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Abstract: The main measure of the uncertainty contained in random variable X is the
Shannon entropy H(X) = −E(log(f(X)). The cumulative entropy is an information
measure which is alternative to the Shannon entropy and is connected with reliability
theory. The cumulative residual entropy (CRE) introduced by Rao et al. (2004) is a
generalized measure of uncertainty which is applied in reliability. Asadi and Zohrevand
(2007) defined a dynamic version of the CRE by ε(X, t). In this paper, weighted resid-
ual entropy and weighted cumulative residual entropy are discussed. The properties
of weighted entropy, cumulative residual entropy, weighted residual entropy, weighted
cumulative residual entropy, weighted past entropy, weighted cumulative past entropy,
dynamic cumulative residual entropy, dynamic cumulative past entropy, are also given.
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1 Introduction
We live in an era of extreme uncertainties. An important measure of uncertainty
associated with a random variable X is the notion of entropy which is introduced
by Shannon (1948). Let X be an absolutely continuous nonnegative random variable
with cumulative distribution function (cdf) F (x) and probability density function (pdf)
f(x). A well known measure of uncertainty associated with a random variable comes
from the field of information theory and is called entropy. The most widely known
measure of entropy, Shannon’s entropy, is given by

H(X) = −E(log(f(X)) = −
∫ ∞

0

f(x) log(f(x))dx. (1)
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The integrand function on the right-hand-side of (1) depends on x only via f(x). Shan-
non’s entropy gives equal importance or weight to the occurrence of every event. Shan-
non (1948) is considered to be the father of information theory and was the first that
incorporated the term information entropy in an information systems for measuring
the uncertainty associated with a random variable.

Definition 1.1. (Differential entropy) The differential entropy H(X) of a continuous
random variable X with pdf f(x) is defined as

H(X) = −
∫
S

f(x) log f(x)dx

where S is the support region of the random variable.

Example 1.2. Consider a uniform distribution over [a, b], a < b. Then, Shannon’s
entropy is

H(X) = −
∫ ∞

0

f(x) log(f(x))dx = log(b− a).

The differential entropy plays the central role of information theory and a large
number of research work has been reported in the literature. Rest of the paper is
organized as follows. In Section 2, the definition of the weighted entropy (WE) and
a description of its properties are given. In Section 3, we present weighted residual
entropy (WRE), cumulative residual entropy (CRE), cumulative past entropy (CPE),
weighted cumulative residual entropy (WCRE), dynamic cumulative residual entropy
(DCRE), dynamic cumulative past entropy (DCPE) and related examples.

2 Weighted entropy
Weighted entropy, which is a generalization of classical entropy, has been proposed
by Belis and Guiasu (1968), Guiasu (1971) and Guiasu (1986). Other measures of
uncertainty as suitable generalizations or modifications of the classical entropy have
been proposed in the recent literature such as the WE (Di Crescenzo and Longobardi,
2006) defined as

Hω(X) = −E(X log(f(X))) = −
∫ ∞

0

xf(x) log(f(x))dx. (2)

The factor X in the integrand of Equation (2) represents a weight which linearly em-
phasizes the occurrence of the event {X=x}. This is a “length-biased” shift-dependent
information measure assigning greater importance to larger values of X. When the
weight function depends on the length of the component, the resulting distribution is
called length-biased weighted function (see Misagh, 2016; Akdeniz and Çabulk, 2017).

Example 2.1. Suppose X and Y denote random variables with pdfs

f(x) =
1

2
x, 0 < x < 2,

g(y) =
1

2
(2− y), 0 < y < 2,
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respectively. By simple calculations, we have

H(X) = −
∫ 2

0

f(x) log(f(x))dx = −
∫ 2

0

x

2
log(

x

2
)dx =

1

2
,

H(Y ) = −
∫ 2

0

g(y) log(g(y))dy = −
∫ 2

0

1

2
(2− y) log(

1

2
(2− y))dy =

1

2
.

Their Shannon entropies are identical. Therefore, the expected uncertainties for f(x)
and g(y)on the predictability of the outcomes of the X and Y are identical. But, we
have

Hω(X) = −
∫ 2

0

xf(x) log(f(x))dx = −
∫ 2

0

x
1

2
x log(

1

2
x)dx =

4

9
,

Hω(Y ) = −
∫ 2

0

yg(y) log(g(y))dy = −
∫ 2

0

y
1

2
(2− y) log(

1

2
(2− y))dy =

5

9
.

