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Abstract: A new family of continuous distributions namely new power generalized
Weibull-G family of distributions is proposed. Some special sub-models of the new
family are provided. Some statistical properties of the new family of distributions are
obtained including the quantile function, ordinary and incomplete moments, proba-
bility weighted moments, distribution of the order statistics and Rényi entropy. The
maximum likelihood method is used for estimating model parameters. A simulation
study is employed to check the consistency of the maximum likelihood estimates. The
flexibility of a sub-model of the generated family is illustrated by means of two appli-
cations to real data sets.
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1 Introduction
The limitations of standard distributions in statistical modeling has led to extension
and generalization of the well-known classical distributions by statisticians to gain
flexibility. There are several proposed methods for generating new distributions with
desirable properties in the literature. Some notable examples include the transformed-
transformer (T-X) by Alzaghal et al. (2013), the gamma-G by Zografos and Balakr-
ishnan (2009), the Kumaraswamy-G by Cordeiro and de Castro (2011), McDonald-G
(Mc-G) by Alexander et al. (2012), the exponentiated generalized (EG) class of distri-
butions by Cordeiro et al. (2013), Kumaraswamy Marshall-Olkin family by Alizadeh
et al. (2015), generalized odd log-logistic-G by Cordeiro et al. (2017), the beta Odd
Lindley-G by Chipepa et al. (2019a), generalized transmuted Poisson-G by Yousof et
al. (2018), the transmuted Gompertz-G by Reyad et al. (2018), the Kumaraswamy
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odd Lindley-G by Chipepa et al. (2019b), Marshall-Olkin alpha power-G by Nassar et
al. (2019), the Nadarajah Haghighi Topp Leone-G family of distributions Reyad et al.
(2019); among others.

Bagdonavicius and Nikulin (2002) developed an extension of the Weibull distribu-
tion namely, power generalized Weibull (PGW) distribution. Lai (2013) described the
PGW as one of the extensions of Weibull distribution that can exhibit non-monotonic
hazard rates. Nikulin and Haghighi (2009) obtained maximum likelihood estimates
(MLEs) of the parameters and the importance of the model was illustrated using Efron’s
head-and-neck cancer clinical trial data (Efron, 1988) .

The new model is versatile and flexible because it applies to data sets of varying
skewness and kurtosis. Moreso, the proposed distribution exhibits both monotonic and
non-monotonic shapes for the hazard rate function. The distribution is not in closed
form but it has a desirable property that it can be expressed as an infinite linear com-
bination of the exponentiated-G distribution, which makes the derivation of statistical
properties of this new distribution amenable. Furthermore, the new distribution is a
family of distributions that contains many known and new sub-models.

The rest of the paper is organized as follows: Section 2 contain the new power
generalized Weibull (NPGW-G) family of distributions and its sub-families, the density
expansion, hazard function and the quantile function. Section 3 includes the special
cases of (NPGW-G) family of distributions. In Section 4, we obtain the distribution
of order statistics and Rényi entropy. Some basic mathematical quantities for the
new family of distributions including moments and generating function, incomplete
and probability weighted moments are determined in Section 5. Section 6 contain the
estimation of the parameters of the NPGW-G family of distributions via the method of
maximum likelihood, followed by a Monte Carlo simulation study to examine accuracy
of the maximum likelihood estimates in Section 7. Some applications to real data sets
are given in Section 8, followed by some concluding remarks in section 9.

2 The new model
The cumulative distribution function (cdf) and probability density function (pdf) of
the power generalized Weibull (PGW) distribution, for α, β > 0, repectively, are given
by

F (t;α, β) = 1− exp
(
1− [1 + tα]

β
)
,

f(t;α, β) = αβtα−1(1 + tα)β−1 exp
(
1− (1 + tα)β

)
,

Based on the idea of T -X family of distributions by Alzaghal et al. (2013), and the
PGW distribution, we define the cdf and pdf of the NPGW-G family of distributions
by

F (x;α, β, ξ) = 1−
∫ − log(G(x;ξ))

0

αβtα−1(1 + tα)β−1 exp
(
1− (1 + tα)β

)
dt

= exp
(
1− [1 + (− log (G(x; ξ)))

α
]
β
)
, (1)

f(x;α, β, ξ) = αβ [1 + (− log (G(x; ξ)))
α
]
β−1

(− log (G(x; ξ)))
α−1
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× exp
(
1− [1 + (− log (G(x; ξ)))

α
]
β
) g(x; ξ)

G(x; ξ)
, (2)

respectively, for α, β > 0 and parameter vector ξ. A random variable X with cdf (1) is
denoted by X ∼ NPGW −G(α, β, ξ).

2.1 Linear representation
In this section, we obtain the NPGW-G density function as linear representation of the
exponentiated-G distribution. By letting y = 1 − G(x; ξ), and applying the following
series expansions

ez =

∞∑
k=0

zk

k!
,

(1− z)k−1 =

∞∑
j=0

(−1)jΓ(k)

Γ(k − j)Γ(j + 1)
zj ,

(1 + z)−(k+1) =

∞∑
j=0

(−1)jΓ(k + j + 1)

Γ(k + 1)Γ(j + 1)
zj , for |z| < 1 and k > 0,

[
− log(1− y)

]δ−1

= yδ−1

[ ∞∑
m=0

(
δ − 1

m

)
ym
( ∞∑

s=0

ys

s+ 2

)m]
.

Now, applying the result on power series raised to a positive integer, with as =
(s+ 2)−1, that is, ( ∞∑

s=0

asy
s

)m

=

∞∑
s=0

bs,mys,

where bs,m = (sa0)
−1
∑s

l=1[m(l + 1) − s]albs−l,m, and b0,m = am0 , (Gradshteyn and
Ryzhik, 2000), we have

f(x;α, β, ξ) = αβ

∞∑
i,l=0

(
β − 1

l

)
(− log (G(x; ξ)))

α(l+1)−1 g(x; ξ)

G(x; ξ)i!

×
(
1− [1 + (− log (G(x; ξ)))

α
]
β
)i

= αβ

∞∑
i,j,l=0

(
β − 1

l

)(
i

j

)
(−1)j

i!
(− log (G(x; ξ)))

α(l+1)−1

× [1 + (− log (G(x; ξ)))
α
]
βj g(x; ξ)

G(x; ξ)

= αβ

∞∑
i,j,l,p=0

(
β − 1

l

)(
i

j

)(
βj

p

)
(−1)j

i!
(− log (G(x; ξ)))

α(l+p+1)−1

× g(x; ξ)

G(x; ξ)
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= αβ

∞∑
i,j,l,p=0

(
β − 1

l

)(
i

j

)(
βj

p

)
(−1)j

i!

