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Abstract: In this paper, we apply the inverse trinomial distribution with parameters
(p, q, λ) to count data exhibiting over-dispersion. We compare results for the mean
parameterized inverse trinomial and the parameter λ as linear predictors in the gen-
eralized linear model case. Our results also demonstrate methods for obtaining the
means and variances for the zero-inflated and zero-truncated inverse trinomial distri-
butions. Results obtained here indicate that the generalized Poisson type II has a close
relationship with the inverse trinomial distributions. Several data examples are em-
ployed in this paper for both frequency and data having covariates cases. SAS PROC
NLMIXED is employed using adaptive Gaussian quadrature and the Newton-Raphson
as the optimizer.
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1 Introduction
For data exhibiting over-dispersion (that is, data displaying variability bigger than the
mean), various distributions have been suggested to analyze such data. These include
the Negative binomial and the generalized Poisson, both have additional dispersion pa-
rameters k and α. Lawal (2019) has also employed the three-parameter distributions,
the quasi-negative binomial-QNBD (Li et al., 2011), the negative binomial generalized
exponential (NBGE), and the inverse trinomial (IT) distributions to model overdis-
persed count data. Over-dispersion can sometimes manifest as a result of clustering or
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heterogeneity in the data, or it could be as a result of excess zeros in the data (Hilbe,
2013). Sometimes, it could be as a result of the data being truncated at zero. In this
paper, we shall focus only on IT distribution. We shall apply the IT model to data ex-
hibiting (i) over-dispersion, (ii) excess zeros, and (iii) zero-truncation. We shall extend
these analyses to sets of data with: 1. Frequency count: This presents a problem of
expected probabilities not summing to 1.00 (Lawal, 2018). In addition, the expressions
for the means and variances are not often available or wrongly expressed. We shall
compute empirical moments in each case and show that our procedure gives exactly
the same results in cases where expressions for the means and variance of zero-inflated
IT (ZIT) or zero-truncated IT (ZTIT) exist.
2. GLMmodels (that is, models having covariates): With computed empirical moments
computed, we shall be able to compute the Wald’s test statistics for each of the models
being considered in this paper. Further, the NB and generalized Poisson have means
µ, which are not functions of either k or α, respectively. Hence, both NB and GP are
modeled such that the linear predictor function is given by,

µi = exp(xβ) = exp(β0 + β1x1i + β2x2i + . . .+ βpxpi); i = 1, 2, . . . , n.

where x = (x1, x2, . . . , xp)
′ are the p explanatory variables (covariates) and β =

(β0, β1, . . . , βp)
′ are the (p + 1) parameters to be estimated. The IT however has a

mean that is a function of some of its parameters. We shall re-parameterize this mean
in our applications.

1.1 The inverse trinomial distribution
The IT distribution, (Shimizu and Yanagimoto, 1991), which is derived from the La-
grangian expression has the probability mass function (pmf) of the form

P (Y = y) =
λpλqy

y + λ

|y/2|∑
t=0

(y + λ)!

t!(t+ λ)!(y − 2t)!
×
(
pr

q2

)t

, (1)

y = 0, 1, . . .; λ > 0, p ≥ r and p + q + r = 1. It is so named because its cumulant
generating function is the inverse of that for the trinomial distribution, Yanagimoto
(1989). The IT model was employed for overdispersed medical count data in Phang
and Loh (2014). A zero-truncated application of the model was also proposed in Phang
and Ong (2006), while Phang et al. (2013) observed that the IT distribution presents
“a stochastic formulation as a classical one dimensional random walk distribution and
is another example of a distribution in the Takac family (Letac and Mora, 1990) with
a cubic variance function of the mean”. Phang et al. (2013) model the ITD as a three-
parameter distribution (λ, p, r). We have modeled the ITD here as a three parameter
distribution (λ, p, r) since, p + q + r = 1. Its probability generating function (pgf) is
given by

H(s) =

[
2p

(1− qs) +
√
(1− qs)2 − 4prs2

]λ

, (2)

where λ > 0, 0 ≤ 4pr/(1− q)2 < 1 and p + q + r = 1. If r = 0, H(S) becomes the
pgf of the negative binomial (NB) distribution. Following Khang and Ong (2007), if
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we substitute −θ/log p for λ in (2), with θ > 0, then, (2) becomes

H(s) = exp

θ
 1

log p
log

1− qs

2
+

√(
1− qs

2

)2

− prs2

− 1


 . (3)

The logarithmic function in (3)

G(s) =
1

log p
log

1− qs

2
+

√(
1− qs

2

)2

− prs2

 , (4)

and satisfies G(1) = 1. Further, expression in (4) can be re-written Khang and Ong
(2007), for r = 0 as

G(s) =
log(1− qs)

log(1− q)
. (5)

The expression in (5) is the pgf of the logarithmic distribution (LD) with parameter q,
where the pmf of the LD has the form

P (Y = y) =
αqy

y
, y = 0, 1, 2, . . . ,

where 0 < q < 1 and α = −1/log(1− θ). The LD has been widely used in fitting
long-tailed data, and various generalizations of the LD have been proposed.

