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1 Introduction
In many statistical studies especially in time series models, the observed values of the
considered variables are nonnegative and for analyzing such observations it is conve-
nient to use the models with nonnegative innovations such as exponential innovations.
The several attractive features of the resulting exponential autoregressive process can
be found in Gaver and Lewis (1980). They showed that {Xj} has an exponential
marginal distribution with parameter λ, denoted by Exp (λ), provided that ρ should
be positive, 0 ≤ ρ < 1 and

Xj =

{
ρXj−1 with prob. ρ

ρXj−1 + εj with prob. 1− ρ
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where εj
, s are i.i.d. Exp (λ) random variables with density:

f(x) =
1

λ
e

−x
λ , λ > 0.

However, as noted by Bell and Smith (1986), this scheme is not an AR(1) process.
Bell and Smith (1986) have studied an AR(1) model Xj = ρXj−1 + εj with 0 <
ρ < 1 where εj is a nonnegative white noise with a finite second moment and have
applied this model to water quality analysis. They studied the inference problem for
the Gaussian, uniform, and exponential distributions, and a nonparametric case with
positive continuous distributed white noise. It was proved that the maximum likelihood
estimator (MLE) has positive bias and is a strongly consistent estimator of ρ unless
there exist constants c and d such that 0 < c < d < ∞ with F (d) − F (c) = 1, where
F (.) is distribution function of εj .

A mean stationary AR(1) model with exponential innovation was considered by
Anděl (1988), where he derived the distribution of an approximation to the MLE for
the autoregressive parameter. These results were generalized to mean stationary AR(2)
by Anděl (1989). Moreover, generalization to mean stationary vector AR(1) models
and strong consistency of estimators were studied by Anděl (1992) and Anděl (1998).
Anděl and Garrido (1991) studied the nonnegative AR(2) processes in a Bayesian
setting. Datta and McCormick (1995) constructed a confidence interval for the au-
toregressive parameter of the AR(1) process with positive innovations. The class of
continuous-time stochastic volatility models for financial assets are studied by Nielsen
and Shephard (2001), Brockwell and Marquardt (2003), and Brockwell and Marquardt
(2005). In these kinds of models, the volatility processes are the solutions to the
Ornstein-Uhlenbeck (OU) processes driven by non-decreasing Levy processes, whose
paths are nonnegative whenever the kernel is nonnegative. A necessary and sufficient
condition for the kernel to be nonnegative in terms of its Laplace transform is estab-
lished by Tsai and Chan (2005). Similar conditions are also derived by Tsai and Chan
(2007) for the discrete-time autoregressive moving average (ARMA) processes in terms
of kernel generating function.

The Bayesian estimation and prediction for the mean stationary autoregressive
model AR(1) with exponential innovations under the square error loss function were
studied by Ibazizen and Fellag (2003). They generalized Turkmann’s (1990) results by
using the more general non-informative priors and compared the results with Anděl
(1988) and Turkmann (1990). Nielsen and Shephard (2003) derived the exact and
asymptotic distributions of the MLE for the autoregression parameter of the AR(1)
model with exponential innovations. They showed that MLE is consistent with dif-
ferent rates for different values of autoregression parameters. Larbi and Fellag (2016)
performed a robust Bayesian analysis of the Bayesian estimation of a mean station-
ary autoregressive model with exponential innovations and obtained optimal Bayesian
estimators of the parameters corresponding to the smallest oscillation of the poste-
rior risks. However, all of their estimators involve Appell hypergeometric functions in
their formulas and it is complicated in practice. In another study on this model, Saa-
datmand et al. (2017) considered the estimation of a missing value for the stationary
AR(1) model with exponential innovations introduced by Anděl (1988) and compared
two methods of estimation of the missing value with respect to Pitman’s measure of
closeness.



53 A. Saadatmand, A. R. Nematollahi, S. M. Sadooghi-Alvandi

In this paper, we consider the first order autoregressive model with exponential
error introduced by Bell and Smith (1986) as

Xj = ρXj−1 + εj , 0 < ρ < 1, j = 1, ..., n,

where εj
, s are i.i.d. Exp (λ) random variables and X0 is fixed. Note that this model is

not mean stationary and differs from the model which has been considered by Ibazizen
and Fellag (2003) and Larbi and Fellag (2016). The parameter of interest is ρ and
the nuisance parameter is λ. We have compared the competing estimation procedures;
MLE and Bayes estimation. In Section 2, we review the MLE introduced in Bell and
Smith (1986). In Section 3, we obtain the Bayes estimator under the square error loss
function. In Section 4, a simulation study is conducted to compare the behavior of the
estimators via relative bias and frequentist risk, the expected loss of both the data,
and unknown parameters. Finally, in Section 5, a real data example is presented.

