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Abstract: Generalized extreme value regression is often more adapted when we inves-
tigate a relationship between a binary response variable that represents a rare event
and potential predictors. In particular, we use the quantile function of the general-
ized extreme value distribution as the link function. Bootstrapping assigns measures
of accuracy (bias, variance, confidence intervals, prediction error, hypotheses testing)
to sample estimates. This technique allows estimation of the sampling distribution
of almost any statistic using random sampling methods. Bootstrapping estimates the
properties of an estimator by measuring those properties when sampling from an ap-
proximating distribution. In this paper, we fit the generalized extreme value regression
model and perform a parametric bootstrap method for testing hypotheses and confi-
dence interval estimation of parameters for the generalized extreme value regression
model with a real data application.

Keywords: Confidence interval; Generalized extreme value; Hypothesis testing; Para-
metric bootstrap; Stroke.

1 Introduction
Classical methods of statistical inference may not provide correct answers to all the
concrete problems the user has. They are only valid under some specific conditions (e.g.
normal distribution of populations, independence of samples). The estimation of some
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characteristics such as dispersion measures (variance, standard deviation), confidence
intervals, decision tables for hypothesis tests, is also based on the mathematical expres-
sions of the probability laws, as well as approximations of these when the calculation
was not feasible.

A good estimate of the nature of the population distribution can lead to powerful
results. However, the price to pay is high if the assumption of the distribution is
incorrect. It is therefore important to consider other analysis methods (such as non-
parametric methods, for which the conditions of application are more restrictive), which
are more flexible with the choice of the distribution and based on this, bootstrap
methods was introduced.

Bootstrapping is a relatively new, computer-intensive statistical methodology intro-
duced by Efron (1979). The bootstrap method replaces complex analytical procedures
with computer intensive empirical analysis. It relies heavily on Monte Carlo Method
where several random resamples are drawn from a given original sample. The boot-
strap method is an effective technique in situations where it is necessary to determine
the sampling distribution of a complex statistic with an unknown probability distri-
bution using these data in a single sample. The bootstrap method has been applied
effectively in a variety of situations. Efron and Tibshirani (1994), Shao (1996), and
Shao (2010) provide a comprehensive discussion of the bootstrap method. Andronov
and Kulynska (2020) discussed the statistical properties of the approximations of the
“bootstrap-generated” data sets in more detail. Many studies have shown that the
bootstrap resampling technique provides a more appropriate estimate of a parameter
than the analysis of any one of the samples (Carpenter and Bithell, 2000; Zoubir and
Iskander, 2004; Manly, 1997; Shao and Tu, 1995).

The bootstrap method is a powerful method to assess statistical accuracy or es-
timate distribution from a sample’s statistics (Reynolds and Templin, 2004; Davison
et al., 2003; Chernick, 1998). In principle there are three different ways of obtaining
and evaluating bootstrap estimates: non-parametric bootstrap which does not assume
any distribution of the population; semi-parametric bootstrap, which partly has an as-
sumption on the distribution on parameter and whose residuals have no distributional
assumption; and finally parametric bootstrap which assumes a particular distribution
for the sample at hand. Adjeil and Karim (2016) have considered parametric and
non-parametric bootstrap in the case of a classical logistic regression model.

In this work, we aim to estimate the generalized extreme value (GEV) regression
model for binary data, construct confidence intervals, and test hypotheses for unknown
parameters of the model using both classical and parametric bootstrap methods.

The rest of this paper is organized as follows. In Section 2, we describe the problem
of the GEV regression model and parametric bootstrap method. In Section 3, we
describe a small simulation study to evaluate the usefulness of the proposed method.
Section 4 presents the obtained results. A discussion and some perspectives are given
in Section 5.



43 A. Diop, E. H. Deme

2 Method
2.1 Generalized extreme value regression model
GEV is used to model rare and extreme events (Coles, 2001). In the case where the
dependent variable Y represents a rare event, the logistic regression model (obviously
used for this category of data) shows relevant drawbacks. We suggest the quantile
function of the GEV distribution as the link function to investigate the relationship
between the binary response variable Y and the potential predictors X (Wang and Dey,
2010; Calabrese and Osmetti, 2013). We use a bootstrap method as a tool to estimate
parameters and standard errors for a GEV regression model. For a binary response
variable Yi and the vector of explanatory variables Xi, let π(xi) = P(Yi = 1|Xi = xi)
the conditional probability of belonging to class ”1”. Since we consider the class of
generalized linear models, we suggest the cumulative distribution function (cdf) of
GEV proposed by Calabrese and Osmetti (2013) as the response curve given by

π(xi) = 1− exp{[(1− τ(β1 + β2xi2 + · · ·+ βpxip))+]
−1/τ}

= 1−GEV (−x′
iβ; τ),

(1)

where β = (β1, . . . , βp)
′ ∈ Rp is unknown regression parameter measuring the associa-

tion between potential predictors and response variable Y , GEV (x; τ) represents the
cdf of GEV at x with location parameter µ = 0, scale parameter σ = 1, unknown shape
parameter τ , and (a)+ = max(a, 0).