× (− log(1− (1−G(x; ξ))))
α(l+p+1)−1 g(x; ξ)

G(x; ξ)

= αβ

∞∑
i,j,l,p=0

∞∑
m=0

∞∑
s=0

bs,m

(
α(l + p+ 1)− 1

m

)(
β − 1

l

)(
i

j

)(
βj

p

)

× (−1)j

i!
((1−G(x; ξ))

α(l+p+1)+s+m−1 g(x; ξ)

G(x; ξ)

= αβ

∞∑
i,j,l,p,q=0

∞∑
m=0

∞∑
s=0

bs,m

(
α(l + p+ 1)− 1

m

)(
β − 1

l

)(
i

j

)(
βj

p

)

×
(
α(l + p+ 1) + s+m− 1

q

)
(−1)j

i!
(G(x; ξ))

q−1
g(x; ξ)

= αβ

∞∑
i,j,l,p,q=0

∞∑
m=0

∞∑
s=0

bs,m

(
α(l + p+ 1)− 1

m

)(
β − 1

l

)(
i

j

)(
βj

p

)

×
(
α(l + p+ 1) + s+m− 1

q

)
(−1)j+qq

i!q
(G(x; ξ))

q−1
g(x; ξ)

= αβ

∞∑
i,j,l,p,q=0

∞∑
m=0

∞∑
s=0

bs,m

(
α(l + p+ 1)− 1

m

)(
β − 1

l

)(
i

j

)(
βj

p

)

×
(
α(l + p+ 1) + s+m− 1

q

)
(−1)j+q

i!q
g∗
q
(x; ξ)

=

∞∑
q=0

b
q
g∗
q
(x; ξ), (3)

where g∗
q
(x; ξ) = q[G(x; ξ)]q−1g(x; ξ) is the exponentiated-G (E-G) pdf with the power

parameter q > 0 and parameter vector ξ, and

b
q

= αβ

∞∑
i,j,l,p=0

∞∑
m=0

∞∑
s=0

bs,m

(
α(l + p+ 1)− 1

m

)(
β − 1

l

)(
i

j

)(
βj

p

)

×
(
α(l + p+ 1) + s+m− 1

q

)
(−1)j+q

i!q
. (4)

Consequently, the mathematical and statistical properties of the NPGW-G family of
distributions follow directly from those of the exponentiated-G (E-G) distribution.

2.2 Sub-families of NPGW-G family of distributions
Some new and known sub-families are presented in this subsection.

• When β = 1, we obtain the new Weibull-G (NW-G) family of distributions (Tahir
et al., 2016) with the cdf

F (x;α, ξ) = exp (− (− log (G(x; ξ)))
α
) , α > 0.
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• If α = 1, we obtain the new Nadarajah Haghighi-G (NNH-G) family of distribu-
tions with the cdf

F (x;β, ξ) = exp
((

1− [1 + (− log (G(x; ξ)))]
β
))

, β > 0.

This is a new family of distributions.

• If α = β = 1, we obtain the baseline distribution function, that is

F (x; ξ) = G(x; ξ).

• If β = 1, α = 2 we obtain the new Rayleigh-G (NR-G) family of distributions
with the cdf

F (x; ξ) = exp
(
− (− log (G(x; ξ)))

2
)
.

2.3 Hazard and quantile functions
Presented below are the hazard and quantile functions of the NPGW-G family of
distributions. The hazard rate function of the NPGW-G family is given by

hF (x;α, β, ξ) =
f(x;α, β, ξ)

F (x;α, β, ξ)

= αβ [1 + (− log (G(x; ξ)))
α
]
β−1

(− log (G(x; ξ)))
α−1

× exp
(
1− [1 + (− log (G(x; ξ)))

α
]
β
) g(x; ξ)

G(x; ξ)

×
(
1−

(
1− [1 + (− log (G(x; ξ)))

α
]
β
))−1

.

The quantile function of the NPGW-G family of distributions is obtained by solving
the non-linear equation:

F (x;α, β, ξ) = exp
(
1− [1 + (− log (G(x; ξ)))

α
]
β
)
= u,

for 0 ≤ u ≤ 1, that is,

1− log(u) = [1 + (− log (G(x; ξ)))
α
]
β

(1− log(u))
1
β − 1 = (− log (G(x; ξ)))

α

G(x; ξ) = exp

(
−
(
(1− log(u))

1
β − 1

) 1
α

)
.

Consequently, the quantile function for the NPGW-G family of distributions is given
by

QG(u;α, β, ξ) = X = G−1

[
exp

(
−
(
(1− log(u))

1
β − 1

) 1
α

)]
. (5)

It follows therefore that random numbers can be generated from the NPGW-G family
of distributions based on equation (5).
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3 Some sub-models
In this section, we introduce four sub-models of the NPGW-G family of distributions.

3.1 NPGW-Lindley distribution
Suppose the cdf and pdf of the baseline distribution are given by G(x;λ) = 1 −
1+λx
1+λ exp(−λx) and g(x;λ) = λ2(1+x) exp(−λx)

1+λ , for λ > 0, and x > 0. Then, the cdf
and pdf of NPGW-Lindley (NPGW-L) distribution are given by

F (x;α, β, λ) = exp

(
1−

[
1 +

(
− log

(
1− 1 + λx

1 + λ
exp(−λx)

))α]β)
,

f(x;α, β, λ) = αβ

[
1 +

(
− log

(
1− 1 + λx

1 + λ
exp(−λx)

))α]β−1

× exp

(
1−

[
1 +

(
− log

(
1− 1 + λx

1 + λ
exp(−λx)

))α]β)

×
(
− log

(
1− 1 + λx

1 + λ
exp(−λx)

))α−1 λ2(1+x) exp(−λx)
1+λ

1− 1+λx
1+λ exp(−λx)

,

respectively, for α, β, λ > 0. The hazard rate function is given by

hF (x;α, β, λ) = αβ

[
1 +

(
− log

(
1− 1 + λx

1 + λ
exp(−λx)

))α]β−1

× exp

(
1−

[
1 +

(
− log

(
1− 1 + λx

1 + λ
exp(−λx)

))α]β)

×
(
− log

(
1− 1 + λx

1 + λ
exp(−λx)

))α−1 λ2(1+x) exp(−λx)
1+λ

1− 1+λx
1+λ exp(−λx)

×

(
1− exp

(
1−

[
1 +

(
− log

(
1− 1 + λx

1 + λ
exp(−λx)

))α]β))−1

.

Figure 1 shows the plots of pdf and hazard functions of NPGW-Lindley distribution,
respectively. The pdf can take several shapes including increasing, right skewed, left
skewed, unimodal and reverse-J shapes. The NPGW-Lindley hazard displays increas-
ing, reverse-J, bathtub and upside-down bathtub shapes.

3.2 NPGW-power distribution
The NPGW-Power (NPGW-P) distribution is defined by taking the baseline distribu-
tion to be the power distribution with the cdf and pdf given by G(x; θ, k) = (θx)

k and
g(x; θ, k) = kθkxk−1, for θ, k > 0, and x ∈ (0, 1

θ ). It’s cdf and pdf are given by

F (x;α, β, θ, k) = exp

(
1−

[
1 +

(
− log

(
(θx)

k
))α]β)

,



173 B. Oluyede, T. Moakofi, F. Chipepa, B. Makubate

Figure 1: Density and hazard function plots for NPGW-Lindley distribution.