2 Maximum likelihood estimation
We consider the first-order autoregressive model with exponential error defined by:

Xj = ρXj−1 + εj , 0 < ρ < 1, j = 1, ..., n, (1)

where X0 ≥ 0 is fixed and ε,js are independent identically distributed Exp (λ) random
variables such that the joint probability density function (pdf) of (X1, ..., Xn|λ, ρ) is
given by

fX(x1, . . . , xn|λ, ρ) = fε(x1 − ρx0, x2 − ρx1, ..., xn − ρxn−1|λ, ρ),

=
1

λn
e−

1
λ

∑n
j=1(xj−ρxj−1)I

(0,min1≤j≤n(1,
xj

xj−1
))
(ρ)I(0,∞)(λ). (2)

Note that the joint pdf is increasing in ρ, and therefore the MLE of ρ (as given by Bell
and Smith, 1986, in nonparametric case) is

ρ̂ml = min
1≤j≤n

(1,
xj

xj−1
). (3)

The consistency of ρ̂ml can be proved in the similar manner to Bell and Smith (1986).
Furthermore, the MLE of λ (similar to Bell and Smith, 1986) can be obtained from
the likelihood function (2) as

λ̂ml =

∑n
j=1(xj − ρ̂mlxj−1)

n
. (4)

Since ej = Xj − ρ̂mlXj−1 is the estimate of εj , from the consistency of ρ̂ml and
applying strong law of large numbers, it can be shown that λ̂ml as the mean of ej , s,
is a consistent estimator for λ, which is the expected value of ε,js.
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3 Bayes estimation
To apply a Bayes estimation procedure, we consider improper (non-informative) prior
for (ρ, λ) as

π(ρ, λ) ∝ const.

λ
, 0 < ρ < 1, λ > 0. (5)

Our reasons for introducing this improper prior are simplicity, having closed-form and
optimality of the resulted Bayes estimator in comparison to the other estimators ob-
tained from some of considered competitor priors. Our investigation of other priors is
huge and not reported in this paper. Then from (2) and (5), we have

fX(x1, . . . , xn;λ, ρ) = const.
1

λn+1
e−

1
λ

∑n
j=1(xj−ρxj−1)I(0,ρ̂ml))(ρ)I(0,∞)(λ).

It is clear that

f(ρ, λ|x1, . . . , xn) ∝
1

λn+1
e−

1
λ

∑n
j=1(xj−ρxj−1)I(0,ρ̂ml))(ρ)I(0,∞)(λ).

Let A =
∑n

j=1 xj , B =
∑n

j=1 xj−1 and C = A − Bρ̂ml. Then it can be shown that
the posterior pdf of (ρ, λ) given x = (x1, . . . , xn) is

f(ρ, λ|x) = BCn−1

(n− 2)![1− (CA )n−1]

1

λn+1
e−

1
λ (A−Bρ)I(0,ρ̂ml))(ρ)I(0,∞)(λ),

and consequently,

f(ρ|x) = BCn−1

[1− (CA )n−1]

(n− 1)

(A−Bρ)n
I(0,ρ̂ml))(ρ).

The Bayes estimator under the square error loss function l(ρ̂, ρ) = (ρ̂− ρ)2 is posterior
mean. Then

ρ̂bs = E(ρ|x) =
∫ ρ̂ml

0

ρ.f(ρ|x)dρ =

∫ ρ̂ml

0

ρ.
BCn−1

[1− (CA )n−1]

(n− 1)

(A−Bρ)n
dρ

=
ρ̂ml − C

B(n−2) [1− (CA )n−2]

1− (CA )n−1
(6)

Proposition 3.1. The estimator ρ̂bs in (6) is a consistent estimator of ρ.

Proof. It is obvious that A
B → 1 as n → ∞, such that

C

A
= 1− B

A
ρ̂ml → 1− ρ,

C

B
=

A

B
− ρ̂ml → 1− ρ.

The consistency of ρ̂bs obtained by the consistency of ρ̂ml as

ρ̂bs =
ρ̂ml − C

B(n−2) [1− (CA )n−2]

1− (CA )n−1
→

ρ− 1−ρ
∞ [1− 0]

1− 0
= ρ.
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Similarly, the Bays estimator λ can be obtained as λ̂bs = C
(n−2)

1−(C
A )n−2

1−(C
A )n−1 . But this

estimator has no advantage to λ̂ml in (2.4) and we do not apply λ̂bs for our predictions
in Section 5. In the next two Sections, we compare ρ̂ml and ρ̂bs by simulation studies
and in a real data example.

4 Simulation studies
In the following, for each value of sample size n, we simulate innovations as a sample
from exponential distribution with expectation λ to generate 100000 replications of
AR(1) model with initial value X0 and autoregression parameter ρ . We study the val-
ues λ = 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, different values X0 = 0, 0.1, 0.2, 0.5, 1, 2, 5, 10,
20, 50, 100 for sample sizes n = 5, 7, 10, 15, 20, 30, 50 and 0 ≤ ρ ≤ 1 (by steps 0.01) and
report a subset of these values. For each replication, we obtain the MLE (3) and the
Bayes estimator (6) and calculate their square error loss function (ρ̂ − ρ)2 and their
relative bias (ρ̂−ρ)

ρ .
Figures 1 to 5 show the risk of the MLE and Bayes estimator, for some values of n, λ

and X0, as the mean of their square error loss functions over all replications. Similarly,
Figures 6 to 10 show the relative bias of MLE and Bayes estimators for different values
of n, λ and X0, as the average of their relative bias over all replications.

