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Abstract: In the presence of multicollinearity in the regression models, the ordinary
least squares estimator loses its performance. Some solutions to reduce the effects of
multicollinearity have been proposed, including the application of biased estimators
such as Liu estimate and estimation under linear restrictions. But due to the Liu es-
timator being biased, the Jackknife method has been introduced to reduce the bias.
In this paper, we will examine the Jackknifed Liu estimator and propose a new esti-
mator under stochastic linear restrictions namely stochastic restricted Jackknifed Liu
estimator. A simulation study is conducted to investigate the performance of this new
estimator using two measures namely mean squared errors and absolute bias. From
simulation study results, we find that the new estimator outperforms the OLS and Liu
estimators, and it is superior to both OLS and Liu estimators, using the mean squared
errors and absolute bias criteria.
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1 Introduction
Multicollinearity occurs when two or more explanatory variables are highly correlated
with each other. For instance, the effects of multicollinearity can be reduced by in-
creasing the sample size, removing the correlated variables from the model, and adding
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auxiliary information. The concept of multicollinearity, the identification methods,
strategies to deal with this problem, and its implications have been widely discussed
by Montgomery et al (2001), Daoud (2017), and Whinship and Western (2016). On the
other hand, some solutions proposed for multicollinearity leads to biased estimators.
These estimators reduce the variance of the resulting estimates significantly by accept-
ing some bias. These estimators include shrinkage estimator, Stein estimator (Stein,
1956), Ridge estimator (Horel and Kennrad, 1970), and Liu estimator (Liu, 1993).

One of the biased estimators that are widely used in practical work is the Liu esti-
mator. This estimator was first introduced by Liu (1993). In this method, Liu obtained
a new form of the estimator by combining Stein and Ridge estimators. Numerous stud-
ies have been conducted on this estimator. Sakallioglu et al (2001) compared the ridge
and the Liu estimators under the mean square errors (MSEs) criterion. Akdeniz and
Erol (2003) also made a comparison between the generalized Ridge estimator and the
generalized Liu estimator.

Other forms of Liu estimator have also been introduced by other researchers. Yang
et al (2009), by combining the weighted mixed and Liu estimators introduced the
weighted Liu estimator. Akdenizet al (2009) proposed a Liu-type estimator for the
vector of regression coefficients in a semi-parametric linear regression model. Alheety
and Kibria (2009) proposed an almost unbiased Liu estimator in regression models
with heteroscedastic errors. In recent years, Gruber (2010) has presented the two-
parameter Liu estimator as a Bayesian and Minimax estimator. Liu (2011) proposed
an improved Liu estimator based on the sum of squares prediction errors criterion, and
Li and Yang (2012) proposed a new form of Liu-type. Wu and Asar (2017) also studied
Liu estimator under exact linear constraints in logistic regression models.

On the other hand, sometimes a set of prior information about regression coefficients
is available and their use in regression analysis and estimation process can significantly
reduce the effects of multicollinearity. This prior information is usually expressed in
the form of linear constraints. Applying these constraints on the regression coeffi-
cients vector reduces the variance and improves the accuracy of estimates and thus
decreases the multicollinearity effects. Ozbay and Kacirenlar (2018) proposed a new
two parameter-weighted mixed estimator in a linear regression model with stochastic
linear restrictions and conducted a comparison study to investigate the performance
of the new estimator in comparison with other estimators. The idea of using prior
information was first introduced by Durbin (1953). He simultaneously used sample
information and prior information in the regression model. Subsequently, Thiel and
Goldberger (1961) developed a new estimator called the mixed estimator by integrating
the prior information and the sample data.

Also, many researchers have emphasized that the simultaneous use of these two
approaches, namely the applications of the biased estimator and prior information,
can further reduce the effects of multicollinearity (Yang and Xu, 2009 and Hubert and
Wijekoon, 2006). Therefore, using these two solutions simultaneously in a regression
model seems to be useful to reduce the effects of multicollinearity.

Kacirnelar et al. (1999) used the idea of Sarkar (1992) by combining the Liu and the
restricted least squares estimators and proposed a restricted Liu estimator. Kacirenlar
(2001) compared the restricted Liu and the restricted least squares estimators. The
idea of a mixed estimator was motivated by Hubert and Wijekoon (2006) to introduce a
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Liu estimator under the stochastic linear restrictions to obtain a new estimator namely
a stochastic restricted Liu estimator.