The mean and variance of ITD are

µ = λ

[
1− (p− r)

p− r

]
, σ2 =

λ

(p− r)2

[
1− (p− r) +

2r

p− r

]
. (6)

Its log-likelihood for a single observation becomes

L(y|p, r, λ) = log(λ) + λ log(p) + y log(q)− log(y + λ) + logQ(y|p, r, λ),

where

Q(y|p, r, λ) =
|y/2|∑
t=0

(y + λ)!

t!(t+ λ)!(y − 2t)!
×
(
pr

q2

)t

. (7)

1.2 Zero-inflated inverse trinomial distribution
The zero-inflated (ZI) model is a two-part process manifested by the structural zeros
part and the process that generates random counts and can be written for a pmf
f(y), y = 0, 1, . . . with parameters θ, in the form

f(y|θ, ϕ) =

{
ϕ+ (1− ϕ) f(0), for y = 0

(1− ϕ) f(y), for y = 1, 2, . . .,

where ϕ is the extra proportion of zeros, such that 0 ≤ ϕ < 1 and Y is the count
random variable with specified parameters. ϕ is modeled here in the logit form. Thus,
the probability mass function for the zero-inflated IT (ZIIT) is given by

f(y|p, r, λ, ϕ) =

{
ϕ+ (1− ϕ) pλ, if y = 0

(1− ϕ) f(y), if y > 0,
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where f(y) is the pmf in (1). Its mean and variances are given by Phang et al. (2013).

µ=(1− ϕ)

[
λ(1− (p− r))

(p− r)

]
, (8)

σ2=µ

(
λ− ϕ

p− r

)
+

ϕµ2

1− ϕ
+

2r

(p− r)2
(λ+ ϕ). (9)

1.3 Zero-truncated models
For a random variable Y with a discrete distribution, where the value of Y = 0 can
not be observed, the zero-truncated random variable Yt has the pmf

Pr(Yt = y) =
Pr(Y = y)

Pr(Y > 0)
, y = 1, 2, 3, . . . .

For the zero-truncated ITD, with parameter Pr(Y > 0) = 1 − Pr(Y = 0) = 1 − pλ.
Hence, the pmf of zero-truncated ITD random variable Yt becomes

fzt(y|p, r, λ) =
λpλqy

(y + λ)
.

1

(1− pλ)

|y/2|∑
t=0

(y + λ)!

t!(t+ λ)!(y − 2t)!
×

(
pr

q2

)t

,

for y = 1, 2, . . .. Its corresponding log-likelihood for a single observation becomes

L(p, r, λ) = log(λ) + λ log(p) + y log(q)− log(y + λ) + logQ(y, λ)− log(1− pλ),

where Q(y, λ) is as defined in (7). Its means and variances will be computationally
obtained.

1.4 Parameter estimation
Maximum-likelihood estimations of the above models are carried out with PROC
NLMIXED in SAS, which minimizes the function −L(y,Θ) over the parameter space Θ
numerically. The integral approximations in PROC NLMIXED is the Adaptive Gaus-
sian Quadrature, Pinheiro and Bates (1995) and our choice optimization algorithm here
is the Newton-Raphson techniques. Convergence is often a major problem here and
the choice of starting values is very crucial. By choosing carefully our initial values,
convergence is achieved in all cases considered in this paper.

2 Methodology
Because we suspect that the expression for the variance of the zero-inflated IT model
as expressed in (9) is suspect, we will demonstrate here alternative ways (based on
method of moments) to generate the mean and variance of both the regular IT and its
zero-inflated (ZIIT) counterpart. To demonstrate this, we shall fit both models to the
Motor vehicle records data set which relates to the number of violation points on the
motor vehicle records from Flynn and Francis (2009). This is a skewed distribution
with a spike at zero. The data has a mean µ = 1.7100 and a variance σ2 = 4.6612 and a
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dispersion index of 2.7258, thus it is highly over-dispersed considering that the sample
size is large n = 10303. Further the observed proportion of zeros is 45.2% as against
expected percentage of zeros under the Poisson model of 100 ∗ exp(−1.7100)=18.09%.
Thus this data set is highly zero-inflated.

