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1 Introduction
The exponential distribution is one of the most common lifetimes widely used in indus-
try and medical survival analysis. Assume that the lifetime distribution of a random
sample of n experimental units is exponential with hazard rate θ:

F (x; θ) =

{
1− exp(−θx) if x ≥ 0

0 if x < 0.
(1)

To estimate the parameter θ, due to time constraints and cost reduction, different
censoring data schemes might be used by the experimenter. One of these schemes is
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the type I censoring in which the test is terminated at a prefixed time t. In this case,
the maximum likelihood estimator (MLE) of θ is obtained by

θ̂ =
y∑y

i=1 xi + (n− y)t
, (2)

where n is the sample size, y denotes the number of failures that are observed until t,
and x1, . . . , xy denote those failure times, (Rausand and Høyland, 2004).

On the other hand, experimental units might not be continuously monitored, and
if so, the collected data are related to the interval-censored data. In this scheme, n
individuals are inspected at k predetermined time points, t1, t2, . . . , tk, and the numbers
of failures occurring in the time intervals between inspection times are observed. The
exact failure time of an individual is not known. The only information we have is that
the individual has survived at the beginning of the interval, and it has failed before
the end of the interval. Let t0 = 0, [tj−1, tj), j = 1, 2, . . . , k be the j-th inspection time
interval and yj ; j = 1, 2, . . . , k denote the number of failures occurring during the j-th
time interval. Since (Y1, Y2, ..., Yk) follows a multinomial distribution, hence for the
collected data (tj , yj); j = 1, 2, . . . , k, the likelihood function is proportional to

L(θ|y1, y2, . . . , yk) ∝ [F (t1; θ)− F (t0; θ)]
y1 [F (t2; θ)− F (t1; θ)]

y2

× . . . [F (tk; θ)− F (tk−1; θ)]
yk [1− F (tk; θ)]

n−
∑k

j=1 yj . (3)

The MLE of the model parameter θ is obtained by maximizing the likelihood function,
with respect to this parameter. There is no closed-form analytical solution for the
following equation

∂L(θ|y1, y2, . . . , yk)
∂θ

= 0.

Instead, a numerical method can be used to find the MLE of θ. On the other hand,
the determination of the best inspection times t1, t2, . . . , tk is a fundamental topic in
the reliability analysis of interval-censored data. To run a test for inspecting the in-
dividuals, given a fixed overall budget, the determination of optimal inspection times
will significantly save time. The simplest scheme is the one in which the spaced in-
spection time is equal for all inspection intervals, (Nanasi, 2014). El-Shaarawi and
Naderi (1991), gave guidelines for choosing statistically efficient inspection times and
the approximate sample size that achieve a specified degree of precision for estimating
a particular quantile of a Weibull time-to-failure distribution. Also, Nelson (1997) gave
the optimum inspection times for a demonstration test using an exponential distribu-
tion. Sundberg (2001), compared several asymptotic confidence intervals for the type
I censored exponential data, with a common censoring time, that have been proposed
in the literature.

In this work, we consider some of the existing parameter estimators of the exponen-
tial lifetimes under interval censoring, namely, the substitution method, the probability
plot method (regression line), and a method that is a version of type-I censored data.
We will first give a brief description of these existing estimators and then describe how
to improve them by introducing our three methods.

In interval-censored data, the exact failure times of individuals are not observed,
while in the substitution method, the approximate failure times are taken into consid-
eration. Using the mean value theorem, for a continuous and differentiable distribution
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function F on (ti, tj), we have

F (tj)− F (ti) ≈ f(c)(tj − ti),

where c ∈ (ti, tj), and f(x) = d
dxF (x) is the density function. In (Meeker, 1986), by

setting c to be the midpoint of the interval (ti−1, ti), the authors obtained a closed
form of the approximate maximum likelihood estimators for the mean and variance of
the normal distribution.