The application of biased estimators is considered to be the most common method
for reducing the effects of multicollinearity. In this regard, many efforts have been
made to provide a suitably biased estimator. Although these estimators are biased,
the results from their fitting are more inferred. Therefore, the only issue of concern
regarding the application of these estimators is their biasedness. So, the researchers
introduce some methods to reduce the bias of these estimators. One of these methods is
the Jackknife technique. In addition to being a nonparametric bias reduction method,
the Jackknife technique has also been applied as a method for estimating variance and
identifying influential observations in a data set. The Jackknife technique was first
introduced by Quenouille (1949, 1956) to reduce the bias in the time series models.
Then Tukey (1958) was able to estimate the variance using the Jackknife technique.
Cook (1977) used this method to represent influential observations on a data set in the
context of diagnostics.

Hinkley (1977) introduced a weighted version of the Jackknife technique in unbal-
anced models. After that to reduce the bias of the Ridge estimator, Sing et al. (1986)
used the Jackknife technique and proposed Jackknifed Ridge estimator, and then eval-
uated its bias under the MSE criterion in comparison with some estimators. Nyquist
(1988) also presented the application of the Jackknife technique in Ridge regression.

Recently, Akdeniz and Akdeniz (2012) following Sing et al. (1986) applied the
Jackknife technique for Liu estimator and obtained an estimator which is very similar to
the almost unbiased Liu estimator introduced by Akdeniz and Kacirenlar (1995). The
performance of the new estimator was investigated in comparison with other estimators.

In this study, we introduce a form of stochastic restricted Liu estimator using Liu
estimator and linear restrictions in the form of stochastic and we study the performance
of this estimator is compared with some other estimators. Also to reduce the bias of
the new estimator, we apply the Jackknife technique and obtain another estimator.
We will call this new estimator the mixed Jackknifed Liu estimator and show that it
has better performance than Liu estimator under MSE and absolute bias criteria.

The article is organized as follows: in section 2 the model and estimators are pre-
sented. Then the Jackknifed technique and Jackknifed Liu estimator will be presented
in section 3. Section 4 will focus on the application of Linear restrictions and two new
estimators are proposed. A simulation study is performed to investigate the perfor-
mance of the new estimator under the MSEs and the absolute bias criteria in section
5. Section 6 considers a real data set to show the applicability of the mixed Jackknifed
Liu estimator. The paper ends with some conclusions in section 7.

2 Model and estimators
Consider the following regression model

Y = Xβ + ε, ε ∼ N(0, σ2In), (1)

where X is an n×p matrix of explanatory variables, Y is an n×1 vector of observations
on the response variable, β is a p×1 vector of unknown parameters, ε is an n×1 vector
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of independent and identically distributed random errors with mean 0 and variance-
covariance matrix σ2I.

It is known that Model (1) can be written in a canonical form. Let T is an orthog-
onal matrix such that

T ′X ′XT = Λ,

where Λ is a p× p diagonal matrix whose elements are eigenvalues   of X ′X. Using T
matrix; we obtain the canonical form of model (1) as

Y = Zγ + ε, (2)

where Z = XT and γ = T ′β. Therefore, the least squares estimator for model (2) is
obtained as

γ̂ = (Z ′Z)−1Z ′Y = Λ−1Z ′Y . (3)

The ordinary least squares estimator is unbiased and has proven its performance in
many practical applications. But when there is multicollinearity among two or more
explanatory variables, the ordinary least squares are unstable, and such estimation
cannot be relied upon in practical work because the results would be unreliable.

To overcome the problem of multicollinearity, Liu (1993) introduced a biased es-
timator namely, the Liu estimator. To achieve this estimator, he combined some
information in the form of stochastic linear restrictions, called Liu’s constraints, with
the model (1). Therefore, the Liu estimator of vector γ in the model (2) is given by

γ̂(d) = (Λ+ Ip)
−1(Z ′Y + dγ̂) = (Λ+ Ip)

−1(Λ+ dIp)γ̂ = Fdγ̂, (4)

where 0 < d < 1 is called Liu parameter and

Fd = (Λ+ Ip)
−1(Λ+ dIp) = diag

{
λ1 + d

λ1 + 1
, ...,

λp + d

λp + 1

}
.

Since γ = T ′β, so the least squares and the Liu estimators of vector β in model (1)
will be β̂ = T γ̂ and β̂(d) = T γ̂(d), respectively.