In Table 1 are the expected values, parameter estimates and goodness-of-fit test
statistics for both the regular and adjusted IT and ZIIT models. We observe that
for the regaular models, the sum of the expected values are less than the sample size
n = 10, 300. The adjusted models in the last two columns correct this anomaly based
on the methodology presented in Lawal (2017, 2018). The regular models do not sum
to n = 10300 or expected cumulative probabilities being 1 until Y = 59 for the IT
model and Y = 30 for the regular ZIIT model. We present the case of the IT in Table
2. As observed in Lawal (2018), this non-summing to 1 of expected probabilities (in
frequency count data) is peculiar to all count distributions, the exception being the
Poisson.

Table 1: Frequency counts of motor vehicle violations
Regular models Adjusted models

Y count IT ZIT IT ZIT
0 4659 4425.6603 4659.0000 4426.3462 4659.0009
1 1467 1644.3544 1348.2128 1644.2361 1349.0425
2 1199 1660.1942 1318.3952 1659.3165 1318.1189
3 966 841.9919 1046.1703 841.7786 1045.6487
4 727 636.5118 743.3909 636.3016 742.9382
5 528 370.1444 486.4691 370.1717 486.2607
6 341 255.8208 300.6443 255.8758 300.6296
7 213 158.7669 177.7541 158.8704 177.8486
8 114 106.5054 101.5783 106.6042 101.7081
9 53 68.3432 56.4836 68.4372 56.6064
10 20 45.4820 30.7224 45.5609 30.8208
11 13 29.7385 16.4088 29.8036 16.4802
12 1 19.7967 8.6318 19.8482 8.6802
13 2 13.0968 4.4830 39.8489 9.2162

Total 10303.000 10276.4074 10298.3445 10303.0000 10303.0000
p̂ = 0.7672 p̂ = 0.8445 p̂ = 0.7669 p̂ = 0.8436
r̂ = 0.1163 r̂ = 0.0376 r̂ = 0.1164 r̂ = 0.0377
λ̂ = 3.1888 λ̂ = 11.0237 λ̂ = 3.1837 λ̂ = 10.9504

ϕ̂ = 0.3515 ϕ̂ = 0.3514
AIC 36321 35958 36311 35953
BIC 36343 35985 36338 35982
X2

W 9033.7789 10182.9430 9414.9837 10203.0125
d.f 10299 10298
X2

g 359.8043 58.0420 386.0020 62.1342
d.f 10 10 9 9

p-value 0.0000 0.0007 0.2395 0.0000

2.1 Computations of means and variances
The theoretical mean and variance of the IT model are given in expressions (6). Those
of ZIIT are given respectively in (8) and (9). However, we suspect that the expression
for the variance of the ZIIT in (9) is not accurate.
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The method moments employed here, generate the means and variances from the
following expressions for IT model:

E(Y ) =

∞∑
j=1

j f(y|p̂, r̂, λ̂), Var(Y ) =

∞∑
j=1

j2f(y|p̂, r̂, λ̂))− [E(Y )]2,

where f(y|p̂, r̂, λ̂) is the pmf of the IT distribution under estimated parameters p̂, r̂ and
λ̂. These values are compared with the theoretical values computed from expressions
in (6). A similar approach has been used in Lawal (2018).

For the zero-inflated model, the means and variances are estimated from the fol-
lowing expressions in (10)

Ê(Y ) =

∞∑
j=1

(1− ϕ̂) j f(y|p̂, r̂, λ̂), V̂ar(Y ) =

∞∑
j=1

(1− ϕ̂) j2f(y|p̂, r̂, λ̂))− [E(Y )]2. (10)

2.2 Probability based values
Here, under each of the estimated models, the likelihoods are obtained and the cor-
responding expected probabilities computed. With these, the means are obtained as
k∑

j=0

jp̂j , with, E(Y 2) =

k∑
j=0

j2p̂j , and hence the corresponding variance of Y . We

present in Table 2 these computations for the IT model, where, π̂j is the estimated
probability at Y = j,

∑
i≤j π̂i are the cumulative probabilities. Similarly, m̂j and∑

i≤j m̂i are the predicted expected values and the corresponding cumulative expected

frequencies respectively. µ̂j , and σ̂2
j are the expressions

k∑
j=0

jπ̂j , E(Y 2) =

k∑
j=0

j2π̂j ,

and variance of Y respectively.
We observe immediately the following:

• At Y = 13, that is, j = 13, the sum of expected values and its corresponding mean
and variances are (double asterisk) 10276.4074, 1.668512 and 4.772391, which indicate
that at this point it is not yet a pdf because

∑
π̂k = 0.997419 < 1.00.

