLBXII 194.4 202.4 203.1 211.2 0.1948 1.2538 0.1613 0.0646 0.3210

The variance-covariance matrix for carbon fibres model is given by 9.402730× 10−11 −9.007179× 10−08 −1.805615× 10−09 −1.236798× 10−07

−9.007179× 10−08 9.077654× 10−05 1.819742× 10−06 1.246475× 10−04

−1.805615× 10−09 1.819742× 10−06 3.647927× 10−08 2.498733× 10−06

−1.236798× 10−07 1.246475× 10−04 2.498733× 10−06 1.711566× 10−04


and the 95% confidence intervals for the parameters are given by
α ∈ [2.0903 × 10−05 ± 1.9006 × 10−05], β ∈ [0.4108 ± 1.8674 × 10−02], λ ∈ [20.0470 ±
3.7435× 10−04] and γ ∈ [0.2686± 2.5642× 10−02].

8.2.1 Likelihood ratio test for carbon fibres data

Likelihood ratio test results to assess if the the OGHLW-W model fit the carbon fibres
data better than its nested models are shown in Table 10. We conclude that our new
model fit the carbon fibres data better than its nested models. Also, using results from
Table 9, we conclude that the proposed new model performs better than the competing
non-nested models EW, KwW and OEHLBXII on carbon fibres data set. Furthermore,
we conclude from Figure 5 that the OGHLW-W model fit the carbon fibres data better
than the nested models.

Table 10: Likelihood ratio test results for carbon fibres data
Model Chi-Square df p-value
OGHLW-W(α, β, λ, 1) 10.2 1 0.00140
OGHLW-W(α, β, 1, 1) 20.9 2 0.00003
OGHLW-W(α, 1, λ, 1) 20.9 2 0.00003
OGHLW-W(1, 1, λ, γ) 94.3 2 < 0.00001

9 Concluding Remarks
We have developed a new family of distributions called the odd generalized half-logistic
Weibull-G (OGHLW-G) family of distributions and three special cases, OGHLW-U,
OGHLW-W and OGHLW-N distributions. These distributions have interesting hazard
rate function shapes which includes unimodal, bathtub and upside down bathtub. We
also derived some structural properties of the new family of distributions. A charac-
terization based on the conditional expectation was also given. The model was applied
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Figure 5: Fitted densities (left) and probability plots for OGHLW-W distribution on carbon fibres
data set

to a real data set in order to illustrate the applicability and usefulness of the pro-
posed family of distributions. The OGHLW-W distribution was compared to several
non-nested models.
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