The bias vector and the variance-covariance matrix of the Liu estimator are given

Bias(γ̂(d)) = E(γ̂(d))− γ = Fdγ − γ = (Fd − Ip)γ

= −(Λ+ Ip)
−1(Ip − dIp)γ,

V ar(γ̂(d)) = σ2(Λ+ Ip)
−1(Λ+ dIp)Λ

−1(Λ+ dIp)(Λ+ Ip)
−1

= σ2FdΛ
−1Fd.

To apply this estimator in practice, we face the problem of choosing an unknown
parameter d. Liu (1993) outlines several methods for estimating d, in which only the
minimization of MSE of Liu estimator is considered here. By minimizing the MSE of
Liu estimator we obtain an estimator of d as

d =

p∑
j=1

γ2
j − σ2

(λj + 1)
2

/
p∑

j=1

σ2 + λjγ
2
j

(λj + 1)
2
λj

.
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Substituting γj ’s and σ2 by their unbiased estimators, we get the estimator of d as

d̂mm = 1− σ̂2

 p∑
j=1

1

λj(λj + 1)

/
p∑

j=1

γ̂2
j

(λj + 1)
2

 . (5)

See Liu (1993) for other methods of selection d.

3 Jackknife technique and Jackknifed Liu estimator
The Jackknife technique or ”case deletion” is a cross-validation method first introduced
by Quenouille (1956) as a nonparametric bias reduction method. Then the Jackknife
method was used for nonparametric variance estimation by Tukey (1958).
More recently many researchers have applied the Jackknife technique on some biased
estimators to reduce related bias. Akdeniz et al. (2012) proposed a new estimator
called Jackknifed Liu by applying the Jackknife method on the Liu estimator which
reduces the bias of the Liu estimator. In doing so, they first obtained Liu estimator
for the canonical model (2) without ith observation, which yields the following result

γ̂(−i)(d) = γ̂(d)− A−1zie
∗
i (d)

1− w∗
i

,

where zi is the ith row of Z matrix, and γ̂(−i)(d) is the Liu estimator for the parameters
vector of the canonical model (2) when ith observation is not considered. Also w∗

i =
z′
iA

−1zi is the ith diagonal element of W ∗ = ZA−1Z ′ and e∗i (d) = yi − z′
iγ̂(d) is the

ith residual obtaining from fitting the Liu estimator for model (2). Matrix A is defined
as

A−1 = (Λ+ I)−1(I + dΛ−1) = FdΛ
−1,

where Fd = (Λ + Ip)
−1(Λ + d). Hence, the weighted pseudo-values   are defined as

follows
Q̃i = γ̂(d) + n(1− w∗

i )(γ̂(d)− γ̂(−i)(d)),

(See Hinkley, 1977 and Nayquist, 1988). Therefore, the Jackknifed Liu estimator for
model (2) is given by

γ̃(d) = (2Ip − Fd)Fdγ̂.

Since γ = T ′β, therefore β̃(d) = T γ̃(d) is the Jackknifed Liu estimator for β of the
model (1).

4 Jackknifed Liu estimator under stochastic linear
restrictions

If prior information on the vector of regression coefficients is available, they are usually
expressed in the form of linear constraints, which are imposed on coefficient vector in
two forms as stochastic and exact linear restrictions. The previous studies show that
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using this information about the vector of regression parameters reduces the MSE of
the estimator. So in this section, we will focus on how to use prior information and
show how combining this information will improve the estimators. Also, according
to the used method by Ozkale (2009) and Li and Yang (2010), by integrating the
prior information in the form of linear given observation restrictions in Liu Jackknifed
estimation procedure, we introduce a new estimator called the mixed Jackknifed Liu
estimator.

Let us be given some prior information about β in the form of a set of m independent
stochastic linear restrictions as

r = Rβ + ϕ, ϕ ∼ (0, σ2Im), (6)

where r is an m × 1 vector of known values, R is an m × p known matrix with rank
m, and ϕ an m× 1 vector of disturbances with mean 0 and variance-covariance matrix
σ2Im. Also, we assume that the elements of ϕ are independent of the elements of ε
vector.