• The cumulative probability at Y = 13 is 0.997419 < 1. Hence this is not yet a
probability distribution within the range of our data 0 ≤ Y ≤ 13.
• Although the cumulative probabilities sum to 1.000000 at j = 50, but we see that
the predicted values keep increasing, and the estimated variance is not yet stable. Had
we presented the results to 8 or ten decimal places, we would have observed that the
estimated probabilities are not yet zero. Further, had we presented the results to three
decimal places, we would not have observed that the probabilities really do not sum to
1.00 until Y = 57.
• From Y = 57, the means and variances are stable and thus, Y = 57 is the values of
Y at which the means and variance can be obtained.

The results of these computations are presented in Table 3.
Results here, indicate that for the ZIT, all the three methods give the same values

for its mean and variance. However, for the IT, the theoretical variance is highly
inflated, 25.511905, which indicates that the expressions for this variance as presented
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Table 2: Moments computation under IT model
j π̂j

∑
i≤j π̂i m̂j

∑
i≤j m̂i µ̂j w σ̂2

j

0 0.429551 0.429551 4425.66028 4425.66028 0.000000 0.000000 0.000000
1 0.159600 0.589150 1644.35442 6070.01470 0.159600 0.159600 0.134128
2 0.161137 0.750287 1660.19417 7730.20887 0.481874 0.804147 0.571945
3 0.081723 0.832010 841.991853 8572.20072 0.727042 1.539654 1.011064
4 0.061779 0.893789 636.511783 9208.71250 0.974160 2.528123 1.579136
5 0.035926 0.929715 370.144444 9578.85695 1.153789 3.426270 2.095041
6 0.024830 0.954545 255.820811 9834.67776 1.302767 4.320140 2.622938
7 0.015410 0.969955 158.766916 9993.44468 1.410636 5.075219 3.085326
8 0.010337 0.980292 106.505442 10099.9501 1.493334 5.736808 3.506760
9 0.006633 0.986925 68.343233 10168.2934 1.553034 6.274108 3.862192
10 0.004414 0.991340 45.482032 10213.7754 1.597179 6.715553 4.164572
11 0.002886 0.994226 29.738526 10243.5139 1.628929 7.064806 4.411396
12 0.001921 0.996148 19.796750 10263.3107 1.651987 7.341496 4.612436
13 0.001271 0.997419 13.096792 10276.4074 1.668512 7.556322 4.772391**
14 0.000849 0.998268 8.747090 10285.1545 1.680398 7.722723 4.898987
15 0.000566 0.998834 5.833824 10290.9884 1.688891 7.850124 4.997772
...

...
...

...
...

...
...

...
50 0.000000 1.000000 0.000011 10303.0000 1.709987 8.239593 5.315537
51 0.000000 1.000000 0.000008 10303.0000 1.709987 8.239595 5.315539
52 0.000000 1.000000 0.000005 10303.0000 1.709987 8.239596 5.315540
53 0.000000 1.000000 0.000004 10303.0000 1.709987 8.239597 5.315541
54 0.000000 1.000000 0.000003 10303.0000 1.709987 8.239598 5.315541
55 0.000000 1.000000 0.000002 10303.0000 1.709987 8.239599 5.315542
56 0.000000 1.000000 0.000001 10303.0000 1.709987 8.239599 5.315542
57 0.000000 1.000000 0.000001 10303.0000 1.709987 8.239599 5.315543***
58 0.000000 1.000000 0.000001 10303.0000 1.709987 8.239600 5.315543
59 0.000000 1.000000 0.000000 10303.0000 1.709987 8.239600 5.315543
60 0.000000 1.000000 0.000000 10303.0000 1.709987 8.239600 5.315543
61 0.000000 1.000000 0.000000 10303.0000 1.709987 8.239600 5.315543

Table 3: Results of estimation of moments
Regular

IT ZIT
Moments µ σ2 µ σ2

Theoretical 1.709987 5.315543 1.709987 25.511905
Probaility Based 1.709987 5.315543 1.709987 4.726031