To estimate parameter θ in the exponential distribution case, one can apply this
theorem to the pseudo-likelihood function in Equation (3) with t0 = 0, to get

L∗(θ|y1, y2, . . . , yk) ∝ [t1f(t
∗
1; θ)]

y1 [(t2 − t1)f(t
∗
2; θ)]

y2

× . . . [(tk − tk−1)f(t
∗
k; θ)]

yk [1− F (tk; θ)]
n−

∑k
j=1 yj ,

where t∗i ∈ {ti−1, ti,
ti−1+ti

2 }, i = 1, . . . , k.
Therefore, by substituting t∗i instead of failure times and using Equation (2), the

estimator of θ in this substitution method is obtained by

θ̂a =

∑k
j=1 yj∑k

j=1 yjt
∗
j−1 + (n−

∑k
j=1 yj)tk

,

where t∗j−1 = tj−1, tj ,
tj−1+tj

2 , j = 1, 2, . . . , k.
Based on exponential probability plot, Chen and Lio (2010) under interval censoring

scheme, we have another estimator for θ and it is given by

1

k

k∑
j=1

−1

tj
log(1−

∑j
r=1 yr
n

).

Finally, based on the type I censored exponential reliability data without exact failure
times, which is defined by Zhang et al. (2013), the estimator is given as follows

−1

tk
log(1− 1

n

k∑
r=1

yr).

Remark 1.1. Suppose all the failures have occurred before the time tk, that is,∑k
j=1 yj = n, then two recent estimators are infinite. In this case, to overcome this

problem, we use the following estimators θ̂b = 1
k

∑k
j=1 θ̂j ,where, θ̂j = −1

tj
log(1 −∑j

r=1 yr

n+1 ), j = 1, . . . , k, and θ̂c =
−1
tk

log(1−
∑k

r=1 yr

n+1 ).

It must be noted that the estimator θ̂a, is based on the mathematical concept of
the mean value theorem. But in the other methods, that are presented in this work,
we used the statistical concepts like mode of the distribution.

The rest of this paper is structured as follows. Section 2 presents new methods
for improving θ̂a, θ̂b and θ̂c. For applying the new methods, first, we use the existing
estimators for interval-censored data, and then we adjust them. The determination of
the best inspection times is studied in Section 3. In Section 4, we evaluate our proposed
methods by using simulation studies, and finally, the conclusion is given in Section 5.
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2 Main results
In this section, we introduce three methods for improving θ̂a, θ̂b and θ̂c. These methods
use approximate values instead of unknown failure times. They are based on the
number of failures in the equally likely sub-intervals (Method I), the meantime of
failures (Method II), and the number and the most probable time of occurring failures
in each inspection interval (Method III). Note that Method I is used only to improve
θ̂a, whereas both Methods II and III can be used for the improvement of the θ̂a, θ̂b and
θ̂c.

2.1 Method I
Since the imputation method tends to be strongly biased and has a better performance
when the length of the inspection time intervals is short, we use a finer partition for
each interval. More precisely, we divide each inspection time interval Ij = [tj−1, tj)
into yj equally likely sub-intervals:

[tj−1, tj−1,1), [tj−1,1, tj−1,2), . . . , [tj−1,yj−1, tj−1,yj
),

such that
F (tj−1,i)− F (tj−1)

F (tj)− F (tj−1)
≡ i

yj
, i = 1, 2, . . . , yj ,

or equivalently,
e−θtj−1 − e−θtj−1,i

e−θtj−1 − e−θtj
≡ i

yj
, i = 1, 2, . . . , yj ,

which implies that
tj−1,i =

1

θ
log(

yj
(yj − i)e−θtj−1 + ie−θtj

).

Since θ is unknown, it can be estimated by θ̂a, θ̂b or θ̂c. Suppose that θ is estimated
by θ̂a, then we have

t̂j−1,i =
1

θ̂a
log(

yj

(yj − i)e−θ̂atj−1 + ie−θ̂atj
), i = 1, 2, . . . , yj .