To estimate regression coefficients under stochastic linear restrictions, we combine
model (1) and prior information (6) as follows(

Y
r

)
=

(
X
R

)
β +

(
ε
ϕ

)
. (7)

Using new notation, Ỹ =
(

Y
r

)
, X̃ =

(
X
R

)
, ε̃ =

(
ε
ϕ

)
, we obtain the following

model
Ỹ = X̃β + ε̃, ε̃ ∼ (0, σ2I). (8)

It is known that the model (8) can be written in canonical form. Hence there exist
a matrix Pp×p such that

P ′X̃ ′X̃P = Π, P ′P = PP ′ = Ip,

where Π is a diagonal matrix whose elements are eigenvalues   of the matrix X̃ ′X̃ =
X ′X +R′R. Using matrix P , the model (8) is rewritten as

Ỹ = Uθ + ε̃, (9)

where U = X̃P and θ = P ′β. Using the least squares method for model (9), the OLS
estimator under restriction (6) is obtained as follows

θ̂m = (U ′U)−1U ′Ỹ = Π−1U ′Ỹ .

This estimator is called the mixed estimator. We can show that the mixed estimator
has a smaller variance than the ordinary least squares estimator. See Rao et al (2008)
for more details.

Now by integrating the Liu constraints with the canonical model (9), we can obtain
the Liu estimator under stochastic linear restrictions. So, we have

θ̂m(d) = (U ′U + I)−1(U ′U + dI)θ̂m = (Π+ I)−1(Π+ dI)θ̂m = Gdθ̂m,
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where Gd is a diagonal matrix whose elements are defined as follows

Gd = diag

{
π1 + d

π1 + 1
, . . . ,

πp + d

πp + 1

}
.

Also, the bias vector and variance-covariance matrix of mixed Liu estimator is given
as

Bias(θ̂m(d)) = E(θ̂m(d))− θ = Gdθ − θ = (Gd − I)θ,

V ar(θ̂m(d)) = σ2GdΠ
−1Gd,

MSE(θ̂m(d)) = V ar(θ̂m(d)) +Bias(θ̂m(d))[Bias(θ̂m(d))]′

= σ2GdΠ
−1Gd + (Gd − Ip)θθ

′(Gd − Ip).

The mixed Liu estimator is biased, so by applying the Jackknife method, the bias of
this estimator will be reduced. We use the method proposed by Akdeniz and Akdeniz
(2012) to obtain Jackknifed Liu estimator under stochastic linear restrictions. Consider
the θ̂m(d) estimator for the canonical model (9). The Jackknife technique is based
on observation deletion, so we obtain the θ̂m(d) estimator after eliminating the ith
observation, θ̂m(−i)(d). Defining XP = Z̃ and RP = R̃, we have

θ̂m(−i)(d) =(B − z̃iz̃
′
i)

−1(Z̃ ′Y − z̃iyi + R̃′r)

=

(
B−1 +

B−1z̃iz̃
′
iB

−1

1− z̃′
iB

−1z̃i

)
(Z̃ ′Y + R̃′r − z̃iyi)

=B−1(Z̃ ′Y + R̃′r)−B−1z̃iyi

+
B−1z̃iz̃

′
iB

−1

1− z̃′
iB

−1z̃i
(Z̃ ′Y + R̃′r)− B−1z̃iz̃

′
iB

−1z̃iyi
1− z̃′

iB
−1z̃i

=θ̂m(d)−B−1z̃iyi

(
1 +

z̃′
iB

−1z̃i
1− z̃′

iB
−1z̃i

)
+

B−1z̃iz̃
′
iθ̂m(d)

1− z̃′
iB

−1z̃i

=θ̂m(d)−
B−1z̃i

(
yi − z̃′

iθ̂m(d)
)

1− z̃′
iB

−1z̃i

=θ̂m(d)− B−1z̃iẽi(d)

1− w̃i
.

The value θ̂m(−i)(d) is the mixed Liu estimator when the ith observation is removed
from the data set. Z̃(−i) and Y(−i) are matrix Z̃ and vector Y without ith observation
respectively, and w̃i = z̃′

iB
−1z̃i is ith diagonal element matrix W̃ = Z̃B−1Z̃ ′ and

ẽi(d) = yi − z̃′
iθ̂m(d) is ith residual obtained by fitting mixed Liu estimator for model

(9). Also the inverse matrix of B is defined as follows

B−1 = (Π+ I)−1(I + dΠ−1) = GdΠ
−1,

Then the weighted pseudo-values   are given by

Q∗
i = θ̂m(d) + n(1− w̃i)(θ̂m(d)− θ̂m(−i)(d)). (10)
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Therefore, the Jackknifed Liu estimator under stochastic linear restrictions (6) for
canonical model (9) is defined as follows