Then Hω(X) < Hω(Y ). Hence, even though H(X) = H(Y ), the expected weighted
uncertainty contain in of the f(x) on the predictability of the outcome of X is less than
that of g(y) on the predictability of the outcome of Y .

3 Weighted residual entropy
The role of Shannon entropy as a measure of uncertainty in residual lifetime distribu-
tions has been studied by many researchers (Ebrahimi and Pellerey, 1995; Ebrahimi,
1996; Belzunce et al., 2004; Kumar et al., 2015). Let X be an absolutely continu-
ous nonnegative random variable having cdf F (x) and the survival function F̄ (x) =
1 − F (x). In reliability theory, X represents the random lifetime of an item or sys-
tem with survival function F̄ (x) and the pdf f(x). Suppose X denotes the lifetime of
a component/system or of a living organism and f(t) denotes the lifetime pdf. (see
Nanda and Paul, 2006a) If a component is known to have survived to age t then Shan-
non entropy is no longer useful to measure the uncertainty of remaining lifetime of the
component.

Ebrahimi (1996) defined the entropy for residual lifetime Xt = (X − t|X > t) as a
dynamic form of uncertainty called the residual entropy at time t and defined as

H(X; t) = −
∫ ∞

t

f(x)

F̄ (t)
log(

f(x)

F̄ (t)
)dx = log(F̄ (t))− 1

F̄ (t)

∫ ∞

t

f(x) log(f(x))dx, (3)

where F (∞) = 1. Ebrahimi(1996) showed that H(X, t) uniquely determines the distri-
bution function F (t). Obviously H(X, 0) = H(X). It is well known from (3) that units
which exhibitless uncertainty in life times are more reliable and hence measure (3) has
much relevance in characterizing, ordering and classifying life distributions according
to its behavior.

We now make use of (2) to define weighted entropy for residual lifetime that is the
weighted version of entropy (3), we have

Hω(X, t) = −
∫ ∞

t

x
f(x)

F̄ (t)
log(

f(x)

F̄ (t)
)dx. (4)
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3.1 Cumulative residual entropy
In order to estimate the Shannon entropy for a continuous random variable, one has
to obtain the estimation of pdf, which is not a trivial task. Recently, Rao et al. (2004)
introduced an alternative measure of uncertainty called CRE which is based on the
survival (reliability) function F̄ (x) = 1 − F (x) instead of the pdf f(x) used in the
classical Shannon’s entropy (1) (see Toomaj et al., 2017).

As an alternative measure of uncertainty, the CRE of X is defined by

ε(X) = −
∫ ∞

0

F̄ (x) log F̄ (x)dx. (5)

This measures the uncertainty contained in the survival function of X. The basic idea in
their definition was to replace the pdf by the survival function in Shannon’s definition.
CRE is more general than the Shannon entropy and possesses more general mathemat-
ical properties than the Shannon entropy. This measure is always non-negative and its
definition is valid for both continuous and discrete cases.

Example 3.1. Let X be uniformly distributed over [a, b], a < b. Then, the CRE is
computed by (5) where F̄ (x) = 1− F (x) = b−x

b−a . Thus, we have ε(X) = (b− a)/4.

Example 3.2. If X has Pareto distribution with pdf

f(x) =
αβα

(x+ β)α
, x ≥ 0, α > 1, β > 0,

the CRE of X is given by ε(X) = αβ
(1−α)2 .

Example 3.3. Suppose X has two parameter Weibull distribution with pdf

f(x, k, b) = bkxk−1e−bxk

, x ≥ 0

where k > 0, b > 0. The CRE of the Weibull distribution is given by

ε(X) =
1

k
b−1/kΓ(1 +

1

k
),

where Γ(.) is the complete gamma function. The Weibull distribution appear in some
of the entropy expressions.

CRE has many interesting applications in different branches of sciences such as reli-
ability theory, survival analysis, computer vision and image processing. (see Zohrevand
et al., 2015; Psarakos and Toomaj, 2017)

Misagh et al. (2011) and Miralia et al. (2017) defined WCRE as follows.

Definition 3.4. (Weighted cumulative residual entropy) Let X be nonnegative con-
tinuous random variable having survival function F̄ (x). The WCRE of X is defined
by

εω(X) = −
∫ ∞

0

xF̄ (x) log(F̄ (x))dx. (6)

Now we evaluate WCRE for some distributions.
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Example 3.5. Let X be uniformly distributed on [a, b], a < b. Then

εω(X) =
b− a

4
.
5b+ 4a

9
=

5b+ 4a

9
ε(X).