Moments 1.709987 5.315543 1.709987 4.726031

Adjusted
IT ZIT

µ σ2 µ σ2

Theoretical - - - -
Probability Based 1.702422 5.100384 1.709268 4.706399

Moments - - - -
Observed 1.7100 4.6612

in Phang and Ong (2006) and expressed in (9) is not correct. Further, we see that
while both the IT and ZIT models produce estimated means that are very close to the
observed mean of 1.7100 in the data, the estimated variance produced by the IT model
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grossly overestimates the observed variance of 4.6612. However, the zero-inflated model
corrects this somehow but is still not very close to the observed value. From the above
therefore, we are assured that the method of moments presented in the earlier sections
would be suitable to produce the means and variances when our models are applied to
data having covariates. These empirical means and variances are needed to compute

the Wald’s Goodness-of-fit test statistic: X2
W =

N∑
i=1

yi − µ̂)2

σ̂2
.

2.3 Zero-Truncation example
For this example, we shall employ the Chey (2002) moth data from lightly logged rain
forest site in Sabah, Malaysia. The variable Y in Table 4 is the number of species
represented by n individuals.

Table 4: Parameter estimates under ITD
Y Count ZTNB ZTGP ZTECOMP ZTITD
1 140 128.0879 136.1538 139.0684 136.4323
2 36 45.6199 41.3043 38.2503 41.1600
3 17 21.6591 18.7331 17.3800 18.6260
4 13 11.5677 10.0612 9.8539 10.0108
5 6 6.5897 5.9346 6.2337 5.9145
6 2 3.9103 3.7159 4.1695 3.7103
7 4 2.3866 2.4249 2.8644 2.4262
8 2 1.4869 1.6313 1.9873 1.6355
9 2 0.9411 1.1232 1.3783 1.1285
10 0 0.6031 0.7877 0.9494 0.7931
11 1 0.3904 0.5607 0.6468 0.5657
12 0 0.2548 0.4041 0.4346 0.4085
13 0 0.1675 0.2942 0.2876 0.2981
14 0 0.1107 0.2161 0.1871 0.2194
15 1 0.2243 0.6548 0.3087 0.6710

Total 224
µ̂ = 0.00112 µ̂ = 0.00982 ν̂ = 1.5853 p̂ = 0.4746

µ 1.98661 k̂ = 2211.91 τ̂ = 99.9539 p̂ = 5.0161 r̂ = 0.0715
σ2 3.65453 α̂ = −9.0000 λ̂ ≈ 0.00

β̂ = −9.6245
-2L 593.1 589.7 588.7 589.7
AIC 597.1 593.7 596.7 595.7
BIC 603.9 600.5 598.3 605.9
µ̂zT 1.98661 1.98661 1.98632 1.98661
σ̂2
zt 2.95256 3.87452 3.63118 3.90882

Wald’s X2 275.9250 210.3385 226.4631 208.4926
X2

g 12.5312 6.6208 6.6194 6.5534
d.f 11 12 10 11

pvalue 0.3251 0.8816 0.7608 0.8340

Results of the zero-truncated models on Chey’s (Chey, 2002) moth data are pre-
sented in Table 4. We have also fitted the zero-truncated negative binomial (ZTNB),
the zero-truncated generalized Poisson (ZTGP) and the zero-truncated extended Com-
Poisson distribution-ZTEC
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OMP, Chakraborty and Imoto (2016). The probability distributions for these three ZT
distributions are presented in (11) to (13) respectively:

fzt(yt|µ, k)=

Γ(yi +
1

k
)

Γ(yi + 1)Γ(
1

k
)

(
1

1 + kµi

)1/k (
kµi

1 + kµi

)yi

1− (1 + kµi)
−1/k

, (11)

fzt(yt|µ, α)=

(
µi

1 + αµi

)yi (1 + αyi)
yi−1

yi!
exp

(
−µi(1 + αyi)

(1 + αµi)

)
1− exp

[
− µi

(1 + αµi)

] , (12)

fzt(yt|ν, p, α, β)=
[Γ(ν + y)]β

[Γ(ν)]β [1S
β
α−1(ν, 1; p)− 1]

.
py

(y!)α
, (13)

where 1S
β
α−1(ν, 1; p) in (13) is defined as:

1S
β
α−1(ν, 1; p) =

∞∑
j=0

[Γ(ν + j)]β

[Γ(ν)]β
.
pj

(j!)α
,

and the distribution is defined in the parameter space

ΘECOMP = {ν ≥ 0, p > 0, α > β} ∪ {ν > 0, 0 < p < 1, α = β}.

