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Abstract: The shock models have attracted a great deal of attention because of their
important role in engineering systems. If the time between two successive shocks is less
than the pre-defined threshold δ, the system fails, which is called the δ-shock model. In
this article, we studied the generalized δ-shock model with two types of arrival shocks
under a Polya process which has dependent interarrival times. The survival function
and the mean lifetime of this system are obtained. Finally, some illustrative examples
are presented.
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1 Introduction
As a special shock model considers, the δ-shock model proposed by Li et al. (1999)
and Li et al. (1999) which if the interarrival time between two shocks is shorter than a
prespecified threshold δ, the system fails. This kind of shock model is useful for systems
that need a period to recover from the shock. They studied the lifetime properties of
the model that the shocks arrive according to a Poisson process. The δ-shock model is
widely utilized in many areas such as electrical systems, inventory theory, earthquake
modeling, insurance mathematics. Also, some generalizations were provided for the
δ-shock model.

A mixed shock model is defined by Wang and Zhang (2007) in which the system
fails when an extreme shock occurs or a δ-shock. Li and Kong (2007) studied the
reliability function and some distribution properties for a δ-shock model under the
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nonhomogeneous Poisson process of shock arrivals. Li and Zhao (2007) studied a
general lifetime distribution for the δ-shock model of complex systems with independent
and identical components. Eryilmaz (2012) presented a generalization of the δ-shock
model by using the δ-shock model based on runs and obtained the survival function
and mean failure time for the system. Wang and Peng (2016) generalized the δ-shock
model by assuming that the system fails when two types of shocks occur under the
homogeneous Poisson process of shock arrivals which if a shock happens before the
system recovered from a prior shock, the system exterminates. Cha and Finkelstein
(2016) studied shock models under the generalized Polya process of shocks and derived
survival and the failure rate functions based on the extreme shock model. Eryilmaz
(2017) investigated the δ-shock model under a Polya process of shock arrival which
has dependent interarrival times and obtained survival function and mean a lifetime
of the system. Tuncel and Eryilmaz (2018) investigated the survival function and the
meantime to system failure considering the proportional hazard rate model. Recently,
Lorvand et al. (2019) generalized the δ-shock models to a mixed setup for the multi-
state systems. Their proposed model is useful for the system which has the partially
working state related to happen each interarrival time between two successive shocks
in a specific critical interval.

In this article, we present a new setup of the generalized δ-shock model defined by
Wang and Peng (2016) when the interarrival times are dependent and exchangeable.
The continuing of the paper is organized as follows. In Section 2, some notations and
the assumption of models are provided. The survival function is obtained in Section
3. In Section 4, the Mean Lifetime of the generalized δ-shock Model is investigated.
The illustrative examples are presented to evaluate the results in Section 5. Finally,
Concluding remarks are given in Section 6.

Notations
N(t) Number of increments in Polya process
Ni(t) Number of ith shocks occurred in the interval time (0, t], i = 1, 2
ni Realization of Ni(t), i = 1, 2
p The Probability of a shock is type 1
q The Probability of a shock is type 2
Xn Interarrival time between the (n− 1)th and nth shocks, n = 1, 2, . . .
F (t) Cumulative distribution function (CDF) of the interarrival time Xn, n = 1, 2, . . .
δi Arrival time for a type i shock, i = 1, 2
Zn Type of the nth shock, equal to 1 or 2, n = 1, 2, . . .
T Lifetime of the δ-shock model with two types of shocks

2 Model assumptions
In this section, the assumption of generalized δ-shock model is presented based on two
types of shocks.

Suppose a generalized δ-shock model for a system with one component affected by
two types of shocks according to the upcoming assumption.
Assumption. A newly installed system at time t = 0 is deal with external shocks
that include two types of shocks so that shock is type 1 with probability p or is Type
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2 with probability q = 1 − p. Therefore, the shocks are independent and based on a
Polya process {Nt, t ≥ 0} enter the system.

Lemma 2.1. Eryilmaz (2017) Polya process is a special case of mixed Poisson process
with the following mass probability function

P (N(t) = n) =

∫ ∞

0

e−λt(λt)n

n!
dH(λ)

=

(
α+ n− 1

n

)(
t

t+ β

)n(
β

β + t

)α

, ∀ n = 0, 1, . . . , (1)

where H is the Gamma distribution with density

dH(λ) =
βα

Γ(α)
λα−1e−βλ.

Remark 2.2. By considering the dependent and exchangeable interarrival times Xi,
i = 1, 2, . . . , n, the marginal distribution of Xi is supposed Pareto with cumulative
distribution function

P (Xi ≤ t) = 1−
(

β

β + t

)α

, ∀ t ≥ 0.