θ̃m(d) =
1

n

n∑
i=1

Q∗
i ,

and due to
n∑

i=1

z̃iyi = Z̃ ′Y and
n∑

i=1

z̃iz̃
′
i = Z̃ ′Z̃, the mixed Jackknifed Liu estimator of

θ is as follows

θ̃m(d) = θ̂m(d) +B−1
n∑

i=1

z̃iẽi(d)

= θ̂m(d) +B−1Z̃ ′Y −B−1Z̃ ′Z̃B−1U ′Ỹ = (I −B−1Z̃ ′Z̃)θ̂m(d) +B−1Z̃ ′Y .
(11)

According to Equation (11), the bias vector of mixed Jackknifed Liu estimator is as
follows

Bias(θ̃m(D)) = E(θ̃m(D))− θ = (I −B−1Z̃ ′Z̃)E(θ̂m(D)) +B−1Z̃ ′E(Y )− θ

= (I −B−1Z̃ ′Z̃)GDθ +B−1Z̃ ′XPθ − θ

=
[
(I −B−1Z̃ ′Z̃)GD +B−1Z̃ ′Z̃ − I

]
θ

= (B−1Z̃ ′Z̃ − I)(I −GD)θ = −(I −B−1Z̃ ′Z̃)(I −GD)θ.

Also, the variance-covariance matrix of mixed Jackknifed Liu estimator is given as

V ar
[
θ̃m(d)

]
=σ2(I −B−1Z̃ ′Z̃)GdΠ

−1G′
d(I −B−1Z̃ ′Z̃)′

+ σ2(I −B−1Z̃ ′Z̃)GdΠ
−1Z̃ ′Z̃B−1

+ σ2B−1Z̃ ′Z̃Π−1G′
d(I −B−1Z̃ ′Z̃)′

+ σ2B−1Z̃ ′Z̃B−1.

Since θ = P ′β, therefore the mixed, mixed Liu and mixed Jackknifed Liu estimators
for Model (1) are β̂m = P ′θ̂m, β̂m(d) = P ′θ̂m(d) and β̃m(d) = P ′θ̃m(d) respectively.

The MSE of new estimators has complicated forms, therefore an explicit expression
for the estimator of d cannot be achieved. This would be possible through numerical
methods which we will perform these methods in a simulation study and real example
to obtain an optimal estimator of d.

5 Simulation study
In this section, we use a simulation study to evaluate the performance of the mixed
Jackknifed Liu, ordinary least squares, mixed, Liu, mixed Liu and Jackknifed Liu under
two MSEM and ABIAS criteria. In this study, following McDonald and Galarneau
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(1975) and Kibria (2003) approach, we simulate the regression model in the following
way. The data for the explanatory variables are generated as follows

xij = (1− ρ2)1/2wij + ρwi,p+1, i = 1, 2, . . . , n, j = 1, 2, . . . , p, (12)

where wij ’s are independent standard normal pseudo-random numbers and ρ is deter-
mined so that the correlation between any two explanatory variables is given by ρ2.
In this study, we consider three different values   for ρ 0.8, 0.9 and 0.99 to compare
the results under weak, moderate, and severe multicollinearity. Following Newhouse
and Oman (1971), McDonald and Galarneau (1975), Kibria (2003), and many other
researchers we choose β as the normalized eigenvector corresponding to the smallest
eigenvalue of X ′X matrix in this simulation study. Also, it should be noted that the
model is generated without an intercept term. Then the observations on the response
variable are generated as follows

yi = β1xi1 + . . .+ βpxip + εi, i = 1, 2, . . . , n,

where εi’s are independent random numbers from a normal distribution with mean 0
and σ2 variance. Also in this study, the constraint matrix elements are derived from
the U(0, 3) distribution and the number of constraints is assumed to be m = 2. The
constraint vector is also produced as follows

ri = β1Ri1 + . . .+ βpRip + ϕi, i = 1, 2

For the σ parameter, three different values   equal to 1, 4 and 9 are considered. We
choose two values   30 and 100 for n and p = 3. Then the experiment is replicated 1000
times by generating new error terms.

Firinguetti (1989) compared different estimators under the criteria of MSE and
absolute bias. Namura (1988) compared the ridge and the jackknifed ridge estimators
under the criteria of MSE and biases by doing a simulation study. We will also use these
criteria to investigate the performance of OLS, Liu and jackknifed Liu estimators. The
MSE and the absolute bias for any estimator b are calculated respectively as follows

MSE (b) =
1

1000

1000∑
r=1

(br − β)
′
(br − β) ,

ABIAS (b) =

p∑
j=1

∣∣bj − βj

∣∣ , bj =
1

1000

1000∑
r=1

bj(r),

where bj(r) is the estimator of βj in the r-th replication of the experiment. For each
replication, the value of d is estimated using relation (5) which minimizes the MSE
of the Liu estimator. Statistical software R is used to perform this simulation. The
numerical results of simulation study are presented in Tables 1-3.