Table 1: The quantile for NPGW-Lindley distribution
(α, β, λ)

u (0.2, 1.2, 0.6) (0.4, 1.0, 0.5) (0.6, 0.8, 1.0) (0.8, 1.0, 1.0) (0.5, 1.0, 0.4)
0.1 0.0062 0.0051 0.0072 0.1190 0.0408
0.2 0.2748 0.2157 0.0367 0.3324 0.5763
0.3 2.1089 1.0620 0.1853 0.5946 1.6193
0.4 4.5625 2.3410 0.4798 0.8936 2.9349
0.5 7.1917 3.8786 0.9023 1.2424 4.4650
0.6 10.0333 5.6631 1.4475 1.6482 6.2352
0.7 13.3186 7.7901 2.1440 2.1556 8.36401
0.8 17.5383 10.5367 3.0779 2.8324 11.1390
0.9 24.1927 14.8186 4.5622 3.9295 15.4940

and

f(x;α, β, θ, k) = αβ
[
1 +

(
− log

(
(θx)

k
))α]β−1 (

− log
(
(θx)

k
))α−1

× exp

(
1−

[
1 +

(
− log

(
(θx)

k
))α]β)kθkxk−1

(θx)
k

,

respectively, for α, β, θ, k > 0. The hazard rate function is given by

hF (x;α, β, θ, k) = αβ
[
1 +

(
− log

(
(θx)

k
))α]β−1 (

− log
(
(θx)

k
))α−1

× exp

(
1−

[
1 +

(
− log

(
(θx)

k
))α]β)kθkxk−1

(θx)
k

×
(
1− exp

(
1−

[
1 +

(
− log

(
(θx)

k
))α]β))−1

.

Figure 2 shows the plots of pdf and hazard functions of NPGW-Power distribution,
respectively. The pdf can take several shapes including increasing, left skewed, right
skewed, unimodal and reverse-J shapes. The NPGW-Power hazard displays increasing,
reverse-J, bathtub, upside-down bathtub followed by bathtub and upside-down bathtub
shapes.
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Figure 2: Density and hazard function plots for NPGW-P distribution.

Table 2: The quantile for NPGW-power distribution
(α, β, θ, k)

u (.29, 1.7, 1, .7) (.5, .9, 1, 1.2) (.9, 1, .96, .8) (1.4, 2, 1, .3) (1, .9, 1.2, .6)
0.1 0.2171 0.0053 0.0450 0.0533 0.0078
0.2 0.5770 0.0479 0.1257 0.0937 0.0359
0.3 0.7906 0.1910 0.2248 0.1348 0.0811
0.4 0.9026 0.3900 0.3355 0.1861 0.1412
0.5 0.9560 0.5904 0.4535 0.2417 0.2218
0.6 0.9812 0.7542 0.5759 0.3124 0.3161
0.7 0.9919 0.8740 0.6978 0.4001 0.4260
0.8 0.9949 0.9503 0.8236 0.5112 0.5486
0.9 1.0000 0.9892 0.9423 0.6715 0.6848

3.3 NPGW-Weibull distribution
Let G(x; ξ) be the Weibull distribution with cdf and pdf given by G(x;λ, θ) = 1 −
exp

(
−(λx)θ

)
and g(x;λ, θ) = θλθxθ−1 exp

(
−(λx)θ

)
, for λ, θ, x > 0. Then, the NPGW-

Weibull (NPGW-W) distribution has cdf and pdf given by

F (x;α, β, λ, θ) = exp

(
1−

[
1 +

(
− log

(
1− exp

(
−(λx)θ

)))α]β)
,

f(x;α, β, λ, θ) = αβ
[
1 +

(
− log

(
1− exp

(
−(λx)θ

)))α]β−1

× exp

(
1−

[
1 +

(
− log

(
1− exp

(
−(λx)θ

)))α]β)
×
(
− log

(
1− exp

(
−(λx)θ

)))α−1 θλθxθ−1 exp
(
−(λx)θ

)
1− exp (−(λx)θ)

,

respectively, for α, β, λ, θ > 0. The hazard rate function is given by

hF (x;α, β, λ, θ) = αβ
[
1 +

(
− log

(
1− exp

(
−(λx)θ

)))α]β−1
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× exp

(
1−

[
1 +

(
− log

(
1− exp

(
−(λx)θ

)))α]β)
×
(
− log

(
1− exp

(
−(λx)θ

)))α−1 θλθxθ−1 exp
(
−(λx)θ

)
1− exp (−(λx)θ)

×
(
1− exp

(
1−

[
1 +

(
− log

(
1− exp

(
−(λx)θ

)))α]β))−1

.

For θ = 1 and θ = 2 we obtain the NPGW-exponential (NPGW-E) and NPGW-
Rayleigh (NPGW-R) distributions, respectively.

Figure 3: Density and hazard function plots for NPGW-W distribution

Figure 3 shows the plots of pdf and hazard functions of NPGW-Weibull distribution,
respectively. The pdf can take several shapes including increasing, left skewed, right
skewed, unimodal and reverse-J shapes. The NPGW-Weibull hazard displays increas-
ing, decreasing, bathtub and upside-down bathtub shapes.

Table 3: The quantile for NPGW-Weibull distribution
(α, β, λ, θ)

u (1.2, 1.2, 1, 1.8) (.2, 1.5, 2.2, 2) (.8, 1.2, 2, 1.0) (2, 1, 1, 2.2) (1, 1.8, 2.6, 2)
0.1 0.4490 0.1223 0.0742 0.5291 0.2704
0.2 0.5703 0.4133 0.1614 0.6033 0.3186
0.3 0.6753 0.6281 0.2551 0.6637 0.3555
0.4 0.7739 0.7992 0.3603 0.7193 0.3925
0.5 0.8728 0.9465 0.4862 0.7755 0.4279
0.6 0.9837 1.0907 0.6359 0.8361 0.4685
0.7 1.1093 1.2400 0.8266 0.9035 0.5129
0.8 1.2683 1.4170 1.0917 0.9873 0.5704
0.9 1.5096 1.6619 1.5368 1.1210 0.6552

3.4 NPGW-log-logistic distribution
Suppose a random variable X follows the log-logistic distribution with the cdf and
pdf given by G(x; s, c) = 1−

(
1 +

(
x
s

)c)−1 and g(x; s, c) = cs−cxc−1
(
1 +

(
x
s

)c)−2, for
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s, c > 0, and x > 0. Then, the NPGW-log-logistic (NPGW-LLoG) distribution has cdf
and pdf given by

F (x;α, β, s, c) = exp

(
1−

[
1 +

(
− log

(
1−

(
1 +

(x
s

)c)−1
))α]β)

,

f(x;α, β, s, c) = αβ

[
1 +

(
− log

(
1−

(
1 +

(x
s

)c)−1
))α]β−1

×
(
− log

(
1−

(
1 +

(x
s

)c)−1
))α−1

× exp

(
1−

[
1 +

(
− log

(
1−

(
1 +

(x
s

)c)−1
))α]β)

×
cs−cxc−1

(
1 +

(
x
s

)c)−2

1−
(
1 +

(
x
s

)c)−1 ,

respectively, for α, β, s, c > 0. The hazard rate function is given by

hF (x;α, β, s, c) = αβ

[
1 +

(
− log

(
1−

(
1 +

(x
s

)c)−1
))α]β−1

×
(
− log

(
1−

(
1 +

(x
s

)c)−1
))α−1

× exp

(
1−

[
1 +

(
− log

(
1−

(
1 +

(x
s

)c)−1
))α]β)

×
cs−cxc−1

(
1 +

(
x
s

)c)−2

1−
(
1 +

(
x
s

)c)−1

×

(
1− exp

(
1−

[
1 +

(
− log

(
1−

(
1 +

(x
s

)c)−1
))α]β))−1

.