3 Survival function of the generalized δ-shock model
In this section, the survival function of the generalized δ-shock model with two types
of shocks is studied. The next lemma is required to obtain the survival function of this
model.

Lemma 3.1. Assume that N(t), t ≥ 0 is a homogeneous Poisson process (HPP) with
rate λ, and X1, X2, · · · , Xn denote the interarrival times of the process. Given N(t) =
n, then

P (X2 > a,X3 > a, · · · , Xn > a|N(t) = n) =

(
1− (n− 1)a

t

)n

+

, (2)

for any constant a > 0 and y+ = max(y, 0); Li et al. (1999), Li et al. (1999) and
Eryilmaz (2012).

Once a shock happens before the system recovered from a prior shock, the system
exterminates. So, it is important to obtain the survival function. The survival function
of this shock model is given as follows

P (T > t) =

[ t
δ1

]∑
n1=0

[ t
δ2

]∑
n2=0

P (T > t,N1(t) = n1, N2(t) = n2). (3)

To get the survival function (3), there are three cases. Firstly, no shock enters the
system in [0, t]. So,

P (T > t,N1(t) = 0, N2(t) = 0) =

(
β

β + t

)α

. (4)
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Secondly, supposing that only one type of shock enters the system in [0, t]. If the
first type of shock occurred, the survival function is

P (T > t,N1(t) = n1, N2(t) = 0)

= P (X1 > δ1, . . . , Xn1
> δ1|N1(t) = n1, N2(t) = 0)P (N1(t) = n1, N2(t) = 0)

= P (X1 > δ1, . . . , Xn1
> δ1|N1(t) = n1, N2(t) = 0)P (N1(t) = n1)P (N2(t) = 0)

= p

(
β

β + t

)2α [ t
δ1

]∑
n1=0

(
α+ n1 − 1

n1

)(
t− n1δ1
t+ β

)n1

+

, ∀ n1 = 1, 2, · · · , (5)

where the last statement holds by using lemma 3.1. Similar to the second type of
shock, for n2 = 1, 2, · · · , we have

P (T > t,N1(t) = 0, N2(t) = n2) = (1− p)

(
β

β + t

)2α

×
[ t
δ2

]∑
n2=0

(
α+ n2 − 1

n1

)(
t− n2δ2
t+ β

)n2

+

. (6)

Finally, for the case which both two types of shocks enter the system in [0, t]. By
investigating the probability P (T > t,N1(t) = n1, N2(t) = n2), the survival function
of our proposing model can be obtained as the following theorem.

Theorem 3.2. The survival function of the proposing generalized δ-shock model is

P (T > t) =

(
β

β + t

)α

+ pn1

[ t
δ1

]∑
n1=1

[ t
δ2

]∑
n2=0

(
α+ n1 − 1

n1

)(
α+ n2 − 1

n2

)

×
(

t′

β + t′

)n(
β

β + t′

)2α(
β

β + (n1 − 1)δ1 + n2δ2

)α

+(1− p)n2

[ t
δ1

]∑
n1=0

[ t
δ2

]∑
n2=1

(
α+ n1 − 1

n1

)(
α+ n2 − 1

n2

)

×
(

t
′

1

β + t
′
1

)n(
β

β + t′1

)2α(
β

β + n1δ1 + (n2 − 1)δ2

)α

, (7)

where t′ = [t − (n1 − 1)δ1 − n2δ2]+, t′1 = [t − n1δ1 − (n2 − 1)δ2]+ and [x] denotes the
integer part of x.

Proof. By definition of our shock model, we have

P (T > t) =

[ t
δ1

]∑
n1=0

[ t
δ2

]∑
n2=0

P (T > t,N1(t) = n1, N2(t) = n2)

= P (T > t,N1(t) = 0, N2(t) = 0)
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+pn1

[ t
δ1

]∑
n1=1

[ t
δ2

]∑
n2=0

P (T > t,N1(t) = n1, N2(t) = n2, Zn = 1)

+(1− p)n2

[ t
δ1

]∑
n1=0

[ t
δ2

]∑
n2=1

P (T > t,N1(t) = n1, N2(t) = n2, Zn = 2) (8)

So, we evaluate the probability which both types of shocks have happened in [0, t] as
follows

P (T > t,N1(t) = n1, N2(t) = n2) = P (T > t,N1(t) = n1, N2(t) = n2, Zn = 1)

+P (T > t,N1(t) = n1, N2(t) = n2, Zn = 2). (9)

To obtain the right-hand side of (9)