The observed mean and variance for this data set are respectively, µ = 1.98661
and σ2 = 3.65452, giving a dispersion index of 1.8395 > 1. Thus, this data set is
overdispersed. The following are our observations when these models are applied to
the data in Table 4.
• As expected in the interval 1 ≤ Y ≤ 15, none of the models have cumulative proba-
bilities summing to 1. The cumulative probabilities under each model are respectively,
{0.99933, 0.99779, 0.99916, 0.99773}.
• The corresponding sums of expected frequencies under each model respectively are
{223.84925, 223.50512, 223.81099, 223.49178}.
• The cumulative probabilities sum to 1.00 at Y equals {56, 86, 34, 80} respectively.
The theoretical means and variances are thus computed at these points.
• Thus at Y = 15 non-of these distributions have probabilities summing to 1, which
in turn affects the sum of the expected values not being n = 224, the observed sample
size.
• The theoretical means of ZTNB, ZTGP and ZTIT are all equal to the observed mean
in the data.
• The theoretical variances are however underestimated in ZTNB, and overestimated
in all others.
• Clearly the ZTGP and the ZTIT are more parsimonious than the other models. The
difference in the Wald’s X2 between the ZTGP and the ZTIT being as a result of
slightly inflated theoretical variance of the latter, which lowers the Wald’s test statistic
X2.



The inverse trinomial distribution and its application 34

• Both ZTGP and ZTIT behave alike, this is not surprising because as noted in Khang
and Ong (2007), the generalized Poisson distribution is a special case of the ITD
distribution.
• ZTIT is a special case of the generalized logarithmic distribution (GLD) in this
application with λ ≈ 0 in the ZTIT.

• The grouped X2
g =

15∑
k=1

(fk − m̂k)
2

m̂k
in table 4 are generated using the Lawal (1980)

rule that the minimum expected values can be as low as r/d3/2 where r is the number
of expected values less than 3, and r is the degree of freedom for the χ2 approximation
to be valid.

3 GLM applications
We employ two data sets that have been previously analyzed to illustrate fitting the
distributions discussed above. The first data set is the NMES (The US National Medical
Expenditure Survey 1987 and 1988). The data has previously been analyzed in Deb
and Trivedi (1997). The data has been used to model medical care. However, we will
model the response variable, HOSP, the number days stayed in hospitals. The other
covariates modeled are : number of chronic conditions (NUMCHRON), age (AGE), sex
(MALE), private insurance indicator (PRIVINS), Medicaid indicator (MEDICAID)
and self-perceived health status (EXCLHLTH and POORHLTH). Thus,

xβ = β0 + β1x1i + β2x2i + β3x3i + β4x4i + β5x5i + β6x6i + β7x7i,

where, x1 = NUMCHRON, x2 = age, x3 = sex, x4 = PRIVINS, x5 = MEDICAID,
x6 = EXCLHLTH and x7 = POORHLTH.

However, before we consider the GLM (i.e models with covariates) applications of
these distributions to our data, we want to first focus on the distribution of the response
variable Y -the number of hospital stays. The data has n = 4406 observations and the
range of Y is [0,8] with a sample mean ȳ = 0.2960 and sample variance s2 = 0.5571 and
consequently a dispersion parameter of 1.88 which clearly indicates over-dispersion.
Also, the data has excess zeros with 80.4% of the data having zero responses. The
IT and Zero-Inflated models applied to the response variable Y indicate that ϕ̂ = 0
indicating that, the IT model is suitable for the frequency count Y giving parameter
estimates p̂ = 0.6568, q̂ = 0.3231 and λ̂ = 0.5187 with the grouped X2 = 7.3592 with
6 d.f. and Wald’s X2 = 4679.16 with 4402 d.f.

3.1 GLM formulation
For data having covariates x1, x2, . . . , xp, the linear predictor function is defined as
log(µi) = x′

iβ and consequently, E(Yi) = exp(x′
iβ).

GLM models for the Poisson, NB and generalized Poisson (Type I) have all been
modeled as a function of the mean µi for these distributions. That is, µi = exp(Xβ).
Thus, to capture this formulation for the IT, we recall that for the IT model, µ =

λ
[
1−(p−r)

p−r

]
. Hence, λ =

[
p−r

1−(p−r)

]
.ex

′
iβ.
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4 Results
The results of applying all the above models to the NMES data set are presented in
Table 5. Only the ZIT model results are presented and our analysis indicate that only
three of the covariates are actually needed to model the zero-component of the ZIIT
model. The parameter estimates from using λ or mean parameterized IT are exactly
the same. The only difference between only the intercept terms. The ITµ intercept
parameter is however similar to only those of NB and GP1. Consequently, there is no
reason to prefer the ITµ over the ITλ. Consequently, we will adopt ITλ in this study.

