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Abstract: Reducing income inequality is one of the major steps toward economic de-
velopment. When the level of inequality in the distribution of income and wealth is
high in the society, many economic, social and even political problems might happen.
So, many studies in the economic literature tried to find the determinants of income
inequality and propose some policies to decline it. In this paper, we will address the
analysis of income inequality panel data across different countries through 2011 to
2015. One of the commonly used methodologies to analyze panel data is the linear
mixed effects model. Since the linearity assumption might be violated, recently, the
idea of mixed effect models are combined with the flexibility of tree-based estimation
methods which allows for potential higher order interactions as well. In this paper, we
apply the resulting estimation method, called the RE-EM tree, to the income inequal-
ity panel data. The results show that the RE-EM tree is less sensitive to parametric
assumptions and provides improved predictive power compared to simple regression
trees without random effects. This is due to the fact that each country applies its own
specific poverty reduction measures handled via country-specific random coefficients of
RE-EM tree.
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1 Introduction
Income inequality refers to the fact that different people earn different amounts of
money. There are some different measures for evaluating income inequality in the eco-
nomic literature. The GINI coefficient (or index), developed by the Italian statistician

∗Corresponding author: kiaee@isu.ac.ir

Research Paper



Income inequality analysis 92

Corrado Gini (1912), is an important measure of statistical dispersion that is often
used to reflect the extent of income inequality, where a Gini coefficient of 0 expresses
perfect equality; and a coefficient of 1 expresses maximal inequality.

There are vast number of researches about the relationship between income in-
equality and macroeconomic variables over time. Some of these researches address one
specific country and try to find a significant regression relationship between income
inequality and macroeconomic variable (Azzoni, 2001; Law and Tan, 2009). Others
choose a panel regression approach for selected countries or provinces to describe in-
come inequality variation in which some of them are reviewed here. Thalassinos et
al. (2012) analyzes the relationship between income inequality and inflation in 13 Eu-
ropean countries for the period 2000 to 2009 using panel data methodology. Their
results support the hypothesis that inflation has a positive significant effect on income
inequality. Halmos (2011) explores the relationship between FDI, exports, GDP and
income inequality in Eastern European countries during 1991 to 2006. According to the
result, export has significant effect on decreasing income inequality. Ha et al. (2019)
examines the impact of urbanization on income inequality in Vietnam, using the panel
data regression estimation for 63 provinces in Vietnam from 2006 to 2016. The results
show that in the long term, urbanization has an impact on reducing income inequality.

Panel or longitudinal data consists of repeatedly observed measurements for each
subject through different occasions. The primary goal of repeated measures study is to
characterize the changes in the mean response over time and the factors that influence
these changes. Modelling longitudinal data require somewhat more sophisticated sta-
tistical techniques because the repeated observations have a sequential nature which
implies certain types of correlation structures. Heterogeneous variability must also be
accounted for in order to obtain valid inferences.

There are three broad class of models introduced to handle longitudinal data; (i)
marginal mean and covariance pattern specification (ii) transitional models (iii) mixed
effect models. In the Mixed effect modelling approach, individuals are assumed to have
their own subject-specific mean response trajectories over time. More specifically, the
mean response is modeled as a combination of population characteristics (fixed effects)
assumed to be shared by all individuals, and subject-specific effects (random effects)
that are unique to a particular individual. In this framework, introducing random
effects in the mean response model automatically induces some covariance pattern on
the vector of repeatedly measured responses.

The above mentioned methods for modelling panel data are built upon the linear-
ity assumption for the mean response model which could be mostly violated. So it is
natural to suppose, a more flexible relationship than a linear one, which suggests con-
sideration of methods such as nonparametric regression, regression trees, multivariate
adaptive regression splines (MARS), neural networks, and so on. Sela and Simonoff
(2012) generalized the linear mixed effects model to tree-based models. They focus
on the EM algorithm for two-stage mixed effects models given by Laird and Ware
(1982). For more information on mixed effects models, including modified estimation
procedures and extensions, see Verbeke and Molenberghs (2000).

In this paper, we aim to analyze inequality panel data during 2011-2015. Since
there is a considerable non-linear relation between the GINI response variable and the
financial indicators through time, traditional linear mixed effect models could not de-
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tect significant predictors correctly. Also, simple regression trees as non-parametric
modelling tools for independent observations do not lead to powerful predictions, since
there are significant positive correlation among repeated GINI measures across coun-
tries. Finally, we have fitted Mixed effect regression tree which leads to an interpretable
partitions in the feature space considering potential interactions along with powerful
predictions.