Substituting either the midpoint or the endpoints of sub-intervals instead of failure
times, in Equation (2), another estimation for θ is obtained by

ˆ̂
θa,I =

∑k
j=1 yj∑k

j=1

∑yj

i=1 t
∗
j−1,i + (n−

∑k
j=1 yj)tk

,

where, t∗j−1,i = t̂j−1,i, t̂j,i,
t̂j−1,i+t̂j,i

2 , i = 1, . . . , yj , j = 1, 2, . . . , k.

2.2 Method II
Let X1, X2 . . . , Xn be a random sample from F (x) = 1 − exp(−θx);x > 0 . Since
the event on which Y1 = y1, Y2 = y2, . . . , Yk = yk is equivalent to the event on which
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0 < X1:n < . . . < Xy1:n < t1 < . . . < tk−1 < X∑k
i=1 yi:n

< tk, we have for i =

1, 2, . . . ,
∑k

j=1 yj

E(Xi:n|Y1 = y1, Y2 = y2, . . . , Yk = yk)

= E(Xi:n|0 < X1:n < . . . < Xy1:n < t1 < . . . < tk−1 < X∑k
i=1 yi:n

< tk).

On the other hand, for i = 1, 2, . . . , yj and j = 1, 2, . . . , k, we have

E(X(i+
∑j−1

i=1 yi):n
| . . . < tj−1 < X(

∑j−1
i=1 yi+1):n < . . . < X(

∑j
i=1 yi):n

< tj < . . .) = E(Zi:yj
),

where Zi:yj is i-th order statistics of a random sample of size yj from the following
distribution

F (x)− F (tj−1)

F (tj)− F (tj−1)
. (4)

In fact Z is equivalent in distribution to the random variable X|tj−1 < X < tj . After
estimating all failure times by

E(Z1:y1
), . . . ,E(Zy1:y1

),E(Z1:y2
), . . . ,E(Zy2:y2

), . . . ,E(Z1:yk
), . . . ,E(Zyk:yk

),

and using the pseudo likelihood function, we obtain the following estimator∑k
j=1 yj∑k

j=1

∑yj

i=1 E(Zi:yj
) + (n−

∑k
j=1 yj)tk

. (5)

Note that
yj∑
i=1

E(Zi:yj ) =

yj∑
i=1

E(X|tj−1 < X < tj)

= yj(
1

θ
+

tj−1e
−θtj−1 − tje

−θtj

e−θtj−1 − e−θtj
). (6)

By substituting (6) in (5), we have the following estimator for θ:

ˆ̂
θII =

∑k
j=1 yj∑k

j=1 yj

θ +
∑k

j=1 yj
tj−1e

−θtj−1−tje
−θtj

e−θtj−1−e−θtj
+ (n−

∑k
j=1 yj)tk

.

In this case, θ can also be estimated by θ̂a, θ̂b or θ̂c. Therefore, re-estimation of the
parameter can be obtained by

ˆ̂
θr,II =

∑k
i=1 yi∑k

j=1 yj

θ̂r
+
∑k

j=1 yj
tj−1e

−tj−1θ̂r−tje
−tj θ̂r

e−tj−1θ̂r−e−tj θ̂r
+ (n−

∑k
i=1 yi)tk

,

where r = a, b, c.
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2.3 Method III
In this subsection, an improved estimator is introduced based on the most probable
time of occurring failures in the j-th interval of inspection, j = 1, 2, . . . , k. It is worth
noting that, in this method, we did not use the usual MLE method (in which, the
unknown parameter θ is estimated by finding the values that maximize the likelihood
function of failure times). In Method III, the unknown failure times were first estimated
by time values whose probability of observing failures was maximized. In other words,
we found the most probable time at which the failure occurred. Then, we obtained the
MLE of unknown parameter based on these estimated failure times.

Let yj denote the number of failures that occur in the interval [tj−1, tj). We assume
that failures occur at the most probable time in the j-th interval.