Figure 4 shows the plots of pdf and hazard functions of NPGW-log-logistic distribu-
tion, respectively. The pdf can take several shapes including increasing, right skewed,
left skewed, unimodal and reverse-J shapes. The NPGW-log-logistic hazard displays
increasing, reverse-J, bathtub, bathtub followed by upside-down bathtub and upside-
down bathtub shapes.

4 Order statistics and Rényi entropy

In this section, we obtain the distribution of the kth order statistic and Rényi entropy
for the NPGW-G family of distributions.



177 B. Oluyede, T. Moakofi, F. Chipepa, B. Makubate

Figure 4: Density and hazard function plots for NPGW-LLoG distribution

Table 4: The quantile for NPGW-log-logistic distribution
(α, β, s, c)

u (1.2, 1.2, 1, 1.8) (0.2, 1.5, 2.2, 2) (0.8, 1.2, 2, 1) (2, 1, 1, 2.2) (1, 1.8, 2.6, 2)
0.1 0.6713 1.6274 0.9788 0.6900 2.0000
0.2 0.7139 1.7055 1.0894 0.7271 2.0967
0.3 0.7480 1.7767 1.1876 0.7619 2.1746
0.4 0.7850 1.8437 1.2897 0.7897 2.2546
0.5 0.8203 1.9157 1.3986 0.8210 2.3342
0.6 0.8615 1.9946 1.5270 0.8599 2.4338
0.7 0.9102 2.0943 1.6902 0.9036 2.5506
0.8 0.9800 2.2331 1.9250 0.9563 2.7101
0.9 1.0969 2.4638 2.3614 1.0525 2.9850

4.1 Order statistics
Let X1, X2, ...., Xn be a simple random sample from the NPGW-G family of distribu-
tions. Using the binomial expansion

(1− F (x))n−k =

n−k∑
w=0

(
n− k

w

)
(−1)w[F (x)]w,

the pdf of the kth order statistic can be written as

fk:n(x) =
n!f(x)

(k − 1)!(n− k)!
[F (x)]k−1[1− F (x)]n−k

=
n!f(x)

(k − 1)!(n− k)!

n−k∑
w=0

(−1)w
(
n− k

w

)
[F (x)]w+k−1. (6)

Based on equation (1) and (2), we can write

f(x)F (x)w+k−1 = αβ [1 + (− log (G(x; ξ)))
α
]
β−1

(− log (G(x; ξ)))
α−1
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× exp
(
1− [1 + (− log (G(x; ξ)))

α
]
β
) g(x; ξ)

G(x; ξ)

×
(
exp

(
1− [1 + (− log (G(x; ξ)))

α
]
β
))w+k−1

.

Following the same steps of the density expansion (3), we get that

f(x)F (x)w+k−1 =

∞∑
q=0

t
q
g∗
q
(x; ξ), (7)

where

tq = αβ

∞∑
i,j,l,p=0

∞∑
m=0

∞∑
s=0

bs,m

(
α(l + p+ 1)− 1

m

)(
β − 1

l

)(
i

j

)(
βj

p

)

×
(
α(l + p+ 1) + s+m− 1

q

)
(−1)j+q(w + k)i

i!q
.

Substituting (7) into (6), the pdf of the kth order statistic can be expressed as

fk:n(x) =
n!

(k − 1)!(n− k)!

∞∑
q=0

n−k∑
w=0

(−1)w
(
n− k

w

)
t
q
g∗
q
(x; ξ),

where g∗
q
(x; ξ) = q[G(x; ξ)]q−1g(x; ξ) is the exponentiated-G (E-G) pdf with the power

parameter q > 0 and parameter vector ξ. Thus, the density function of the NPGW-G
order statistics is a linear combination of E-G densities.

4.2 Rényi entropy
Rényi entropy (Rényi, 1960) is an extension of Shannon entropy. Rényi entropy is
defined to be

IR(v) =
1

1− v
log

(∫ ∞

0

[f(x;α, β, ξ)]vdx

)
, v ̸= 1, v > 0.

Rényi entropy tends to Shannon entropy as v → 1. Using equation (2), [f(x;α, β, ξ)]v
can be written as

[f(x;α, β, ξ)]v = αvβv [1 + (− log (G(x; ξ)))
α
]
v(β−1)

(− log (G(x; ξ)))
v(α−1)

× exp
(
v
(
1− [1 + (−log (G(x; ξ)))

α
]
β
))

g(x; ξ)
v
G(x; ξ)

−v
.

Considering

[1 + (− log (G(x; ξ)))
α
]
v(β−1)

=

∞∑
j=0

(
v(β − 1)

j

)
(− log (G(x; ξ)))

αj
,

exp
(
v
(
1− [1 + (− log (G(x; ξ)))

α
]
β
))

=

∞∑
i,k,p=0

vi

i!

(
i

k

)(
βk

p

)
(−1)k(− log (G(x; ξ)))

αp
,
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we have

[f(x;α, β, ξ)]v =

∞∑
i,j,k,p=0

vi

i!

(
v(β − 1)

j

)(
i

k

)(
βk

p

)
(−1)k

×(− log (G(x; ξ)))α(j+p+v)−vG(x; ξ)
−v

g(x; ξ)
v

=

∞∑
i,j,k,p=0

vi

i!

(
v(β − 1)

j

)(
i

k

)(
βk

p

)
(−1)k

×(− log(1− (1−G(x; ξ))))α(j+p+v)−vG(x; ξ)
−v

g(x; ξ)
v

=

∞∑
i,j,k,p=0

∞∑
m=0

∞∑
s=0

bs,m
vi

i!

(
v(β − 1)

j

)(
i

k

)(
βk

p

)
(−1)kG(x; ξ)

−v

×
(
α(j + p+ v)− v

m

)
(1−G(x; ξ))α(j+p+v)+s+m−vg(x; ξ)

v

=

∞∑
i,j,k,p,q=0

∞∑
m=0

∞∑
s=0

bs,m
vi

i!

(
v(β − 1)

j

)(
i

k

)(
βk

p

)
(−1)k+q

×
(
α(j + p+ v)− v

m

)(
t∗

q

)
(G(x; ξ))

q−v
g(x; ξ)

v
.

where t∗ = α(j + p + v) + s +m − v. Consequently, Rényi entropy for the NPGW-G
family of distributions is given by

IR(v) =
1

1− v
log

[ ∞∑
i,j,k,p,q=0

∞∑
m=0

∞∑
s=0

bs,m
vi

i!

(
v(β − 1)

j

)(
i

k

)(
βk

p

)
(−1)k+q

×
(
α(j + p+ v)− v

m

)(
t∗

q

)
1(

q−v
v + 1

)v
×
∫ ∞

0

((
q − v

v
+ 1

)
(G(x; ξ))

q−v
v g(x; ξ)

)v

dx

]

=
1

1− v
log

[ ∞∑
q=0

w∗
q exp((1− v)IREG)

]
,

for v > 0, v ̸= 1, where IREG = 1
1−v log

∫∞
0

((
q−v
v + 1

)
(G(x; ξ))

q−v
v g(x; ξ)

)v

dx is the

Rényi entropy of E-G distribution with power parameter q−v
v + 1, and

w∗
q =

∞∑
i,j,k,p=0

∞∑
m=0

∞∑
s=0

bs,m
vi

i!