The remainder of this paper is organized as follows. In Section 2, the motivating
data set is described. In Section 3, the linear mixed effect model and its generalization
to Random Effects/EM Tree is discussed. The results of data analysis is given in
Section 4. Finally, some concluding remarks will be given in Section 5.

2 Data description
The data to be analyzed in this paper is excerpted from World Bank Economic Devel-
opment Database †. To study income inequality, the GINI coefficient is assumed to be
the response variable. By examining the literature, it appears that the most important
macroeconomic variables which could have significant effect on the GINI coefficient are
GDP per capita, Inflation rate, Rural population and Government expenditure. There
are 50 countries in the panel with a slightly varying number of observations per country
due to missing values. In Figure 1, the box plots of Gini coefficient during 2011 to 2015
are given in the left panel and the scatter plots of selected macroeconomic variables
against Gini coefficient for 2015 are presented in the right panel. Small changes in the
value of GINI coefficient during time reveals the necessity of longitudinal analysis since
there is a highly positive correlation between GINI coefficients during time. Also, the
non-linear relationship between macroeconomic variables and Gini coefficient could be
concluded from the scatter plots.
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Figure 1: Left panel: Box plots of GINI through time, Right panel: scatter plots of GINI against
predictors in 2015.

The response profile plots of the mean GINI coefficient conditional on categorized
Inflation rate, GDP per capita and Rural population Ratio are given in Figure 2. Re-
garded to the Inflation and GDP per capita, countries with the high and low categories
have lower GINI coefficients than medium ones. This again shows the nature of non-
linear relation between these predictors and GINI. Although, the countries with low

†https://databank.worldbank.org/home.aspx
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Rural population ratio have little GINI variation during time, the GINI coefficient of
high level ones has declined over time. Also, the GINI trajectories of a smaple of
countries with high inequality properties (GINI > 40) is plotted in Figure 3. This
plot shows various trends of GINI index which emphasizes the need for country-specific
effects to model the data.
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Figure 2: Mean response profile of GINI given inflation, GDP and RUR categories.
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Figure 3: GINI trajectories over time for a sample of countries.

3 The RE-EM tree
Let Y ′

i = (Yi1, ..., YiT ) be the vector of panel responses for the ithe sample through T
times (i = 1, ..., n). Also, assume that there is a vector of p covariates recorded for the
ith sample at time t (t = 1, ..., T ), denoted by Xit = (Xit1, ..., Xitp). The linear mixed
effect model has the following form:

Yit = Xitβ + Zitbi + ϵit, i = 1, ..., n, t = 1, ..., T

bi ∼ MVN(0, G) ⊥ ϵit ∼ N(0, σ2),

where β is a p× 1 vector of fixed effects attached to the vector of covariates Xit. Also,
Zit is a sub vector of Xit attached to the q×1 vector of random subject-specific effects
bi. It is also assumed that the random error terms ϵit are independent of bi.
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In the above traditional linear mixed effects model, the relation between the marginal
mean response, E(Yit|Xit) and the linear predictor, Xitβ, is assumed to have a known
linear form, which might be too restrictive an assumption. Since the functional form
of this relation is frequently unknown, assuming a linear model may not be the best
option. Also, when the number of potential predictors, p, becomes very large, including
all of them directly may lead to overfitting and therefore poor predictions.

Assume the more general mixed effect model with the following additive form:

Yit = f(Xit) + Zitbi + ϵit, i = 1, ..., n, t = 1, ..., T (1)
bi ∼ MVN(0, G) ⊥ ϵi = (ϵi1, ..., ϵiT ) ∼ MVN(0, R),

where, R is a T ×T covariance matrix for the vector of random error terms. Assuming
non-diagonal R matrix allows potentially correlated random error terms, as well. If f(.)
is a known function that is linear in the parameters, the above model reduces to the
linear mixed effects model. However, assuming that f(.) is an unknown potentially non-
linear and non-parametric function, Hajjem et al. (2008, 2011) and Sela and Simonoff
(2009) independently proposed an estimation method that uses a tree structure to
estimate f(.), but also incorporates subject-specific random effects, bi. In this method,
the nodes may split based on any attribute, so that different observations for the
same object may be placed in different nodes. However, the method ensures that the
longitudinal structure in the errors is preserved.