For τ → 0, the model (1) becomes the response curve of the log-log model, for
τ > 0 and τ < 0, it becomes the Frechet and Weibull response curve, respectively, a
particular case of the GEV one.

The link function of the GEV regression model is given by

1− [log(1− π(xi))]
−τ

τ
= x′

iβ = η(xi).

The unknown vector parameter β will be estimated with (1−2α)% confidence intervals
(α ∈ [0, 1]) and a test of hypothesis H0: βj = 0 by both classical approaches of GEV
regression model and bootstrap methods.

2.2 Estimation procedure
Let (Y1,X1), . . . , (Yn,Xn) be independent and identically distributed (i.i.d.) of the
random vector (Y,X) defined on the probability space (Ω,A,P). For every individ-
ual i = 1, . . . , n, Yi is a binary response variable indicating say, the occurrence of
some outcome of interest (Yi = 1 if the outcome occurred and Yi = 0 otherwise). Let
Xi = (1,Xi2, . . . ,Xip)

′ be random vectors of predictors or covariates. The conditional
probability π(xi) = P(Yi = 1|Xi = xi) is given in (1).
The likelihood function for the unknown p-dimensional parameter β and shape param-
eter τ from the independent sample (y1,x1), . . . , (yn,xn) is

Ln(θ) =

n∏
i=1

[1− GEV(−x′
iβ; τ)]

yi × [GEV(−x′
iβ; τ)]

1−yi ,
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where θ = (β, τ) ∈ Rp+1. We define the maximum likelihood estimator β̂n as the
solution of the p+ 1-dimensional score equation

∂ logLn(θ)

∂θ
= 0. (2)

See Calabrese and Osmetti (2013) and Lo et al. (2022) for more details on the maximum
likelihood estimation procedure for the parameters β and τ in the GEV regression for
binary data.

2.3 Parametric bootstrapping
Parametric bootstraps resample a known distribution function, whose parameters are
estimated from a given sample. A parametric model is fitted using parameters esti-
mated from the distribution of the bootstrap estimates, from which confidence limits
are obtained analytically. In applications, where the standard asymptotic theory does
not hold, the null reference distribution can be obtained through parametric bootstrap-
ping (Reynolds and Templin, 2004). The maximum likelihood estimators are commonly
used for parametric bootstrapping although this criterion is nearly always based upon
their large sample behavior.

2.3.1 Parametric bootstrap confidence interval

For an unknown distribution of parameters estimators, it will be not possible to perform
confidence intervals and test hypotheses for the unknown parameter β in the model
(1). Using an algorithm by Zoubir and Iskander (2004) or Carpenter and Bithell (2000)
a parametric bootstrap confidence interval is obtained as follows:
1. Draw B bootstrap samples {(Y (b)

i ,X
(b)
i ), i = 1, . . . , n} (b = 1, . . . , B) from the

original data sample, and for each bootstrap sample, estimate β and πi by its maximum
likelihood estimators β̂

(b)
n in model (1).

2. Calculate the bootstrap mean and standard error of β̂n as follows:

β̂∗
n =

1

B

B∑
b=1

β̂(b)
n and ŝn =

√√√√ 1

B − 1

B∑
b=1

(
β̂
(b)
n − β̂∗

n

)2

.

3. Calculate (1− 2α)100% bootstrap confidence interval by finding quantile of bootstrap
replicates [

β̂n,L, β̂n,U

]
=

[
β̂(b),α
n , β̂(b),1−α

n

]
.

Remark 2.1. Confidence intervals given in the algorithm will allow on the one hand
to define an interval belonging to the true parameter β, and on the other hand will be
used to decide on comparison tests on the parameters, such as H0 : β = a where a ∈ R.
We reject the hypothesis H0 if a does not belong to the confidence interval of β.

2.3.2 Parametric bootstrap for test of hypotheses

We use here the algorithm for parametric hypotheses testing given by Fox (2015) defined
as follows:
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1. Estimates parameters β̂n,j of the model (1) using the observed data and calculate
observed statistic test tobsβj

= β̂n,j/sβ̂n,j
. Let θ̂ = (β̂n,j , t

obs
βj

)

2. Draw B bootstrap samples {(Y (b)
i ,X

(b)
i ), i = 1, . . . , n} (b = 1, . . . , B) from the

original data sample, and for each bootstrap sample, estimate β and tobsβj
by its maximum

likelihood estimators β̂
(b)
n and tobs

β̂
(b)
n

in the model (1).
3. Calculate bootstrap p-value by

p− value =
#
{
|tobs
β̂
(b)
n

| > |tobs
β̂n

|
}

B
.