(
v(β − 1)

j

)(
i

k

)(
βk

p

)
(−1)k+q

×
(
α(j + p+ v)− v

m

)(
t∗

q

)
1(

q−v
v + 1

)v .



A new power generalized Weibull-G family of distributions 180

5 Moments
Here we derive some properties of the NPGW-G family of distributions, which includes
moments, incomplete moments and probability weighted moments.

5.1 Moments and generating function
From now on, let Yq ∼ Exponentiated − G(q, ξ). The rth moment of the NPGW-G
family of distributions is obtained by:

µ′
r = E(Xr) =

∫ ∞

−∞
xrf(x)dx =

∞∑
q=0

bqE(Y r
q ).

The moment generating function (MGF) MX(t) = E(etX) is given by

MX(t) =

∞∑
q=0

bqMq(t),

where Mq(t) is the mgf of Yq and b
q

is given by equation (4). The coefficients of variation
(CV), Skewness (CS) and Kurtosis (CK) can be readily obtained. The variance (σ2),
Standard deviation (SD=σ), coefficient of variation (CV), coefficient of skewness (CS)
and coefficient of kurtosis (CK) are given by

σ2 = µ′
2 − µ2, CV =

σ

µ
=

√
µ′
2 − µ2

µ
=

√
µ′
2

µ2
− 1,

CS =
E
[
(X − µ)3

]
[E(X − µ)2]

3/2
=

µ′
3 − 3µµ′

2 + 2µ3

(µ′
2 − µ2)3/2

,

CK =
E
[
(X − µ)4

]
[E(X − µ)2]

2 =
µ′
4 − 4µµ′

3 + 6µ2µ′
2 − 3µ4

(µ′
2 − µ2)2

,

respectively. A table of moments for some selected parameters values are given in
Tables 5, 6, 7 and 8.

5.2 Incomplete moments
The sth incomplete moment of X, say φs(t), is given by

φs(t) =

∫ t

−∞
xsf(x)dx,

using equation (3), we obtain

φs(t) =

∞∑
q=0

b
q

∫ t

−∞
xsg∗

q
(x; ξ)dx. (8)

where g∗
q
(x; ξ) = q[G(x; ξ)]q−1g(x; ξ) is the exponentiated-G (E-G) pdf with the power

parameter q > 0 and b
q

is given by equation (4). The first incomplete moment of the
NPGW-G family can be obtained by setting s = 1 in equation (8).
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Table 5: The moments for selected parameters for NPGW-Weibull distribution
(α, β, λ, θ)

(.1, .2, .2, .5) (.7, 1, 1, .5) (.2, 2, 2, .2) (.4, 2, .5, .9) (.2, 1, 1, .5)
E(X) 0.0031 0.1182 0.0134 0.0318 0.0355
E(X2) 0.0017 0.0655 0.0073 0.0217 0.0199
E(X3) 0.0011 0.0452 0.0050 0.0165 0.0139
EX4 0.0009 0.0344 0.0038 0.0133 0.0106
E(X5) 0.0007 0.0278 0.0031 0.0112 0.0086
E(X6) 0.0006 0.0233 0.0026 0.0096 0.0073

SD 0.0005 0.0200 0.0022 0.0084 0.0063
CV 0.0004 0.0176 0.0019 0.0075 0.0055
CS 0.0004 0.0157 0.0017 0.0068 0.0049
CK 0.0003 0.0141 0.0016 0.0062 0.0044

Table 6: The moments for selected parameters for NPGW-Lindley distribution
(α, β, λ)

( .5, .2, .8) (0.1, 0.9, 1.0) (1.4, 0.8, 1.0) (0.7, 1.0, 0.2) ( 0.3, 1.2, 0.5)
E(X) 0.0311 0.0230 0.2749 0.0385 0.0432
E(X2) 0.0179 0.0137 0.1751 0.0241 0.0260
E(X3) 0.0126 0.0099 0.1270 0.0176 0.0187
E(X4) 0.0098 0.0077 0.0992 0.0139 0.0146
E(X5) 0.0079 0.0063 0.0812 0.0115 0.0120
E(X6) 0.0067 0.0054 0.0686 0.0098 0.0102

SD 0.0058 0.0047 0.0594 0.0085 0.0088
CV 0.0051 0.0041 0.0523 0.0075 0.0078
CS 0.0046 0.0037 0.0467 0.0067 0.0070
CK 0.0041 0.0033 0.0422 0.0061 0.0063

5.3 Probability weighted moments
The probability weighted moments (PWMs) of X is a very useful mathematical quan-
tity. The (p, r)th PWMs of X denoted Zp,r is given by

Zp,r = E(Xp(F (X))r) =

∫ ∞

−∞
xp(F (x))rf(x)dx.

Using equation (1) and (2), we can write

f(x)(F (x))r = αβ [1 + (− log (G(x; ξ)))
α
]
β−1

(− log (G(x; ξ)))
α−1 g(x; ξ)

G(x; ξ)

× exp
(
1− [1 + (− log (G(x; ξ)))

α
]
β
)

×
(
exp

(
1− [1 + (− log (G(x; ξ)))

α
]
β
))r

= αβ [1 + (− log (G(x; ξ)))
α
]
β−1

(− log (G(x; ξ)))
α−1 g(x; ξ)

G(x; ξ)
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Table 7: The moments for selected parameters for NPGW-log-logistic distribution
(α, β, s, c)

( .1, .2, .2, .5) ( .7, 1, 1.5, .5) ( .2, 2, 2, .2) ( 3.4, 4, .5, .9) ( .2, 2, 1.5, .5)
E(X) 0.0036 0.0770 0.0056 0.4993 0.01183
E(X2) 0.0019 0.0414 0.0029 0.3383 0.00667
E(X3) 0.0012 0.0281 0.0020 0.2422 0.00464
E(X4) 0.0009 0.0213 0.0015 0.1821 0.00356
E(X5) 0.0007 0.0171 0.0012 0.1427 0.00288
E(X6) 0.0006 0.0143 0.0010 0.1157 0.00242

SD 0.0005 0.0123 0.0008 0.0965 0.00209
CV 0.0004 0.0108 0.0007 0.0824 0.00184
CS 0.0004 0.0096 0.0006 0.0717 0.00164
CK 0.0003 0.0086 0.0006 0.0633 0.00148

Table 8: The moments for selected parameters for NPGW-power distribution
(α, β, θ, k)

(.1, .5, .7, 1) ( 2, 2, 1, 1,) (.5, .2, .4, 2) ( 1, .2, .2, .5) (.2, .5, .9, .2)
E(X) 0.0257 0.5899 0.0389 0.0443 0.0708
E(X2) 0.0170 0.3696 0.0231 0.0243 0.0507
E(X3) 0.0129 0.2446 0.0166 0.0168 0.0407
E(X4) 0.0105 0.1697 0.0130 0.0128 0.0344
E(X5) 0.0089 0.1227 0.0107 0.0104 0.0300
E(X6) 0.0077 0.0919 0.0091 0.0087 0.0267

SD 0.0068 0.0709 0.0079 0.0075 0.0241
CV 0.0061 0.0561 0.0070 0.0066 0.0220
CS 0.0056 0.0453 0.0063 0.0059 0.0203
CK 0.0051 0.0373 0.0057 0.0053 0.0188

× exp
(
(r + 1)

(
1− [1 + (− log (G(x; ξ)))

α
]
β
))

.

