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Abstract: Degradation modeling is an effective approach for reliability assessment and
predicting of remaining useful life in order to investigate the relation between failure
time and degradation of a system or unit. The possibility of an association between
degradation of the unit during the time and the effects of covariates on degradation
processes should be taken into account in the model to improve the explanatory ca-
pabilities of degradation models. Sometimes, the exact amount of degradation could
not be observed because of time, cost, and measurement tools limitations. Therefore,
approximate degradation values can be compared with a critical threshold. In this
paper, the degradation processes modeled with a generalized linear mixed-effect model
in order to take into account the correlation between times. Also, maximum likelihood
estimation and Bayesian estimate of parameters are derived.
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1 Introduction
Today, many development devices are designed in while they work normally without
failure for years. Few units will fail during the traditional reliability tests. Therefore,
it becomes difficult to use a traditional life test, which only uses failure-times to assess
a product’s reliability. In recent years, degradation analysis has become common and
important, increasingly.
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Reliability analysis for highly reliable components or units could be more effec-
tive using degradation modeling. In reliability theory, the failure of products includes
degradation failure and sudden failure. The degradation data could provide more in-
formation than the traditional truncated failure time data. The degradation process
could be effective in finding the physical model between product degradation and the
accelerated stress. The degradation process also, provides direct modeling of failure
mechanism which more reliable, accurate estimates and a better foundation for re-
liability statistical inference, see Jiang et al. (2017) and Hu et al. (2017). Lu and
Meeker (1993) improves the reliability inference over the standard failure time analysis
by degradation analysis. They also describe failure mechanisms and obtain reliability
information of products in a short test period.

Typically, two types of degradation data are considered, physical degradation and
performance degradation which are functions of time. For analyzing the general and ac-
celerated degradation test (ADT), both the ML method and Bayesian approach could
be applied. ADT can provide more opportunities to draw quick inferences on the
lifetime distribution of highly reliable items under normal use conditions. Meeker and
Escobar (1998) studied acceleration models for degradation analysis. Most degradation
researches studied the MLE method for model parameters. Lu and Meeker (1993) used
a nonlinear mixed-effects degradation model to analyzing degradation data. They used
a two-stage approximation method to estimate the parameters and confidence intervals
because of not existence of closed forms for MLEs. Bae and Kvam (2004) considered a
nonlinear random-coefficients model to study the degradation path of vacuum fluores-
cent displays. They utilized four different approximation methods for the MLEs and
Monte Carlo simulation for deriving failure-time distribution. Analyzing accelerated
degradation data by hierarchical modeling approach was respectively discussed by Pan
and Crispin (2011) and Park and Bae (2010).

Unlike MLE, the Bayesian approach has not been widely used in degradation anal-
ysis. Wakefield et al. (1994) used a Bayesian approach to analyze repeated degradation
measures in linear and non-linear models. Wiener process had been utilized for degra-
dation modeling and assumed that failure times follow an Inverse Gaussian distribution
by Pettit and Young (1999). They proposed a fully Bayesian method for integrating
failure time data with degradation data to derive failure time distributions. A Bayesian
linear mixed-effects model used by Onar et al. (2007) to describe the degradation paths
for rut depth. For further reading, we refer to Broemeling (2015).

In degradation studies, a critical threshold level of degradation is considered and
failure time is based on this level, and distribution of life time data is calculated with
estimated degradation model parameters. In this study, we consider degradation as a
discrete variable, and measurements are done along time. Sometimes the exact degra-
dation values can not be measured, and we can recognize that the degradation value
is greater or less than the finite value. This may be happened because of the lack exis-
tence of exact measurement tools, time and cost limitations. Different models can be
used to take into account correlations between responses. One possibility is marginal
modeling, which can be used to make inferences about parameters averaged over the
whole population, for more details, authors refer to Snell (1964). A second possibility
is random-effects modeling, which makes inferences about variability between respon-
dents, see Berridge and Dos Santos (1996) and Ware (1985). The basic idea underlying
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a random-effects model is that there is a natural heterogeneity across individuals in
their regression coefficients and that the heterogeneity can be handled by a probability
distribution. The third approach would be to use Markov (transition) models which
were studied by Anderson and Goodman (1957) and Muenz and Rubinstein (1985).
Here, we utilize a generalized linear mixed effect model to demonstrate the relation
between discrete responses over time and covariates. Moreover, based on the presented
model point estimations based on the Monte-Carlo approximation (MLE) and Bayesian
estimations were derived.