P (T > t,N1(t) = n1, N2(t) = n2, Zn = 1) = P (X2 > δZ1
. . . , Xn > δZn1

, Zn = 1,

X1 +X2 + · · ·+Xn < t < X1 +X2 + · · ·+Xn+1,

n∑
k=1

ϕk = n1,

n∑
k=1

ψk = n2)

= P (X2 > δZ1 , . . . , Xn > δZn1 |Zn = 1,

n∑
k=1

ϕk = n1,

n∑
k=1

ψk = n2)

×P (Zn = 1,

n∑
k=1

ϕk = n1,

n∑
k=1

ψk = n2)P (X1 +X2 + · · ·+Xn < t < X1 +X2

+ · · ·+Xn+1|X2 > δZ1 , ..., Xn > δZn1 , Zn = 1,

n∑
k=1

ϕk = n1,

n∑
k=1

ψk = n2). (10)

where n = n1 + n2. Denote X ′

m = Xm − δZm
,m = 2, 3, . . . , n− 1,

P (X1 +X2 + · · ·+Xn < t < X1 +X2 + · · ·+Xn+1|X2 > δZ1 , . . . , Xn > δZn−1 ,

Zn = 1,

n∑
k=1

ϕk = n1,

n∑
k=1

ψk = n2)P (X1 +X
′

2 + · · ·+X
′

n < [t− (n− 1)δ1 − n2δ2]+

< X1 +X
′

2 + · · ·+X
′

n +Xn+1|Zn = 1,

n∑
k=1

ϕk = n1,

n∑
k=1

ψk = n2)

= P (N(t
′
= n)|Zn = 1,

n∑
k=1

ϕk = n1,

n∑
k=1

ψk = n2), (11)

Since X1, X
′

2, . . . , X
′

n are dependent and exchangeability, the marginal distribution is
Pareto and t

′
= [t− (n1 − 1)δ1 − n2δ2]+. By replacing (11) into (10),

P (T > t,N1(t) = n1, N2(t) = n2, Zn = 1)

= P (X2 > δZ1 , . . . , Xn > δZn−1 |Zn = 1,

n∑
k=1

ϕk = n1,

n∑
k=1

ψk = n2)
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×P (N(t
′
= n), Zn = 1,

n∑
k=1

ϕk = n1,

n∑
k=1

ψk = n2)

=

(
β

β + (n1 − 1)δ1 + n2δ2

)α

+

P (N(t
′
= n), Zn = 1,

n∑
k=1

ϕk = n1,
n∑

k=1

ψk = n2)

×
(
α+ n1 − 1

n1

)(
α+ n2 − 1

n2

)(
t
′

t′ + β

)n1+n2

×
(

β

β + t′

)2α(
β

β + (n1 − 1)δ1 + n2δ2

)α

+

. (12)

Similarly, we have

P (T > t,N1(t)n1, N2(t) = n2, Zn = 2) =

(
α+ n1 − 1

n1

)(
α+ n2 − 1

n2

)

×

(
t
′

t′ + β

)n1+n2 (
β

β + t′

)2α

×
(

β

β + n1δ1 + (n2 − 1)δ2

)α

+

. (13)

So, the proof is completed.

4 The Mean Lifetime of the generalized δ-shock Model
The survival function (7) of T for calculating of E(T ) is complex. So, the notion of
stopping time utilizes to obtain the results.

The lifetime T of the generalized δ-shock model can be represented as

T = X1 +X2 + · · ·+Xτ ,

where τ = min(n ≥ 2|Xn ≤ δZn−1) denotes the number of shocks that enter the system
afore failure and τ is a stopping time for {Xn, n ≥ 1}. To compute E(T ), we require
the following lemma.

Lemma 4.1. Consider the random variables Xn, n ≥ 1 are dependent and exchange-
ability distributed with Pareto distribution. So,

P (τ = m) = P (X1 > δZ1 , . . . , Xm−1 > δZm−1 , Xm ≤ δZm |Z = z)P (Z = z)

= P (X1 > δZ1 , . . . , Xm−1 > δZm−1 , Xm ≤ δZm |Zm = 1)P (Zm = 1)

+P (X1 > δZ1
, . . . , Xm−1 > δZm−1

, Xm ≤ δZm
|Zm = 2)P (Zm = 2)

= p

[(
β

β + (m− 1)δ1

)α

−
(

β

β +mδ1

)α ]
+q

[(
β

β + (m− 1)δ2

)α

−
(

β

β +mδ2

)α ]
, (14)
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Proof. Proof of P (τ = m) is similar to proof of P (τ = k) in Wang and Peng (2016)
and Eryilmaz (2017),