The results show that in most cases the mixed Jackknifed Liu estimator has the best
performance among all estimators regarding MSE and bias criteria. Therefore it can be
stated that using Jackknifed technique and stochastic linear restrictions simultaneously
leads to improvement of Liu estimator performance. When the sample size increases,
convergence of the MSE to zero is a sufficient condition for consistency. We could easily
check the consistency of these estimators.
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Table 1: MSEs and absolute biases of OLS, OME, Liu, mixed Liu, Jackknifed Liu and mixed
Jackknifed Liu estimators with σ = 1

ρ = 0.8 ρ = 0.9 ρ = 0.99
n Estimator MSE ABIAS MSE ABIAS MSE ABIAS

β̂ 0.22442 0.59797 0.41724 0.83408 3.87715 1.73992
β̂m 0.17626 0.40910 0.30152 0.55358 1.63663 0.74758

n = 30 β̂(d) 0.22144 0.57910 0.40350 0.78381 3.02490 1.24432
β̂m(d) 0.18531 0.43512 0.31177 0.57889 1.41205 0.57136
β̃(d) 0.20875 0.40742 0.37294 0.51209 3.04974 0.60474
β̃m(d) 0.16445 0.28128 0.27041 0.34480 1.21992 0.12600

β̂ 0.04993 0.48763 0.12127 0.00237 1.01684 0.55910
β̂m 0.04907 0.48482 0.11537 0.00377 0.62557 0.39534

n = 100 β̂(d) 0.04988 0.48632 0.12125 0.00244 0.95335 0.50018
β̂m(d) 0.04981 0.48566 0.12031 0.00302 0.62748 0.38308
β̃(d) 0.04890 0.43552 0.11930 0.01504 0.77679 0.24464
β̃m(d) 0.04808 0.43326 0.11358 0.01604 0.50559 0.15398

Table 2: MSEs and absolute biases of OLS, OME, Liu, mixed Liu, Jackknifed Liu and mixed
Jackknifed Liu estimators with σ = 4

ρ = 0.8 ρ = 0.9 ρ = 0.99
n Estimator MSE ABIAS MSE ABIAS MSE ABIAS

β̂ 3.09942 5.16720 6.08547 5.01170 60.97988 3.16755
β̂m 2.52378 3.64221 4.55291 3.35178 26.24409 1.29889

n = 30 β̂(d) 3.04723 5.08765 5.83374 4.82724 46.58424 2.36328
β̂m(d) 2.63694 3.97840 4.64848 3.65700 21.58811 1.12910
β̃(d) 2.85391 4.45495 5.35741 3.95506 47.62215 1.40116
β̃m(d) 2.29181 3.22502 3.90152 2.76388 17.79188 0.47815

β̂ 1.01643 0.80725 1.72959 0.99085 15.97173 1.43947
β̂m 0.98403 0.74872 1.61812 0.89742 10.81092 0.89934

n = 100 β̂(d) 1.01592 0.80667 1.72643 0.98862 14.58345 1.32308
β̂m(d) 1.01051 0.79992 1.69008 0.96866 10.69500 1.01514
β̃(d) 0.98906 0.77351 1.64043 0.92228 11.38428 0.90039
β̃m(d) 0.95842 0.71708 1.54020 0.83663 8.13662 0.53906

6 Real example
To illustrate the performance of the new estimator we aim a data set on the productivity
of electrical industrial power plants with 10 or more employees in Iran in 2006. The data
were collected by the Iranian Statistics Center. First, the multicollinearity diagnostics
are implemented and then we will fit a model to data using least squares, Liu and Liu
Jackknifed estimators under two conditions: without restrictions and with restrictions.
Then we compare these estimators based on the MSE and ABIAS criteria.
In this study, the response variable is labor productivity, which is calculated by dividing
the value added by the number of employees in the plant, and the explanatory variables
in this example are six variables as follows (it should be noted that the costs used in
some explanatory variables are in million Rials):
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Table 3: MSEs and absolute biases of OLS, OME, Liu, mixed Liu, Jackknifed Liu and mixed
Jackknifed Liu estimators with σ = 9