The rest of the paper is organized as follows. Section 2, present a degradation
random effect model and the likelihood function. In Section 3, a simulation study is
presented. Finally, Section 4 concludes this work and provides a brief discussion on
future research challenges.

2 Statistical model
Let D(t), t > 0 be the true degradation path for a unit. In this case, the observed
degradation for ith unit at jth measurement time (tj) could be modeled as a generalized
linear mixed effect model as follows:

Yij = D(tj , λ, βi) + ϵij , i = 1, ..., N, j = 1, ..., ni,

where Yij is observed degradation for ith unit at jth time. The true degradation path
is denoted by D(tj , λ, βi), and ni is number of degradation measurement for unit i,
λ = (λ1, ..., λk) is fixed effect vector, βi = (β1i, ..., βki) is random effect vector for ith
unit that makes different paths for each unit , βi ∼ Nk(0,Σ) and ϵij is a measurement
error for ith unit at time tj which has normal distribution( i.e, ϵij ∼ N(0, σ2

e)). The
Elements of βi vector is independent of ϵij which have been mentioned by Meeker and
Escobar (1998).

Sometimes the exact amount of degradation can not be measured due to time, cost
and, measurement tools constraints. However, we can recognize that it is more or
less than a predetermined critical level (threshold). Suppose Yij , show the increasing
degradation value at time tj , but the exact degradation value is unknown. Define Zij

as follows:

Zij =

{
1 Yij ≥ D0

αj

0 Yij <
D0

αj
,

(1)

where, D0 is the first degradation level and αj is degradation coefficient of unit i at
time tj . In other word, Zij is a Bernoulli variable for continuous variable Yij , that
show the state of this continuous variable respect to D0. In order to analyse the binary
degradation values along time, generalized linear mixed effect model is considered as
follows:

g(P (Zij = 1|Xij , Uij)) = D(tj ;λ, βi), (2)
where g is an appropriate link function such as logit or probit and D is the true
degradation path. Also, λ is contained a vector of fixed effects of explanatory variables,
Xij , and βi are random effects for sub-vector of Xij , Uij . We assume that βi ∼
Nk(0,Σ), and the response variables are supposed to be independent conditional on
random effects.
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Let Zi = (Zi1, ..., Zini
) be a vector of discrete response variable for unit i. In our

proposed model, the likelihood function are constructed as follows:

L(λ;Zi) =

∫
β1i

...

∫
βki

f(Zi;λ|βi)f(βi)dβ1i...dβki

=

∫
β1i

...

∫
βki

f(Zi1, ..., Zini
;λ|βi)f(βi)dβ1i...dβki

=

∫
β1i

...

∫
βki

ni∏
j=1

f(Zij ;λ|βi)f(βi)dβ1i...dβki.

The probability mass function of Zij is as follows:

P (Zij = zij ;λ, βi) = (g−1(D(tj ;λ, βi)))
zij

(1− g−1(D(tj ;λ, βi)))
1−zij

.

Let Z = (Z1, . . . , ZN ), then the Likelihood function for N units is given by

L(λ;Z) =

N∏
i=1

f(Zi;λ) =

N∏
i=1

∫
β1i

...

∫
βki

ni∏
j=1

f(Zij ;λ|βi)f(βi)dβ1i...dβki. (3)

The MLE of parameters is obtained with maximisation of above function with respect
to λ and βi by Monte Carlo numerical methods.

Bayes estimates could be obtained with considering appropriate priors for param-
eters. Suppose π(λ) and π(Σ) be prior distributions for parameters λ and Σ, respec-
tively. In this case the joint posterior distribution of (λ,Σ) could be written as follows:

π(λ,Σ|Z) ∝
N∏
i=1

[ ∫
β1i

...

∫
βki

ni∏
j=1

f(Zij |βi)f(βi)dβ1i...dβki

]
π(λ)π(Σ)

∝
N∏
i=1

[ ∫
β1i

...

∫
βki

ni∏
j=1

(g−1(D(tj ;λ, βi)))
Zij

× (1− g−1(D(tj ;λ, βi)))
1−Zij

f(βi)dβ1i...dβki

]
π(λ)π(Σ). (4)

Then, the conditional posterior distributions of λ and Σ could be calculated as follow

π(λ|Σ, Z) ∝
∫ N∏

i=1

[ ∫
β1i

...