If the random effects, bi, were known, (1) implies that we could fit a regression tree
to yitZitbi to estimate f(.). If the population-level effects, f(.), were known, then we
could estimate the random effects using a traditional mixed effects linear model with
population-level effects corresponding to the values f(Xit). Since neither the random
effects nor the fixed effects are known, Sela and Simonoff (2012) proposed to alternate
between estimating the regression tree, assuming that the estimates of the random
effects are correct, and estimating the random effects, assuming that the regression
tree is correct. They called the resulting estimator a Random Effects/EM Tree, or RE-
EM Tree since alternation between the estimation of different parameters is reminiscent
of the EM algorithm, as used by Laird and Ware (1982). Moreover, it should be noticed
that the estimation method does not involve a true EM algorithm, so that the usual
properties of the EM algorithm do not necessarily apply. Given a RE-EM tree, the
associated random effects, and the estimated covariance matrices, the out-of-sample
predictions are straightforward.

More specifically, the RE-EM tree is estimated as follows:
1. The estimated random effects, b̂i, is initialized to zero.
2. A regression tree is fitted as an approximation to f(Xit) where for i = 1, ..., N and
t = 1, ..., T , {yit −Zitb̂i}’s are the values of target variable and the vector of covariates
attached to fixed effects, Xit = (xit1, ..., xitp), construct the feature space.
3. A linear mixed effect model is fitted assuming yit as the response variable and
the approximated f(Xit) in step 2 as the known fixed effect part, and Zitbi as the
random effect part. Since f is estimated based on a regression tree for example with
K leaves which partition the feature space into a set of K regions, namely, R1, ..., RK ,
then f(Xit) =

∑K
k=1 I(Xit ∈ Rk)µk where µK is the mean response parameter for the
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individuals in Rk. Actually, the following linear mixed effect model is estimated,

yit =

K∑
k=1

I(Xit ∈ Rk)µk + Zitbi + ϵit

and b̂i is extracted.
4. iterate steps 2 to 4 until the estimated random effects b̂i converge.
5. Replace the mean responses in the leaves of the fitted tree in step 2, with µ̂k’s as
the output of RE-EM tree.

4 Results of data analysis
In this section, the RE-EM tree is applied for the analysis of Income Inequality data
extracted from the World Bank Data Bases webpage ‡. Figure 4 illustrates the fitted
RE-EM tree which have 4 leaves, and partitions the countries during time according
to the values of three selected predictors; Rural ratio, Inflation and GDP per capita.
Rural ratio has been selected as the most influential predictor in the root of tree.
As was expected from the economic theories, countries with higher Rural ratio would
have lower levels of GINI. Among countries with lower Rural ratio and lower inflation,
those with 4000 < GDP.PC ≤ 12000 have the highest GINI which indicates the worst
inequality management. Also, the mean observed GINI and the number of records are
given in each leaf. The left panel of Figure 5 shows the boxplots of GINI in 4 leaves
of tree during the time. Also, the predicted against actual GINI values are plotted in
the right panel. According to the correlation values, the presented RE-EM tree has a
high predictability power.

The two main achievements of the fitted RE-EM algorithm are (1) the allowance of
non-linear relation between response variable and the predictor variables as well as their
potential interactions while preserving simple interpretability of decision trees. From
economic point of view, as is illustrated in Figure 4, for countries with lower Rural
Population Ratio there is an interaction between Inflation and GDP per capita, while
for higher Rural Population Ratios, it does not exist. This could just be presented by
a tree approach not the parametric linear models which lead policy makers to choose
different poverty reduction measures according to the suggested partitions of the feature
space, (2) including random subject-specific effects in the regression tree estimation
process allows for the detection of between individual variabilities not accounted for in
the simple structured regression tree which leads to more predictability. Actually, this
random effects perfectly considers the fact that each country applies its own specific
poverty reduction measures which leads to various GINI coefficient paths of different
countries through time.

Also, the simple tree without random effects is fitted on these data for which the
predicted against actual GINI values are given in Figure 6. Comparing this figure
with the right panel of Figure 5, apparently shows that including random effects has
improved the tree’s prediction power.

‡https://databank.worldbank.org/home.aspx
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Figure 4: RE-EM tree for Inequality panel data through 2011-2015.
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Figure 5: Left panel: Boxplots of GINI split by the RE-EM tree’s leaves during time, Right panel:
scatter plots of predicted against actual GINI in different years based on RE-EM tree.
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Figure 6: Scatter plots of predicted against actual GINI based on simple tree without random effect.
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5 Discussion
In this paper, we have analyzed cross-country inequality panel data based on 50 coun-
tries during 2011 to 2015. All previous literature in this field has applied different
models based on linearity assumption which could be violated as were shown in the
descriptive plots given in the text. Hence, we proposed to fit a random effect tree to
analyze these longitudinal data which leads to better interpretation and predictability
power. Based on the fitted RE-EM tree rural ratio as the root, Inflation and GDP per
capita as the following branches are the important macro economic variables influencing
GINI index.
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