If 5b+4a
9 < 1(> 1), then εω(X) < (> ε(X)) and if 5b+ 4a = 9 then εω(X) = ε(X).

Example 3.6. If X has exponential distribution with mean 1
λ , then the CRE is com-

puted as follows

ε(X) = −
∫ ∞

0

F̄ (x) log(F̄ (x))dx =
1

λ
.

The WCRE is given as εω(X) = 2
λ2 .

3.2 The dynamic cumulative residual entropy
Asadi and Zohrevand (2007) proposed the DCRE as

DCRE((X; t)) = ε(X, t) = −
∫ ∞

t

F̄ (x)

F̄ (t)
log(

F̄ (x)

F̄ (t)
)dx. (7)

It is clear that ε(X; 0) = ε(X). The DCRE is a measure of the information in the
residual life distribution.

Example 3.7. Let X has exponential distribution with mean 1
λ . Then, the DCRE is

given as
DCRE(X, t) = ε(X, t) =

1

λ
= ε(X),

which DCRE for exponential distribution does not depend on t.

3.3 The cumulative past entropy
In some practical situations, uncertainty is related to past life time rather than future.
As an example, one can find past uncertainty of a unit that failed at time t.

Di Crescenzo and Longobardi (2002) have introduced past entropy over (0, t). Since
it is reasonable top resume that in many realistic situations uncertainty is not neces-
sarily related to the future but can also refer to the past. They have also shown the
necessity of past entropy and its relation with the residual entropy. If X denotes the
lifetime of an item or of a living organism, then past entropy(or uncertainty of lifetime
distribution) of an item is defined as

H̄(X; t) = −
∫ t

0

f(x)

F (t)
log(

f(x)

F (t)
)dx. (8)

Note that (8) can be rewritten as

H̄(X, t) = F (t)− 1

F (t)

∫ t

0

f(x) log(f(x)dx. (9)
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Given that at time t an item has been found to be failing, H̄(X, t) measure the uncer-
tainty about its past life. Nanda and Paul (2006b) have studied some properties and
applications of past entropy.

Di Crescenzo and Longobardi (2009) proposed a dual concept of CRE called CPE
defined as

ε̄(X) = −
∫ ∞

0

F (x) logF (x)dx, (10)

which measures information concerning past lifetime.

Example 3.8. If X is uniformly distributed in [a, b], then

ε̄(X) =
b− a

4
= ε(X).

We note that H(X) is the differential entropy of the past lifetime of X at time t,
i.e.,[X|X ≤ t]. We now make use of (2) to define weighted entropy for past lifetime
that is the weighted version of entropy (8). Di Crescenzo and Longobardi (2006) have
defined weighted past entropy. The weighted past entropy at time t of a random lifetime
X is defined as

H̄ω(X, t) = −
∫ t

0

x
f(x)

F (t)
log(

f(x)

F (t)
)dx. (11)

Example 3.9. Suppose X is uniformly distributed on (a, b). The weighted past entropy
is

H̄ω(X, t) =
t+ a

2
log(t− a).

3.4 Weighted cumulative past entropy
The WCP)is defined as

WCPE(X) = −
∫ ∞

0

xF (x) log(F (x))dx (12)

which is proposed by Misaghet al. (2011).

Example 3.10. If X is uniformly distributed on (0, b) with b > 0, then the WCPE of
X is given by

WCPE(X) = −b2

9
.

3.5 Dynamic cumulative past entropy
The dynamic cumulative past entropy (DCPE) for a nonnegative random variable X
with absolutely continuous cdf F (x) and pdf f(x) is defined as

ε̄(X, t) = DCPE(X) = −
∫ t

0

F (x)

F (t)
log(

F (x)

F (t)
)dx (13)

which is proposed by Di Crescenzo and Longobardi (2009).
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Example 3.11. Let X be distributed uniformly on (0, b) with b > 0. For t >0, the
DCPE of X is given as

ε̄(X, t) = − t

4
.

It is clear that for the CPE of X we have ε̄(X) = b
4 = ε(X).

4 Conclusions
In this paper, the concept of weighted entropy has been discussed. In literature of
information measures, weighted entropy is a famous concept which always give a non-
negative uncertainty measure. But in many survival studies for modeling statistical
data information about lifetime is available. We study the properties of the resulting
entropiessuch as the weighted residual entropy, cumulative residual entropy, weighted
cumulative residual entropy, and weighted past entropy. The dynamic form of cumu-
lative residual entropy measures the residual lifetime of the component has survived
up to time t. Dynamic cumulative residual and past entropies are also given. Some
suitable examples are presnted.
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