Let X
Ij
i:yj

denote the i-th order statistics obtained from a sample size of yj from a
population of failure times in the interval Ij := [tj−1, tj). Then, we have the density
function of XIj

i:yj
for x ∈ Ij and i = 1, 2, . . . , yj , as follows

f
X

Ij
i:yj

(x) =
yj !

(i− 1)!(yj − i)!
[FXIj (x)]

i−1fXIj (x)[1− FXIj (x)]
yj−i,

where the distribution of XIj has been defined in (4). Hence,

f
X

Ij
i:yj

(x) =
yj !

(i− 1)!(yj − i)!
[
F (x)− F (tj−1)

F (tj)− F (tj−1)
]i−1 f(x)

F (tj)− F (tj−1)

×[1− F (x)− F (tj−1)

F (tj)− F (tj−1)
]yj−i. (7)

Since F̄ (x) = e−θx hence f(x) = θF̄ (x). Put, uj :=
F̄ (tj−1)−F̄ (x)

F̄ (tj−1)−F̄ (tj)
and mj :=

F̄ (tj−1)

F̄ (tj−1)−F̄ (tj)

(> 1) in (7) to get

f
X

Ij
i:yj

(uj) ∝ ui−1
j (mj − uj)(1− uj)

yj−i

= mju
i−1
j (1− uj)

yj−i − ui
j(1− uj)

yj−i.

The mode/modes are obtained from the following equation

d

dx
f
X

Ij
i:yj

(x) =
d

duj
f
X

Ij
i:yj

(uj)×
duj

dx

= ui−2
j (1− uj)

yj−i−1{yju2
j − (mj(yj − 1) + i)uj +mj(i− 1)} ≡ 0.

Therefore, the possible modes of f
X

Ij
i:yj

(x) occur at x = tj−1when uj = 0, and at x = tj

when uj = 1. Two other modes at two different roots of the equation are obtained as
follows

yju
2
j − (mj(yj − 1) + i)uj +mj(i− 1) = 0. (8)

Let uj1 =
mj(yj−1)+i−

√
∆

2yj
and uj2 =

mj(yj−1)+i+
√
∆

2yj
, where

∆ = (mj(yj − 1) + i)2 − 4mjyj(i− 1).
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Note that we must have 0 ≤ uj1 , uj2 ≤ 1 in order to find the corresponding value of x.
Observe that ∆ ≥ 0 and the only acceptable root of (8) is uj1 . Since

uj1 =
F̄ (tj−1)− F̄ (x)

F̄ (tj−1)− F̄ (tj)
= mj(1−

F̄ (x)

F̄ (tj−1)
),

we have
F̄ (x)

F̄ (tj−1)
=

mj(yj + 1)− i+
√
∆

2mjyj
,

and therefore we obtain

x = tj−1 −
log(

mj(yj+1)−i+
√
∆

2mjyj
)

θ
. (9)

As mj is a function of θ, we can estimate x in (9) by x̂ = tj−1 − 1
θ̂
log g(i, yj , m̂j),

where m̂j =
e−θ̂tj−1

e−θ̂tj−1−e−θ̂tj
, and

g(i, yj , m̂j) =
m̂j(yj + 1)− i+

√
(m̂j(yj − 1) + i)2 − 4m̂jyj(i− 1)

2m̂jyj
,

where θ̂ is one of the estimators of θ such as θ̂a, θ̂b or θ̂c.
By applying the pseudo-likelihood function, and using θa, θb or θc, θ can be re-

estimated as follows

ˆ̂
θr,III =

∑k
j=1 yj∑k

j=1

∑yj

i=1 x
∗
i:yj ,r

+ (n−
∑k

j=1 yj)tk
, r = a, b, c,

where m̂j,r = e−θ̂rtj−1

e−θ̂rtj−1−e−θ̂rtj
, and x∗

i:yi,r
= tj−1 − log g(i,yj ,m̂j,r)

θ̂r
.