Remark 2.2. Testing hypotheses defined in the algorithm will allow us to study the
impact of the explanatory variables on the response variable Y by studying the sig-
nificance of the parameters β, H0 : βj = 0. We reject the hypothesis H0 (i.e. the
explanatory variable Xj has a significant impact on the response variable Y ) if the
p-value associated with this test is strictly lower than the fixed threshold α ∈ [0, 1].

3 Simulation study
This simulation study aims to evaluate the usefulness of the proposed method in Sec-
tions (2.3.1) and (2.3.2). The simulation setting is as follows. We consider the following
model

1− [log(1− π(Xi))]
−τ

τ
= β1 + β2Xi2 + β3Xi3,

where the covariates Xi2 and Xi3 are independently drawn from normal N (0, 1) and
normal N (−1, 1), respectively. The true parameter β is set such that the propor-
tion of 1’s in the simulated data sets is around 15% (considered as Model M1: β =
(−1, 0, 0.7)′) and 30% (considered as Model M2, β = (−1.3, 1.5, 0)′).

An i.i.d. sample of size n of the vector (Y,X) is generated from the model (1), and
for each individual i, we get a realization (yi,xi). The maximum likelihood estimator
β̂n of β = (β1, β2, β3)

′ is obtained from this dataset by solving the score equation
(2), using the optim function of the software R (R Core Team, 2021). Note that τ is
not the primary parameter of interest, hence we only focus on the simulation results
for β̂n. The usefulness of the proposed method was assessed for several sample sizes
(n = 100, 300, 500).

For each configuration (sample size, proportion of 1’s) of the design parameters,
B = 2000 bootstrap samples were obtained. Based on these B = 2000 samples, we
obtain the characteristics defined in the Sections 2.3.1 and 2.3.2. The results from the
model (1) are summarized in Table 1.

From these results, it appears that the proposed method is very efficient with regard
to the estimation of the model parameters. Indeed, the bootstrap maximum likelihood
estimator β̂n provides a reasonable approximation of the true parameter value, even
when the sample size is large enough (n ≥ 300 say). Note that the length of the
confidence intervals decreases as the sample size increases, and the standard errors also
decrease. On the other hand, the quality of the estimates is quite poor when the sample
size is less than 100 (slightly wide confidence intervals). Finally, these results indicate
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that a reliable statistical inference on the regression effects in the regression model for
binary data with a GEV link function using bootstrap method should be based on a
sample having, at least, a moderately large size (n ≥ 100, say).

Table 1: Simulation results.
Model M1

n β̂1n β̂2n β̂3n
100 BE -0.554 - 0.006 0.609

SE 0.181 0.184 0.185
95% C.I. [-0.718;-0.084] [-0.101;0.140] [0.330;0.936]
P-value 0.004 0.206 < 0.0001

300 BE - 0.580 - 0.003 0.682
SE 0.115 0.095 0.107

95% C.I. [-0.662;-0.526] [-0.080;0.062] [0.523;0.852]
P-value 0.003 0.265 < 0.0001

500 BE - 0.581 - 0.001 0.689
SE 0.087 0.071 0.079

95% C.I. [-0.605;-0.565] [-0.075;0.043] [0.655;0.756]
P-value < 0.0001 0.295 < 0.0001

Model M2

β̂1n β̂2n β̂3n
100 BE - 0.672 1.683 0.009

SE 0.265 0.214 0.204
95% C.I. [-1.033;-0.506] [1.240;2.273] [-0.139;0.091]
P-value 0.003 < 0.0001 0.153

300 BE - 1.016 1.669 0.007
SE 0.136 0.182 0.105

95% C.I. [-1.024;-0.559] [1.359;2.026] [-0.047;0.071]
P-value < 0.0001 < 0.0001 0.172

500 BE -1.009 1.654 -0.005
SE 0.117 0.134 0.078

95% C.I. [-1.017;-1.001] [1.452;1.886] [-0.025;0.046]
P-value < 0.0001 < 0.0001 0.190

BE: bootstrap estimate. SE: standard error. C.I.: confidence interval

4 Real data application

In this section, we consider an application on Stroke data in central Senegal. A stroke
is a sudden neurological deficit of vascular origin caused by an infarct or hemorrhage
in the brain (Bogousslavsky et al., 1993; Biousse, 1994). We consider here a database
of size n = 162. Data were collected in the context of a prospective and analytical
study, carried out over 8 months from April 5 to November 30, 2016 in central Senegal.
Patients with CT confirmation of stroke were included in the study.