Using the same steps of the density expansion (3), we obtain

f(x)F (x)r =

∞∑
q=0

wqg
∗
q
(x; ξ),

where

w
q

= αβ

∞∑
i,j,l,p,q=0

∞∑
m=0

∞∑
s=0

bs,m

(
α(l + p+ 1)− 1

m

)(
β − 1

l

)(
i

j

)(
βj

p

)

×
(
α(l + p+ 1) + s+m− 1

q

)
(−1)j+q(r + 1)i

i!q
.

Consequently,

Zp,r =

∫ ∞

−∞
xp

∞∑
q=0

w
q
g∗
q
(x; ξ)dx =

∞∑
q=0

w
q

∫ ∞

−∞
xpg∗

q
(x; ξ)dx,
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where g∗
q
(x; ξ) = q[G(x; ξ)]q−1g(x; ξ) is the exponentiated-G (E-G) pdf with the power

parameter q > 0. Finally, the (p, r)th PWMs of X can be obtained from the moments
of the exponentiated-G (E-G) distribution.

6 Maximum likelihood estimation
In this section, the maximum likelihood estiamation technique is used to estimate the
model parameters. Let X ∼ NPGW −G(α, β, ξ) and ∆ = (α, β, ξ)T be the parameter
vector. The log-likelihood function ℓn = ℓn(∆) based on a random sample of size n
from the NPGW-G family of distributions is given by

ℓn(∆) = n ln(αβ) +

n∑
i=1

(
1− [1 + (− log (G(xi; ξ)))

α
]
β
)
−

n∑
i=1

ln (G(xi; ξ))

+(β − 1)

n∑
i=1

ln [1 + (− log (G(xi; ξ)))
α
] +

n∑
i=1

ln (g(xi; ξ))

+(α− 1)

n∑
i=1

ln (− log (G(xi; ξ))) .

By differentiating the log-likelihood function with respect to each component of the
parameter vector ∆ = (α, β, ξ)T , we obtain the following

∂ℓn
∂α

=
n

α
−

[
β

n∑
i=1

(1 + (− log (G(xi; ξ)))
α
)
β−1

(− log (G(xi; ξ)))
α

× ln (− log (G(xi; ξ)))

]
+

n∑
i=1

ln (− log (G(xi; ξ)))

+(β − 1)

n∑
i=1

(− log (G(xi; ξ)))
α
ln (− log (G(xi; ξ)))

[1 + (− log (G(xi; ξ)))
α
]

,

∂ℓn
∂β

=
n

β
−

n∑
i=1

(1 + (− log (G(xi; ξ)))
α
)
β
ln(1 + (− log (G(xi; ξ)))

α
)

+

n∑
i=1

ln(1 + (− log (G(xi; ξ)))
α
),

∂ℓn
∂ξk

=

[
αβ

n∑
i=1

(1 + (− log (G(xi; ξ)))
α
)
β−1

(− log (G(xi; ξ)))
α−1 ∂G(xi; ξ)

∂ξk

× 1

G(xi; ξ)

]
− (β − 1)

n∑
i=1

α (− log (G(xi; ξ)))
α−1 ∂G(xi;ξ)

∂ξk
1

G(xi;ξ)

(1 + (− log (G(xi; ξ)))
α
)

− (α− 1)

n∑
i=1

∂G(xi;ξ)
∂ξk

1
G(xi;ξ)

(− log (G(xi; ξ)))
−

n∑
i=1

∂G(xi;ξ)
∂ξk

G(xi; ξ)
+

n∑
i=1

∂g(xi;ξ)
∂ξk

g(xi; ξ)
.
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The maximum likelihood estimates of the parameters, denoted by ∆̂ is obtained
by solving the nonlinear equation (∂ℓn∂α , ∂ℓn

∂β , ∂ℓn
∂ξk

)T = 0, using a numerical method such
as Newton-Raphson procedure. We maximize the likelihood function using NLmixed
in SAS as well as the function nlm in R (R Development Core Team, 2011). The mul-
tivariate normal distribution Nq+2(0, J(∆̂)−1), where the mean vector 0 = (0, 0, 0)T

and J(∆̂)−1 is the observed Fisher information matrix evaluated at ∆̂, can be used to
construct confidence intervals and confidence regions for the individual model param-
eters.

7 Simulation study
The Monte Carlo simulation study is performed via the R package to assess the perfo-
mance of the MLEs of NPGW-E distribution. The sample sizes considered are (n=35,
50, 100, 200, 400, 800). We simulate N = 1000 samples for the true parameters values
given in Tables 7 and 10. The table lists the mean MLEs of the model parameters
along with the respective bias and root mean squared errors (RMSEs). The bias and
RMSE for the estimated parameter, say, θ̂, say, are given by:

Bias(θ̂) =

∑N
i=1 θ̂i
N

− θ, and RMSE(θ̂) =

√∑N
i=1(θ̂i − θ)2

N
,

respectively. From the results in Tables 7 and 10, we can clearly verify that all the
estimators reveal the consistency property, i.e., the mean estimates of the parameters
tend to be closer to the true parameter values when the sample size increases. Also,
the MSEs decrease with increasing sample.

8 Real data applications
In this section, the NPGW-E distribution is fitted to two data sets and these fits
are compared to the fits of the non-nested models, including Marshall-Olkin log-
logistic distribution (MOLLD) (Wenhao, 2013), Lindley-Weibull (LW) distribution (As-
gharzadeh et al., 2016), Marshall-Olkin extended inverse Weibull (IWMO) distribution
by Pakungwati et al. (2018), Marshall-Olkin extended Fréchet (MOEFr) distribution
by Barreto-Souza et al. (2013), Weibull exponential (WE) distribution by Oguntunde
et al. (2015). The NPGW-E distribution was also compared to the Marshall-Olkin
extended generalized exponential (MOEGE) distribution that was given by Barreto-
Souza et al. (2013).

The MOLLD pdf is given by

g
MOLLD

(x;α, β, γ) =
αββγxβ−1

(xβ + αβγ)2
,

for α, β, γ > 0, and x > 0. The LW distribution has the pdf given by

g
LW

(x;λ, α, β) =
e−λx−αxβ

1 + λ
[λ2(1 + x) + (1 + λ+ λx)αβxβ−1],
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Table 9: Monte Carlo simulation results
(2.0, 1.5, 2.0) (2.0, 1.5, 1.5) (1.5, 2.0, 2.0)

n Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias
α 25 2.2076 1.9720 0.2076 3.6218 29.370 1.6218 1.2961 0.7769 -0.2038

50 2.2074 1.3027 0.2074 2.1681 1.2105 0.1681 1.3878 0.8055 -0.1121
100 2.1446 1.0050 0.1446 2.1415 1.0197 0.1415 1.4029 0.7082 -0.0970
200 2.0945 0.8462 0.0945 2.0856 0.8458 0.0856 1.3782 0.6377 -0.1217
400 2.0285 0.6801 0.0285 2.0345 0.6861 0.0345 1.4506 0.5589 -0.0493
800 2.0087 0.5758 0.0087 2.0099 0.5763 0.0099 1.4451 0.4850 -0.0548
1000 2.0166 0.5338 0.0166 2.0068 0.5339 0.0068 1.4800 0.4692 -0.0199