According to Figures 1 to 10, the risk and relative bias decrease as the sampler
size n increases (as be expected), and also for larger values of ρ, these quantities have
smaller values. Furthermore, for each fixed λ, the larger X0 leads to the smaller risk
and the smaller relative bias. On the other hand, for each fixed X0, the larger λ results
in the larger risk and also the larger relative bias. Finally, the Bayes estimator has a
smaller risk than the MLE for each n, λ and X0. Moreover, it can be observed that the
Bayes estimates, with smaller relative bias, have better performances than the MLE
for different values of the parameters.

5 A real data example
We consider Viscosity data (series D, Box and Jenkins, 1976) which consists of 310 ob-
servations to investigate usefulness of the Bayes estimator (6). Datta and McCormick
(1995) considered this data set to fit a positive AR(1) model, see Datta and Mc-
Cormick (1995) for more details. We assume the first 301 observations of the series
as observed values X0, X1, . . . , X300 and by using AR(1) model (1) try to predict the
last 9 observations X301, X302, . . . , X309 and compare the resulted values with the ob-
served values. For predicting the next steps, under the square loss function, we ob-
tain the best predictor of Xk based on the previous values X0, X1, . . . , Xk−1, i. e.,
X̂k = E(Xk|X0, X1, . . . , Xk−1). See Saadatmand et al. (2017) for more details and
discussions. Since ρ and λ are unknown, we use equation (8) in Saadatmand et al.
(2017) to obtain the predictions for k = 301, . . . , 309 as

X̂k(ml) = ρ̂mlX̂k−1(ml) + λ̂ml, (7)
X̂k(bs) = ρ̂bsX̂k−1(bs) + λ̂ml, (8)
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Figure 1: Risk of the MLE and Bayes estimators X0 = 0, λ = 1 and 0 ≤ ρ ≤ 1.
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Figure 2: Risk of the MLE and Bayes estimators X0 = 1, λ = 1 and 0 ≤ ρ ≤ 1.
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Figure 3: Risk of the MLE and Bayes estimators X0 = 100, λ = 1 and 0 ≤ ρ ≤ 1.
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Figure 4: Risk of the MLE and Bayes estimators X0 = 1, λ = 100 and 0 ≤ ρ ≤ 1.
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Figure 5: Risk of the MLE and Bayes estimators X0 = 100, λ = 100 and 0 ≤ ρ ≤ 1.
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Figure 6: Relative bias of the MLE and Bayes estimators X0 = 0, λ = 1 and 0 ≤ ρ ≤ 1.



59 A. Saadatmand, A. R. Nematollahi, S. M. Sadooghi-Alvandi

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ

-2

0

2

4

6

8

10

12

14

16

18

R
el

at
iv

e 
Bi

as

n=5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ

-2

0

2

4

6

8

10

R
el

at
iv

e 
Bi

as

n=10

MLE
Bayes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ

-1

0

1

2

3

4

5

R
el

at
iv

e 
Bi

as

n=20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ρ

-0.5

0

0.5

1

1.5

2

R
el

at
iv

e 
Bi

as

n=50

Figure 7: Relative bias of the MLE and Bayes estimators X0 = 1, λ = 1 and 0 ≤ ρ ≤ 1.
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Figure 8: Relative bias of the MLE and Bayes estimators X0 = 100, λ = 1 and 0 ≤ ρ ≤ 1.
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Figure 9: Relative bias of the MLE and Bayes estimators X0 = 1, λ = 100 and 0 ≤ ρ ≤ 1.
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Figure 10: Relative bias of the MLE and Bayes estimators X0 = 100, λ = 100 and 0 ≤ ρ ≤ 1.
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where X̂300(ml) = X̂300(bs) = X300 and ρ̂ml, λ̂ml and ρ̂bs are given in (3), (4) and (6)
and turned out to be 0.86, 1.283 and 0.8595, respectively. Table 1 presents the last 9
observed values X301, X302, . . . , X309 and their predicted values using (7) and (8).

Table 1: The observed values in Viscosity data and their predictions applying ρ̂ml and ρ̂bs.
k 301 302 303 304 305 306 307 308 309
Xk 8.6 8.3 7.9 8.5 8.7 8.9 9.1 9.1 9.1

X̂k(MLE) 8.7650 8.8208 8.8689 8.9102 8.9457 8.9763 9.0026 9.0252 9.0446
X̂k(Bayes) 8.7609 8.8132 8.8581 8.8968 8.93 8.9586 8.9831 9.0042 9.0223

We compared these two sets of prediction values by using the criteria

SSE =

309∑
k=301

(X̂k −Xk)
2,

which can be calculated for both inference procedure so that SSE(MLE) = 1.4898
and SSE(Bayes) = 1.4499. As a result, the Bayes estimator ρ̂bs in (6) has smaller SSE
in comparison with the MLE ρ̂ml in (3), and results in more convenient predictions for
X301, X302, . . . , X309.
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