Table 5: Parameter Estimates and GOF values under the Models
P NB GP ITµ ITλ ZITλ

Covariate
Intercept -3.405** -3.846** -3.392** -3.392** -2.6057 -0.6723
NUMCHRON 0.264** 0.287** 0.256** 0.256** 0.256** 0.149**
AGE 0.184** 0.237** -0.188** 0.188** 0.188** 0.02290
MALE 0.1215* 0.1699* 0.1490* 0.1490* 0.1490* -0.0563
PRIVINS 0.1953* 0.16610 0.14450 0.14450 0.14450 0.14350
MEDICAID 0.2332* 0.20710 0.22780 0.22780 0.22780 0.21480
EXCLHLTH -0.719** -0.697** -0.571** -0.571** -0.571** -0.535**
POORHLTH 0.614** 0.605** 0.589** 0.589** 0.589** 0.584**
Zero-Model
Intercept 7.790**
NUMCHRON -0.835**
AGE -1.005**
MALE -1.191**
Parms. k̂=1.7563 δ̂=0.2256 p̂=0.7026 p̂=0.7026 p̂=0.7284
estimates r̂=0.0157 r̂=0.0157 r̂=0.0132
-2LL 6086.5 5710.9 5696.7 5696.6 5696.6 5673.5
AIC 6102.5 5728.9 5714.7 5716.6 5716.6 5701.5
BIC 6153.7 5786.4 5772.2 5780.5 5780.5 5791.0
X2 7065.54 4746.04 4203.71 4201.94 4201.94 4183.31
d.f. 4398 4397 4397 4396 4396 4391

* sig at 5% ; ** sig at 0.01%

The parameter estimates for the GP, ITµ and ITλ are the same, further supporting
the observations in Khang and Ong (2007) of the GP being a special form of the IT.
Any of the GP, IT and ZIIT would be preferable. However, the GP2 model is the most
parsimonious for this data set.

5 ZIT GLM formulations
In this section, we shall apply the zero-truncated models discussed above to the Na-
tional Health Insurance Scheme (NHIS) data presented in Adesina et al. (2021) and
which is fully described in Mendeley Data web site, https:/data.mendeley/z7wznk53cf/8.
The data, obtained from health facilities in Ota, Ogun State, Nigeria has 1647 patients.
The response variable of interest here is Y -the number of encounter visits to the doc-
tors the patient had in a specified period. The predictors in the data set are: covari-
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ates eclass-class of admission (in patient=1, outpatient=0), follow-up (follow-up=1, no
follow-up=0), sex(male=1, female=0) and age of patient.

The variable Y has ȳ = 3.3892; s2 = 11.5987, giving a dispersion index of 3.4223 >
1, thus indicating strong over-dispersion. Further, Y has the range [1, 27], thus it is
truncated at Y = 0.

We have thus applied the ZT models discussed in the previous sections to the full
data with four covariates: sex, age, fup and ecs. Here, the ZTP and ZTNB are modeled
with µi = exp(a0 + a1sex+ a2age+ a3fup+ a4eclass). The zero-truncated generalized
Poisson employed here is the GP type II, proposed in Consul (1989), Consul and Famoye
(1992) for implementing GLM generalized Poisson model and has the zero-truncated
pmf given by:

fZT (yi; θi, δ) =
θi(θi + δyi)

yi−1e−θi−δyi

yi!(1− e−θ1)
,

with yi = 1, . . ., θi > 0, 0 ≤ δ < 1. Expressions for the mean and variance of the
un-truncated version are provided in Joe and Zhu (2005). Thus the distribution can
be modeled in the form: log

(
θi

1−δ

)
= x′β.

The log-likelihood for a single observation would therefore be given by:

L = log(θi) + (yi − 1) log(θi + δyi)− (θi + δyi)− log(yi!)− log(1− e−θi),

where, θi = exp(x′β + offset) and offset = log(1− δ).
This version of the generalized Poisson or its zero-truncated counterpart are the

ones implemented in SAS PROC HPFMM, STATA and R package glmmTMB. We
have modeled the ZTIT in terms of its parameter λ, while ZTCOMNB and ZTECOMP
are modeled in terms of their parameter p,

λ=exp(b0 + b1sex+ b2age+ b3fup+ b4eclass),
p=exp(a0 + a1sex+ a2age+ a3fup+ a4eclass).