P (X1 > δZ1
, . . . , Xm−1 > δZm−1

, Xm ≤ δZm
|Zm = 1)

= P (X1 > δZ1
, . . . , Xm−1 > δZm−1

, Xm ≤ δZm
|Zm = 1, N1(t) = n1)

×P (Zm = 1, N1(t) = n1)

= P (X1 > δZ1
, . . . , Xm−1 > δZm−1

|N1(t) = n1)P (N1(t) = n1)

−P (X1 > δZ1
, . . . , Xm > δZm

|N1(t) = n1)P (N1(t) = n1)

=

(
β

β + (m− 1)δ1

)α

−
(

β

β +mδ1

)α

.

For Zm = 2,

P (X1 > δZ1 , . . . , Xm−1 > δZm−1 , Xm ≤ δZm |Zm = 2) =

(
β

β + (m− 1)δ2

)α

−
(

β

β +mδ2

)α

The mean lifetime can be computed in terms of P (τ = m).

Theorem 4.2. The mean lifetime of the generalized δ-shock model is obtained as
follows

E[T ] = (m− 1)min(δ1, δ2) +
m

P (τ = m)

β

α− 1

×

[
p

{(
β

β + (m− 1)δ1

)α−1

−
(

β

β +mδ1

)α−1}

+q

{(
β

β + (m− 1)δ2

)α−1

−
(

β

β +mδ2

)α−1
}]

−min(δ1, δ2)

P (τ = m)

[
p

(
β

β +mδ1

)α

+ q

(
β

β +mδ2

)α]
. (15)

Proof. By iterative expectation,

E[T ] = E[E[T |τ = m]] =

∞∑
m=1

E[

m∑
i=1

Xi|τ = m]P (τ = m)

= [(m− 1)E[X1|τ = m] + E[Xm|τ = m]]P (τ = m),

where the random variables X1, X2, · · · are exchangeable, so E[X1|τ = m] = · · · =
E[Xm−1|τ = m]. Therefore,

E[X1|τ = m] =

∫ ∞

0

P (X1 > t|τ = m)dt

= c

∫ ∞

0

P (X1 > max(t, δZm), X2 > δz2 ,
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· · · , Xm−1 > δZm−1
, Xm ≤ δZm

)dt

= c

[ ∫ ∞

min(δ1,δ2)

P (X1 > max(t, δZm
), X2 > δZ2

,

· · · , Xm−1 > δZm−1 , Xm ≤ δZm |Zm = z)P (Zm = m)dt

+

∫ min(δ1,δ2)

0

P (X1 > t,X2 > δZ2
, · · · ,

Xm−1 > δZm−1 , Xm ≤ δZm |Zm = z)P (Zm = m)dt

]
= c

[ ∫ ∞

min(δ1,δ2)

P (X1 > t,X2 > δZ2
, · · · , Xm−1 > δZm−1

,

Xm ≤ δZm |Zm = z)P (Zm = m)dt+min(δ1, δ2)P (τ = m)

]
= c

[
P (τ = m)δ1 + P (τ = m)δ2

+

∫ ∞

min(δ1,δ2)

P (X1 > t,X2 > δZ2
, · · · ,

Xm−1 > δZm−1 , Xm ≤ δZm |Zm = z)P (Zm = m)dt

]
= c

[
P (τ = m)δ1 + P (τ = m)δ2

+

∫ ∞

δ1

P (X1 > t,X2 > δZ2
, · · · ,

Xm−1 > δZm−1 , Xm ≤ δZm |Zm = 1)P (Zm = 1)dt

+

∫ ∞

δ2

P (X1 > t,X2 > δZ2 , · · · ,

Xm−1 > δZm−1
, Xm ≤ δZm

|Zm = 2)P (Zm = 2)dt

]
= c

[
P (τ = m)δ1 + P (τ = m)δ2

+

∫ ∞

δ1

p

((
β

β + (m− 2)δ1 + t

)α

−
(

β

β + t+ (m− 1)δ1

)α)
dt

+

∫ ∞

δ2

q

((
β

β + (m− 2)δ2 + t

)α

−
(

β

β + t+ (m− 1)δ2

)α)
dt

]
= c

[
P (τ = m)δ1 + P (τ = m)δ2 + p

βα

α+ 1
[β + δ1 + (m− 2)δ1]

1−α

−p βα

α+ 1
[β + δ1 + (m− 1)δ1]

1−α

+q
βα

α+ 1
[β + δ2 + (m− 2)δ2]

1−α
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−q βα

α+ 1
[β + δ2 + (m− 1)δ2]