In Senegal, stroke is the most frequent neurological disease. Known for their high
mortality and morbidity rates, they account for more than 30% of hospital admissions
and nearly two-thirds of the loss of human life (Sene-Diouf et al., 2007; Touré et al.,
2016). We consider the covariates in Table 2.

In this study, the dependent variable is the evolution of the health status of stroke
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Table 2: Covariates definition.
Covariate Definition Abbreviation

Stroke type Ischemic stroke or Hemorrhagic
stroke

Stroke-Typ

Motor deficiency affected mobility of the upper
and/or lower limbs

Motor-def

Severity Cerebral commitment displacement of parts of the ner-
vous structure contained in the
cranium through an orifice

SC-commitment

Intraventricular haemorrhages bleeding into the ventricles of the
brain

Ivh

Hospital Admission Delay delay between the first symp-
toms and admission to hospital

Delay

Vital Prognosis vital prognosis engaged Prognosis

patients (vital prognosis). We denote Y as the binary variable defined as follows:

Yi =

{
1 if vital prognosis evolves favourably
0 if vital prognosis evolves unfavourably.

Information about explanatory variables is given in Table 2. We aim to
1. build a bootstrap parametric confidence interval for the parameters;
2. perform a bootstrap parametric test of the hypothesis.

We ran a GEV regression analysis using the statistical software R of the model
defined as follows:

P(Yi = 1|x) = 1−GEV (−(β1 + β2 × Delay + β3 × Ivh + β4 × Stroke-typ
+ β5 × SC-commitment + β6 × Motor-def ; τ).

Table 3: Estimation of parameters of GEV regression model.
Parameter Estimate SE P-value
Intercept (β1) 6.8133 0.5680 0.0001
Delay (β2) -0.6093 0.1082 0.0001
Ivh (β3) 1.6597 0.3914 0.0001
Stroke-typ (β4) -0.8061 0.2546 0.0015
SC-commitment (β5) 0.7888 0.3111 0.0112
Motor-def (β6) -4.0756 0.4945 0.0001

Table 3 represents the results of the maximum likelihood estimation by solving the
score equation (2) using the optim function of the software R. The standard errors
are calculated using the variance-covariance matrix of the estimator. The p-values are
calculated using the theoretical distribution of the estimator.

Table 4 shows the obtained results from the GEV regression model in (1) by para-
metric bootstrap. These results lead to a similar conclusion from the classical method
in the estimation of parameters. The parameter estimates are very close. The standard
errors of estimates for parametric bootstrap were slightly lower compared to that of



Parametric bootstrapping in a generalized extreme value regression model 48

the classical approach. Also, the effect of explanatory variables is highly significant
in both classical and parametric bootstrap methods. The length of the interval of the
parametric method is larger than the classical method.

Table 4: Confidence intervals and P-value by parametric bootstrapping.
Parameter Estimate SE 95% C.I P-value
Intercept (β1) 6.0407 0.6008 [3.3784;7.5870] 0.0001
Delay (β2) -0.6687 0.1037 [-1.0485;-0.4128] 0.0001
Ivh (β3) 1.8610 0.3631 [0.7645;3.4442] 0.0001
Stroke-typ (β4) -1.0418 0.2543 [-1.6633;-0.5731] 0.0002
SC-commitment (β5) 1.0889 0.3134 [0.4147;1.8897] 0.0001
Motor-def (β6) -3.0105 0.4648 [-4.4482;-0.4848] 0.0001

5 Discussion and perspectives
Confidence intervals are good indicators of practical significance, unlike p-values and
they also provide more information than p values. Unfortunately, confidence intervals
are rarely reported in academic papers. This is because computing confidence intervals
are not practical and not possible for some statistics. This is why bootstrap methods,
which are resampling techniques for assessing uncertainty, have become popular.

In this study, we have performed bootstrapping parametric method on a GEV
regression model. Moreover bootstrapped method was compared with the classical
approach while calculating the parameters of the GEV regression model. The bootstrap
technique used for estimation and testing produced flexible results. Several questions
can be asked: the appropriate value of B for confidence intervals and hypotheses testing.
For example, Efron and Tibshirani (1994) suggest that B should be between 1000 and
2000 for 90-95 percent confidence intervals. The nonparametric bootstrap method can
also be used for this study. With the help of statistical software today, it is easy to
compute confidence intervals and test hypotheses for almost any statistics of interest.
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