Results in Table 6 are those from implementing the GLM (with covariates) versions of
all the zero-truncated models with outcome variable Y . From Table 6 it appears that
models ZTGP2, ZTGP1 and ZTIT are suitable candidates for parsimony, with the
ZTGP1 and ZTGP2 having one less parameter and much easier to model. However,
based on the Wald’s goodness-of-fit test statistic, the most parsimonious model is the
ZTIT, with a p-value of 0.7343 and closely followed by ZTGP1 and ZTGP2 respec-
tively. We observe here again that the parameter estimates under the ZTGP2 and
ZTIT are very similar-indication our earlier observation on th relationship between the
generalized Poisson and the Inverse trinomial distribution.

In Tables 7 are the averages of the computationally generated means and variances
from the 1647 observations in the data for all the zero-truncated models considered in
this study. We recollect that the observed mean and variance of the response variable
Y are 3.3892 and 11.5987 respectively. All the models generated an average means
that are very close to 3.3892. In particular, ZTP, the ZTGP2 and the ZTIT produce
average means that are almost identical with the observed mean of the response vari-
able. Clearly, none of the models produce an estimated mean less than 3.0630 and more
than 4.6622. For the corresponding averages of the estimated variances and their corre-
sponding ranges, clearly, the ZTP grossly underestimates the true variance of Y . The
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Table 6: ZT models on Y with covariates
Parm. ZTP ZTNB ZTGP2 ZTGPI ZTIT ZTCOMNB ZTECOMP
Int 1.0766* 0.3267 0.5377* 0.6086 -0.2076 -0.4143 0.4900
sex -0.0126 -0.0144 0.0204 -0.0123 0.0213 -0.0034 -0.0034
age 0.0032* 0.0043* 0.0058 0.0038 0.0058 0.0008 0.0008
fup 0.0726 0.1046 0.0470 0.0945 0.0460 0.0171 0.0176
ecs 0.2146 0.3323 0.2312 0.3063 0.2300 0.0474 0.0499

k̂ = 2.5302 δ̂ = 0.5416 τ̂ = 0.5625 p̂ = 0.3812 α̂ = 0.9406 ν̂ = 16.3999
- r̂ = 0.0591 ν̂ = 0.6471 β̂ = −0.4368

α̂ = −0.2690
-2L 8550.7 6709.3 6707.7 6705.8 6707.5 6707.6 6705.9
AIC 8560.7 6721.3 6719.7 6717.8 6721.5 6721.6 6721.5
BIC 8587.8 6753.7 6752.2 6750.3 6759.4 6759.4 6765.1
X2 6403.81 1699.84 1615.35 1612.49 1603.73 1622.38 1643.72
d.f. 1642 1641 1641 1641 1640 1640 1639

pvalue 0.0000 0.1523 0.6695 0.6875 0.7345 0.6168 0.4626

other models give estimated average values of the variances very close to 11.5987 (the
observed variance of Y). Some of the models produce estimated observation variances
that really high (29.11431 for instance for the ZTGP1). However, both the ZTGP2
and ZTIT produce average variance that are not too far from the true values and this
accounts for their outperforming other models.

Table 7: Average and range of estimated means and variances
Est. means Est. variances

Model Average Range Average Range
ZTP 3.3892 [3.0670, 4.4496] 2.9459 [2.5484, 4.2053]
ZTNB 3.3896 [3.0637, 4.6161] 11.1787 [8.4581, 24.3863]
ZTGP1 3.3900 [3.0630, 4.6622] 11.8300 [8.6915, 29.1143]
ZTGP2 3.3892 [3.1485, 4.0558] 11.7215 [10.4632, 15.2521]
ZIT 3.3892 [3.1481, 4.0527] 11.8072 [10.5404, 15.3389]
ZTCOMNB 3.3890 [3.0810, 4.6485] 11.7672 [8.7838, 30.3872]
ZTECOMP 3.3893 [3.0791, 4.6038] 11.5716 [8.8096, 25.2648]

6 Conclusion
We have demonstrated in this study that the IT model is quite suitable for modeling
over-dispersed count data and that like all other count distributions, when applied to
frequency data, the estimated probabilities will not sum to one within the range of
the data. We also demonstrate how we could obtain the means and variances when
the model is applied to data having covariates, and thus Wald’s GOF can be easily
computed. This procedure is also applied to the Com-Poisson type distributions whose
means do not have close form solutions. The type II generalized Poisson distribution
is a suitable candidate for the IT model. Because it is easy in implementation and
quicker convergence. The SAS programs for implementing these models are available
from the author.
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