β 25 2.1680 1.3431 0.6680 2.1594 1.3523 0.6594 2.7239 1.2951 0.7239
50 1.8329 1.0138 0.3329 1.8441 1.0174 0.3441 2.4681 1.0745 0.4681
100 1.7314 0.8760 0.2314 1.7336 0.8754 0.2336 2.3682 1.0011 0.3682
200 1.6740 0.7704 0.1740 1.6838 0.7785 0.1838 2.3404 0.9112 0.3404
400 1.6620 0.6892 0.1620 1.6590 0.6906 0.1590 2.2075 0.7756 0.2075
800 1.6301 0.6025 0.1301 1.6296 0.6044 0.1296 2.1808 0.6817 0.1808
1000 1.6055 0.5601 0.1055 1.6158 0.5666 0.1158 2.1297 0.6524 0.1297

a 25 3.1313 2.2244 1.1313 2.3233 1.6335 0.8233 4.3646 4.9039 2.3646
50 2.6866 1.8951 0.6866 2.0072 1.3474 0.5072 3.7969 4.1472 1.7969
100 2.4867 1.4245 0.4867 1.8704 1.0765 0.3704 3.5439 3.7313 1.5439
200 2.3921 1.2471 0.3921 1.8045 0.9449 0.3045 3.1959 2.8991 1.1959
400 2.3358 1.0600 0.3358 1.7485 0.7934 0.2485 2.6394 1.6916 0.6394
800 2.2687 0.9048 0.2687 1.7017 0.6822 0.2017 2.4788 1.2583 0.4788
1000 2.2166 0.8115 0.2166 1.6739 0.6193 0.1739 2.3730 1.1273 0.3730

for λ, α, β > 0 and x > 0. The pdf of IWMO distribution is given by

f
IWMO

(x;α, θ, λ) =
αλθ−λx−λ−1e−(θx)−λ

[α− (α− 1)e−(θx)−λ ]2
,

for α, θ, λ > 0. The pdf of MOEFr distribution is given by

f
MOEFr

(x;α, λ, δ) =
αλδλx−(λ+1)e−(δ/x)λ

[1− ᾱ(1− e−(δ/x)λ)]2
,

for α, λ, δ > 0. The pdf of WE distribution is given by

f
WE

(x;α, β, λ) = αβ(λe−λx)

[(
1− e−λx

)β−1

(e−λx)
β+1

]
e
−α

[
(1−e−λx)
(e−λx)

]β

,

for α, β, λ > 0, and x > 0. The pdf of MOEGE distribution is given by

f
MOEGE

(x;α, γ, λ) =
αγλe−λx(1− e−λx)γ−1

(1− ᾱ[1− e−λx]γ)2
,

for α, γ, λ > 0.
Plots of the fitted densities, the histogram of the data and probability plots (Cham-

bers et al., 1983) are given in Figure 5 and Figure 6. For the probability plot, we plotted
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Table 10: Monte Carlo simulation results
(1.5, 2.0, 1.5) (1.5, 1.5, 2.0) (1.5, 1.5, 1.5)

n Mean RMSE Bias Mean RMSE Bias Mean RMSE Bias
α 25 1.3021 0.8143 -0.1978 1.3562 0.9473 -0.1437 2.0152 20.5852 0.5152

50 1.3808 0.8128 -0.1191 1.4338 0.8476 -0.0661 1.4130 0.8151 -0.0869
100 1.3934 0.6975 -0.1065 1.4531 0.7278 -0.0468 1.4277 0.6993 -0.0722
200 1.3797 0.6327 -0.1202 1.4242 0.6228 -0.0757 1.4246 0.6203 -0.0753
400 1.4418 0.5585 -0.0581 1.4512 0.5346 -0.0487 1.4536 0.5213 -0.0463
800 1.4500 0.4836 -0.0499 1.4629 0.4728 -0.0270 1.4683 0.4624 -0.0316
1000 1.4707 0.458 -0.0292 1.4748 0.4375 -0.0351 1.4765 0.4374 -0.0234

β 25 2.7302 1.2993 0.7302 2.0258 0.9500 0.5258 2.0383 0.9560 0.5383
50 2.4802 1.0818 0.4802 1.8362 0.8023 0.3362 1.8537 0.8188 0.3537
100 2.3772 1.0025 0.3772 1.7605 0.7471 0.2605 1.7788 0.7525 0.2788
200 2.3362 0.9034 0.3362 1.7331 0.6676 0.2331 1.7312 0.6643 0.2312
400 2.2180 0.7811 0.2180 1.6657 0.5705 0.1657 1.6598 0.5608 0.1598
800 2.1734 0.6750 0.1734 1.6178 0.4940 0.1178 1.6191 0.4879 0.1191
1000 2.1374 0.6430 0.1374 1.6164 0.4734 0.1164 1.6040 0.4695 0.1040

a 25 3.2835 3.6891 1.7835 4.0525 4.3569 2.0525 3.1504 3.4437 1.6504
50 2.8782 3.1704 1.3782 3.5131 3.6467 1.5131 2.7030 2.8468 1.2030
100 2.6867 2.8683 1.1867 3.1760 2.9266 1.1760 2.4237 2.2418 0.9237
200 2.3722 2.1196 0.8722 2.8878 2.1949 0.8878 2.1528 1.6017 0.6528
400 2.0141 1.3723 0.5141 2.5718 1.5052 0.5718 1.9059 1.0759 0.4059
800 1.8472 0.9305 0.3472 2.3862 1.0916 0.3862 1.7889 0.8111 0.2889
1000 1.7832 0.8366 0.2832 2.3608 1.0252 0.3608 1.7527 0.7588 0.2527

F (x(j); α̂, β̂, ξ̂) against j − 0.375

n+ 0.25
, j = 1, 2, · · · , n, where x(j) are the ordered values of

the observed data. The measures of closeness are given by the sum of squares

SS =

n∑
j=1

[
F (x(j); α̂, β̂, ξ̂)−

(
j − 0.375

n+ 0.25

)]2
.

Several goodness-of-ft measure including the minus twice the loglikelihood function
evaluated at the MLEs (−2 logL), Akaike information criteria (AIC), consistent Akaike
information criteria (AIC), Bayesian information criteria (BIC), Cramér-von Mises
(W ∗), Anderson-Darling statistic (A∗) and Kolmogorov-Smirnov (KS) statistic. The
goodness-of-fit statistics W ∗ and A∗, are described by Chen and Balakrishnan (1995).
These statistics can be used to verify which distribution fits better to the data. In
general, the smaller the values of W ∗ and A∗, the better the fit.