ρ = 0.8 ρ = 0.9 ρ = 0.99
n Estimator MSE ABIAS MSE ABIAS MSE ABIAS

β̂ 15.22895 8.66537 30.81025 6.48025 307.78840 4.14853
β̂m 12.60267 5.96462 23.24754 4.23711 132.66653 1.34063

n = 30 β̂(d) 14.96522 8.53981 29.51341 6.25722 234.07322 3.12629
β̂m(d) 13.15430 6.66719 23.70143 4.63010 108.46096 1.29741
β̃(d) 14.00343 7.55772 27.08790 5.19032 240.13840 1.92202
β̃m(d) 11.37263 5.34194 19.78377 3.54948 89.35971 0.56376

β̂ 4.46421 1.54993 10.45353 1.42032 92.81526 2.00324
β̂m 4.36549 1.54163 10.18470 1.37968 56.54471 1.33488

n = 100 β̂(d) 4.46178 1.54910 10.42263 1.41643 83.72409 1.84542
β̂m(d) 4.45207 1.54786 10.36083 1.40964 53.91592 1.40368
β̃(d) 4.33277 1.50305 9.74966 1.32280 65.04305 1.33118
β̃m(d) 4.23929 1.49585 9.51549 1.28623 42.11021 0.96765

Table 4: MSEs of propesed estimators
β̂m(d) β̃m(d)

n 500 1000 100000 500 1000 100000
ρ = 0.8 0.05123 0.00229 0.00025 0.05037 0.00229 0.00025

σ = 2 ρ = 0.9 0.08367 0.00439 0.00043 0.08307 0.00439 0.00043
ρ = 0.99 0.82943 0.04098 0.00414 0.82998 0.04025 0.00413
ρ = 0.8 0.21942 0.00990 0.00099 0.19651 0.00984 0.00099

σ = 4 ρ = 0.9 0.41637 0.01707 0.00173 0.34905 0.01684 0.00173
ρ = 0.99 4.35398 0.17779 0.01592 3.13193 0.15921 0.01568
ρ = 0.8 1.38320 0.05150 0.00477 0.96250 0.04956 0.00475

σ = 9 ρ = 0.9 2.83115 0.09587 0.00908 1.86247 0.08901 0.00900
ρ = 0.99 25.9710 1.12442 0.09328 120.026 0.73066 0.08697

1. Number of employees in each plant;

2. Labor Costs (Employee Service Compensation);

3. Total inventory of capital assets at the end of the year;

4. Cost of raw materials;

5. Cost of energy consumed;

6. Costs related to other payments.

Information on the above variables was collected from 442 industrial plants. It should
also be noted that the data on the productivity of electrical industry plants in 2005 is
used as prior information in the form of stochastic linear restrictions. This informa-
tion has been compiled and calculated through the industry section of the Statistical
Yearbook (2005) and is as increment

r = 12.24, R = (65.49, 2.65, 4679.06, 9.72, 1240.16, 1583.75),
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where r and R are defined according to (6). It should be noted that the values of r
and the R are the average of the variables considered for the electrical industry plants
in 2005. After fitting the various estimators, we compare the estimators under MSE
and ABIAS criteria. For d we consider a numerical sequence of 0 to 1 with a distance
of 0.05. The results are presented in Tables 5 and 6.

Table 5: MSEs of Liu, mixed Liu, Jackknifed Liu and mixed Jackknifed Liu for different values of d
d 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

β̂(d) 2.5023 2.2592 2.0289 1.8115 1.6070 1.4154 1.2366 1.0707 0.9176 0.7775
β̂m(d) 1.2827 1.1584 1.0408 0.9299 0.8256 0.7280 0.6371 0.5529 0.4753 0.4044
β̃(d) 2.2379 1.8257 1.4751 1.1796 0.9333 0.7303 0.5655 0.4337 0.3304 0.2513
β̃m(d) 1.0893 0.9205 0.7732 0.6455 0.5355 0.4416 0.3623 0.2959 0.2410 0.1963

d 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

β̂(d) 0.6502 0.5357 0.4342 0.3455 0.2697 0.2067 0.1566 0.1194 0.0951 0.0836
β̂m(d) 0.3402 0.2827 0.2318 0.1876 0.1500 0.1192 0.0930 0.0774 0.0666 0.0624
β̃(d) 0.1922 0.1498 0.1205 0.1017 0.0905 0.0849 0.0829 0.0829 0.0838 0.0847
β̃m(d) 0.1605 0.1325 0.1110 0.0951 0.0838 0.0763 0.0718 0.0697 0.0692 0.0699