∫
βki

ni∏
j=1

(g−1(D(tj ;λ, βi)))
Zij

× (1− g−1(D(tj ;λ, βi)))
1−Zij

f(βi)dβ1i...dβki

]
π(λ)π(Σ)dΣ

π(Σ|λ,Z) ∝
∫ N∏

i=1

[ ∫
β1i

...

∫
βki

ni∏
j=1

(g−1(D(tj ;λ, βi)))
Zij

× (1− g−1(D(tj ;λ, βi)))
1−Zij

f(βi)dβ1i...dβki

]
π(λ)π(Σ)dλ. (5)
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Bayesian analysis is used in different and wide fields because of its philosophical
consistency, making consistent decisions in uncertain conditions, artful handling of
large and complex statistical problems, using powerful computational tools, and pro-
viding natural ways to structure data and knowledge to answer questions. Thus we are
motivated to use Bayesian analysis in presence of Non-informative, Less-informative,
and informative priors distributions using square error loss (SEL) function.

3 Simulation study
First of all, suppose that the expected continuous degradation path is as follow where
λ and βi are fixed and random slope in model, respectively. The expectation of model
can be rewritten as:

E(Yij) = (λ+ βi)Tj . (6)

Suppose, there are 100 units (i = 100) in 3 times (j = 3), in this study. For generating
discrete degradation data following steps should have be done.

• Generate random slope βi ∼ N(0, σ2
βi
).

• Generate discrete data from Bernoulli distribution Zij ∼ Bernoulli(πij) where
πij = P (Yij ≤ (λ+ βi)Tj), Yij ∼ N(0, 1) and Tj = T, T = 1, 2, 3.

Table 1: Parameter Estimates and Standard Errors.
Model1 Model1 Model2

Par True value MLE Estimate(SE) Bayes Estimate(SE) MLE Estimate (SE)
Priors Informative Priors

λ -1 -1.228(0.591) -1.156(0.225) -0.397(0.059)
σ2
βi

1 1.226(0.833) 1.120(0.271) -
AIC - 249 248 305
BIC - 256 256 309
Priors Less Informative Priors

λ -1 -1.242(0.590) -1.175(0.459) -0.396
σ2
βi

1 1.251(0.830) 1.148(0.640) -
AIC - 249 249 305
BIC - 256 256 309
Priors Non Informative Priors

λ -1 -1.236(0.592) -1.179(0.477) -0.395
σ2
βi

1 1.242(0.835) 1.155(0.680) -
AIC - 250 250 306
BIC - 257 257 309

Simulation was repeated in 1000 iterations and parameters estimate were obtained
by considering probit link with using glmer, bglmer and glm in R program. Also ap-
propriate priors for parameters λ and σ2

βi
are considered Normal and Inverse Gamma

distributions, respectively. For estimating parameters, two models are considered. The
model 1 considers fixed and random effect vectors concurrently like as assumed model
in (6), while random effect vectors were removed in model 2, that is E(Yij) = λTj . On
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Table 2: RRMSE of Parameters.
Model 1 Model 2

MLE Informative Less-informative Non-Informative -
β 0.642 0.237 0.486 0.507 0.608
σ2
b1 0.875 0.272 0.652 0.695 -

the other hand, parameters distribution were considered in three status: Non Infor-
mative (IG(0.001,0.001), N(-1,1000)), Less Informative (IG(0.01,0.01), N(-1,100)) and
Informative Priors (IG(0.1,0.1), N(-1,10)).

Table 1 show MLEs, Bayesian estimates and standard errors (SE), which were
obtained in presence and absence of random effects in model 1 (including both fixed
and random effects) and model 1 (including only fixed effects), respectively. As you
can see in this table, Model 1 has less AIC and BIC than Model 2 which random effects
were been removed.

Table 2 consists relative root mean squared errors of parameters which is denoted
by RRMSE (RRMSE =

√
(MSE(θ̂))

θ ). This table shows RRMSE of Bayes estimates
are less than ML estimates. In the Bayesian framework, as we expected, informative
Bayes estimates are precise than less informative Bayes estimates and less informative
Bayes estimates are precise than non-informative Bayes estimates.

4 Conclusions
Sometimes the exact degradation value could not be measured and only is recognized
that is greater or less than a predetermined value, this led us to discrete variables and
models. We considered degradation as the discrete response variable and utilized a
generalized linear model (mixed-effects model) for modeling repeated measures. As
you saw in the previous section, the random effect model is precious than the fixed-
effect model and Bayes estimates are accurate than ML estimates. Informative priors
resulted in less biasness than less informative priors and less informative priors than
non-informative priors.
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