8.1 Growth hormone data
The data consists of the estimated time since growth hormone medication until the
children reached the target age. The data was used by Alizadeh et al. (2017) to
show the superiority of the exponentiated power Lindley power series (EPLPS) class
of distributions distributions. The data are
2.15, 2.20, 2.55, 2.56, 2.63, 2.74, 2.81, 2.90, 3.05, 3.41, 3.43, 3.43, 3.84, 4.16, 4.18, 4.36,
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Table 11: Estimates of models for growth hormone dataset
Estimates Statistics

Model α β λ −2 logL AIC AICC BIC W ∗ A∗ KS P-value SS
NPGW-E 1.602 2.316 0.232 155.04 161.04 161.81 165.70 0.04 0.26 0.09 0.94 0.04

(1.256) (2.058) (0.224)

α λ θ
IWMO 7.1e-5 0.3780 5.7e-4 157.67 163.67 164.45 168.34 0.04 0.33 0.09 0.94 0.04

(9.6e-5) (2.8e-6) (2.1e-4)

λ α β
LW 9.6e-8 0.027 1.993 164.98 170.98 171.75 175.64 0.16 1.03 0.15 0.45 0.15

(0.120) (0.014) (0.243)

α β γ
MOLLD 3.789 3.521 1.929 158.58 164.58 165.36 169.25 0.06 0.41 0.10 0.89 0.04

(0.252) (0.490) (0.140)

α δ λ
MOEFr 184.580 1.023 3.491 158.40 164.40 165.18 169.07 12.21 70.34 0.98 2.2e-16 11.85

(3.5e-4) (0.227) (0.487)

α β λ
WE 1.1e4 1.981 1.5e-3 165.04 171.04 171.82 175.71 0.16 1.03 0.15 0.44 0.15

(3.9e-7) (0.231) (7.8e-4)

α γ λ
MOEGE 4.2e-5 8.5e-4 0.622 168.81 174.81 175.59 179.48 0.63 3.52 0.99 2.2e-16 11.62

(1.9e-4) (4.2e-3) (0.098)

4.42, 4.51,4.60, 4.61, 4.75, 5.03, 5.10, 5.44, 5.90, 5.96, 6.77, 7.82, 8.00, 8.16, 8.21, 8.72,
10.40, 13.20, 13.70.
The estimated variance-covariance matrix is given by[

1.5790 −2.4970 −0.2776
−2.4970 4.2357 0.4575
−0.2776 0.4575 0.0503

]

and the 95% confidence intervals for the model parameters are given by
α ∈ [1.6029±2.4629], β ∈ [2.3161±4.0338] and λ ∈ [0.2327±0.4396]. Estimates of the
parameters of NPGW-E distribution (standard error in parentheses), AIC, AICC, BIC,
and the goodness-of-fit statistics W∗, A∗, Kolmogorov-Smirnov (KS) and its p-value
as well as SS are given in Table 11. Plots of the fitted densities and the histogram,
observed probability vs predicted probability are given in Figure 5.

It is observed, from Tables 11 above that the NPGW-E distribution has the lowest
values of AIC, AICC, BIC and goodness-of-fit statistics among all fitted models. Hence,
it could be termed the “best” model for the growth hormone data set. Also, the p-value
of the Kolmogorov-Smirnov (KS) statistic for the NPGW-E model is larger than the
other fitted models, this also support the NPGW-E as the “best” model.

8.2 Waiting times data
The data set given below represents the waiting times (in minutes) before service of
100 bank customers. The data was used by Ghitany et al. (2008) to show that Lindley
distribution can be a better model than one based on the exponential distribution. The
data are
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Figure 5: Fitted densities and probability plots of the growth hormone data.

Table 12: Estimates of models for waiting times data
Estimates Statistics

Model α β λ −2 log L AIC AICC BIC W ∗ A∗ KS P-value SS
NPGW-E 0.713 1.893 0.210 633.97 639.96 640.21 647.784 0.02 0.13 .04 0.99 0.02

(0.454) (0.607) (0.163)

α λ θ
IWMO 216.040 2.249 1.399 638.59 644.59 644.85 652.42 0.05 0.38 .05 0.96 0.03

(7.3e-4) (0.180) (0.288)

λ α β
LW 0.136 0.009 1.514 637.30 643.30 643.55 651.12 0.06 0.35 .05 0.95 0.05

(0.094) (0.024) (0.35)

α β γ
MOLLD 3.892 2.267 4.859 638.82 644.82 645.07 652.64 0.05 0.36 .05 0.96 0.03

(0.338) (0.188) (0.119)

α δ λ
MOEFr 216.04 0.714 2.249 638.59 644.59 644.84 652.41 33.88 200.25 .99 2.2e-16 33.62

(1.7e-4 (0.147) (0.180)

α β λ
WE 1.1e3 1.453 7.4e-4 637.564 643.56 643.81 651.38 0.06 0.40 .06 0.88 0.06

(9.4e-7) (0.106) (2.4e-4)

α γ λ
MOEGE 5.6e-4 3.9e-3 0.229 653.85 659.85 660.10 667.67 1.34 7.47 .99 2.2e-16 33.25

(9.3e-5 (8.4e-4) (0.023)

0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2,
4.3, 4.3,4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3,
6.7, 6.9, 7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6,
9.7, 9.8, 10.7, 10.9, 11.0,11.0, 11.1, 11.2, 11.2, 11.5, 11.9,12.4, 12.5, 12.9, 13.0, 13.1,
13.3, 13.6, 13.7, 13.9, 14.1, 15.4,15.4,17.3, 17.3, 18.1, 18.2,18.4, 18.9, 19.0, 19.9, 20.6,
21.3, 21.4, 21.9, 23.0, 27.0, 31.6, 33.1, 38.5.
The estimated variance-covariance matrix is given by

[
3.7365e−12 −2.0290e−07 −5.2260e−10
−2.0290e−07 1.1017e−02 2.8378e−05
−5.2260e−10 2.8378e−05 7.6660e−08

]
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and the 95% confidence intervals for the model parameters are given by
α ∈ [0.7130 ± 3.7887e−06], β ∈ [1.8929 ± e−01] and λ ∈ [0.2106 ± 5.426763e−04].
Estimates of the parameters of NPGW-E distribution (standard error in parentheses),
AIC, AICC, BIC, and the goodness-of-fit statistics W∗, A∗, Kolmogorov-Smirnov (KS)
and its p-value as well as SS are given in Table 12. Plots of the fitted densities and the
histogram, observed probability vs predicted probability are given in Figure 6.

The values of AIC, AICC and BIC are smallest for the NPGW-E distribution, when
compared to the corresponding values for the non-nested distributions. The values of
the goodness-of-fit-statistics W ∗, A∗, Kolmogorov-Smirnov (KS) and its p-value show
that the NPGW-E distribution is the “best” fit for waiting times data.

Figure 6: Fitted densities and probability plots of the waiting times data

9 Concluding remarks
A new generalized distribution referred to as the new power generalized Weibull-G
(NPGW-G) family of distributions is developed and presented. The NPGW-G distri-
bution has several new and known distributions as sub-models. The NPGW-G family
of distributions possesses hazard function with flexible behavior. The proposed dis-
tribution can be expressed as an infinite linear combination of Exp-G distribution.
We also obtain closed form expressions for the moments, incomplete and probability
weighted moments, distribution of order statistics and entropy. Maximum likelihood
estimation technique is used to estimate the model parameters. The performance of
the special case of the NPGW-G family of distributions was examined by conducting
various simulations for different sample sizes. Finally, the special case of the NPGW-G
family of distributions is fitted to two real data sets to illustrate the applicability and
usefulness of the proposed family of distributions.
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