1−α

]
=

β

(α− 1)P (τ = m)

[
p

{(
β

β + (m− 1)δ1

)α−1

−
(

β

β +mδ1

)α−1}
+δ1 + δ2 + q

{(
β

β + (m− 1)δ2

)α−1

−
(

β

β +mδ2

)α−1}]
,

where c = 1
P (τ=m) . On the other hand,

E[Xm|τ = m] =

∫ ∞

0

P (Xm > t|τ = m)dt

= c

∫ min(δ1,δ2)

0

P (X1 > δZ1
, · · · , Xm−1 > δZm−1

, t < Xm ≤ δZm
)dt

= c

∫ min(δ1,δ2)

0

P (X1 > δZ1
, · · · ,

Xm−1 > δZm−1
, t < Xm ≤ δZm

|Zm = z)P (Zm = z)dt

= c

[ ∫ min(δ1,δ2)

0

P (X1 > δZ1
, · · · ,

Xm−1 > δZm−1 , t < Xm ≤ δZm |Zm = 1)P (Zm = 1)dt

+

∫ min(δ1,δ2)

0

P (X1 > δZ1
, · · · , Xm−1 > δZm−1

,

t < Xm ≤ δZm |Zm = 2)P (Zm = 2)dt

]
=

1

P (τ = m)

β

α− 1

[
p

{(
β

β + (m− 1)δ1

)α−1

−
(

β

β +mδ1

)α−1}
+q

{(
β

β + (m− 1)δ2

)α−1

−
(

β

β +mδ2

)α−1}]
= −min(δ1, δ2)

P (τ = m)

[
p

(
β

β +mδ1

)α

+ q

(
β

β +mδ2

)α]
.

5 Example
In this section, the survival function is plotted for different values of parameters α >
1, β, δ1, δ2 and p. First case, setting δ1 = 2, δ2 = 1, α = 1, β = 0.5 and differ the values
of p, the survival function of the generalized δ-shock model based on Polya process
can be calculated. From Figure 1, we can see that with increasing the values of p for
any t > 0, the survival function decreases. This is since the system fails when a type
2 shock happens before the system recovered from a type 1 shock. By increasing the
value of p, the probability of occurring the shock from type 1 gains in the shock process,
and the system is more easily exterminated by the shocks. In Figure 2, we plotted the
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expectation of lifetime for δ1 = 2, δ2 = 1, α = 2, β = 0.5 and varying the values of p.
Then, we conclude that for any m, the expectation of lifetime increases gradually with
the increase of p.

Second case, setting δ1 = 2, δ2 = 1, α = 1, p = 0.5 and differ the values of β, the
survival function of the generalized δ-shock model based on the Polya process can be
calculated. From Figure 1, we can see that with decreasing of β the survival function
decreases slowly for any t > 0. The recovery of the system from both types of shocks
takes long a more time because both types of shocks occur with the same probability.
Then by increasing the value of β, the probability of occurring the shock from both
types gains in the shock process. So, the system is more simply exterminated by the
shocks. In Figure 2, we plotted the expectation of lifetime for δ1 = 2, δ2 = 1, α = 3, p =
0.5 and varying the values of β. Then, we conclude that for any m, the expectation of
lifetime increases slowly with the increase of β.

Figure 1: The survival function R(t) with δ1 = 2, δ2 = 1, α = 1, β = 0.5.

Figure 2: The expectation of life time E[m] with δ1 = 1, δ2 = 2, α = 2, β = 0.5, and for different p.

Third case, setting δ1 = 2, δ2 = 1, β = 0.1, p = 0.8 and modifying the values of α,
the survival function of the generalized δ-shock model based on the Polya process can
be calculated. From Figure 1, the survival function decreases slowly with the increase
of α for any t > 0. The recovery of the system from both types of shocks takes long a
more time because both types of shocks occur with the same probability. By increasing
the value of α, the probability of occurring the shock from both types gains in the shock
process. So, the system is more simply exterminated by the shocks. In Figure 2, we
plotted the expectation of lifetime for δ1 = 2, δ2 = 1, β = 0.5, p = 0.5 and varying the
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values of α. Then, we conclude that for any m, the expectation of lifetime decreases
gradually with the increase of α.

6 Conclusions
In this study, we have studied a generalized δ-shock model with two types of shocks
based on the Polya process, and the recovery times δ1 and δ2 related to the shocks
from types 1 and 2, respectively. We have derived explicit expressions for the survival
function of the system. We suppose that the two types of shocks are independent, and
the interarrival times between shocks are exchangeable and dependent. The illustrative
examples are presented to evaluate the results.
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