According to the results of Table 5, for d in the range of 0-0.85, the mixed Jack-
knifed Liu (the proposed estimator of this study) has the minimum MSE among other
estimators. But for the values of d equals 0.9, 0.95, and 1 mixed Liu estimator has
the best performance according to MSEs in this data set. In general, it can be said
that increasing the value of d in most cases improves the performance of estimators
according to the MSE criterion. In addition, for all values considered of d, the MSEs
of estimators under restrictions are smaller than that of unrestricted estimators. So
this could be another proof of the applicability of linear restrictions in reducing the
effects of multicollinearity.
Table 6: Absolute biases of Liu, mixed Liu, Jackknifed Liu and mixed Jackknifed Liu for different
values of d

d 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

β̂(d) 2.7773 2.6385 2.4996 2.3608 2.2219 2.0830 1.9441 1.8053 1.6664 1.5276
β̂m(d) 1.9935 1.8938 1.7941 1.6944 1.5948 1.4951 1.3954 1.2958 1.1961 1.0964
β̃(d) 2.5989 2.3455 2.1051 1.8777 1.6633 1.4619 1.2734 1.0980 0.9356 0.7862
β̃m(d) 1.7865 1.6389 1.4974 1.3643 1.2392 1.1200 1.0063 0.8981 0.7955 0.6985

d 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

β̂(d) 1.3887 1.2498 1.1109 0.9721 0.8332 0.6943 0.5555 0.4166 0.2777 0.1389
β̂m(d) 0.9967 0.8971 0.7974 0.6977 0.5980 0.4984 0.3987 0.2990 0.1993 0.0997
β̃(d) 0.6497 0.5263 0.4158 0.3184 0.2339 0.1624 0.1039 0.0585 0.0260 0.0065
β̃m(d) 0.6071 0.5213 0.4410 0.3663 0.2973 0.2338 0.1758 0.1244 0.0780 0.0365

Finally, the results of Table 6 show that for d in the range 0-0.55 the mixed Jack-
knifed Liu estimator has smaller ABIAS than all other estimators. But for d equal to
0.6-1 the Jackknifed Liu estimator is better than other estimators under the absolute
bias criterion. We summarized the comparison of Liu, mixed Liu, Jackknifed Liu and
mixed Jackknifed Liu estimators under criteria MSEs in Figure 1. From Figure 1 it
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Figure 1: MSEs (left) and Absolute biases (right) of Liu, mixed Liu, Jackknifed Liu
and mixed Jackknifed Liu for 0 < d < 1

can be seen that the MSE of mixed Jackknifed Liu estimator is below the three other
graphs, which the proposed estimator is more efficient compared to other estimators.
Also, Figure 1 shows that for 0 < d < 0.55 the mixed Jackknifed Liu estimator and
for 0.55 < d < 1 the Jackknifed Liu estimator have smaller ABIAS among other
estimators.

7 Conclusions
In this article, we proposed an alternative stochastic restricted Liu estimator for the
vector of parameters in a linear regression model when additional stochastic linear
restrictions on the parameter vector are assumed to hold. Then, the Jackknife tech-
nique was performed to reduce the bias of the new estimator and we obtained another
new estimator which we called the mixed Jackknifed Liu estimator. Since the new
estimator had a complex form, using a simulation study its performance was inves-
tigated under MSEs and absolute bias criteria. Simulation results have shown that
the new stochastic restricted Jackknifed Liu estimator outperforms the Liu, stochastic
restricted Liu, and Jackknifed Liu estimators in the MSE and ABIAS senses. Also,
data set on the productivity of industrial power plants were used and the results showed
that the proposed estimator has smaller MSEs compare with other estimators. It was
also observed that the application of the Jackknife technique significantly reduces the
absolute biases. We have established that using both Jackknifed and linear restrictions
techniques improves the efficiency of the resulting estimator. The results showed that,
for some values of d, the mixed Jackknifed Liu estimator has the best performance
concerning MSE and ABIAS criteria. But what can be concluded from simulation
and real example results is that imposing restrictions on parameter vector reduces the
MSE of the corresponding estimator. Also, in most cases, the ABIAS criterion has
decreased. On the other hand, the Jackknifed technique has a good effect on reducing
the ABIAS of all discussed estimators.
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