3 Further consideration
As it was pointed out above, the determination of the best inspection times, t1, t2, . . . , tk,
is a fundamental topic in the study of interval-censored data. This section proposes an
approach to choosing the optimum last inspection time when θ̂c is used for estimation.
Since (Y1, Y2, ..., Yk) follows Multinomial (n, F (t1), F (t2) − F (t1), ..., F (tk) − F (tk−1))

and
∑k

i=1 Yi ∼ Bin(n, F (tk)) , therefore using delta method, the asymptotic distri-
bution of θ̂c is N(θ, F (tk)

nt2k(1−F (tk))
). Given this observation, we find the value of tk

such that tk minimizes the asymptotic variance of θ̂c. Let v(t) := F (t)
nt2(1−F (t)) , where

F (t) = 1− e−θt, t > 0. Then,

dv(t)

dt
= te−θt[θt+ 2e−θt − 2].

The numerical computation gives us the approximate solution t ∼= π
2θ for the equation

dv(t)
dt = 0. Therefore, if we choose the last inspection time, tk as π

2θ , then we will have
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the minimum value for the variance of the asymptotic distribution of θ̂c. However,
since the value of θ is unknown, we use the information of failures up to the time tk−1

in order to estimate tk as tk = π
2θ̂∗ with θ̂∗ = −1

tk−1
log(1−

∑k−1
j=1 Yj

n+1 ).

Remark 3.1. The first inspection time is known, and it has been determined before
the inspection. When k = 2, then the estimator of the last optimal inspection time is
t2, and the related estimator is

− log(1−
∑2

i=1 Yi

n+1 )

t2
=

2 log(1− Y1

n+1 ) log(1−
∑2

i=1 Yi

n+1 )

πt1
.

4 Simulation study
In this section, we compare the performance of our three methods for the improvement
of θ̂a, θ̂b or θ̂c, through simulation studies. For a given sample size n and k inspec-
tion times, t1, t2, . . . , tk, samples from the distribution F in (1) were generated using
MATLAB.

For exponential density f(x) = θ exp(−θx), it is worth noting that, the slope of the
tangent line at x = t is equal to −θ2e−θt, and the tangent line at (0, θ) intercepts the
x-axis at x = 1

θ . Also the graph f(x) is approximately flat when θt is large. Hence, for
a fixed θ, the behaviour of the exponential distribution function becomes completely
different when x becomes very small or very large, especially when θ is large. Then, the
lengths of inspection times should be determined in such a way that the exponential
distribution function behaves almost the same in each interval. Therefore, the largeness
of θ and the choosing of a large value for t1 will reduce the accuracy of θ̂a.

Preliminary information about the unknown parameter can be useful in the deter-
mination of appropriate inspection time t1. However, we may not have any preliminary
information about the unknown parameter in practical works, or else, it might not be
possible to consider a small value for t1, and this can lead to decrease precision of
estimators. In this case, as you will see, applying the proposed methods can be useful.

Let yj be the number of failures that occur in the interval [tj−1, tj) and in the
substitution method, only midpoint selection will be considered, since it works better
than the selection of endpoints.

Therefore, we will consider three estimators and seven re-estimators which are de-
fined as follows

θ̂a =

∑k
j=1 yj∑k

j=1 yj
tj−1+tj

2 + (n− y)tk
, θ̂b =

1

k

k∑
j=1

θ̂j , θ̂c = θ̂k,

ˆ̂
θa,I =

∑k
j=1 yj∑k

j=1

∑yj
i=1 (Aij+Bij)

2θ̂a
+ (n−

∑k
j=1 yj)tk

.

ˆ̂
θr,II =

∑k
j=1 yj∑k

j=1 yj

θ̂r
+
∑k

j=1 yj
tj−1e

−tj−1θ̂r−tje
−tj θ̂r

e−tj−1θ̂r−e−tj θ̂r
+ (n−

∑k
j=1 yj)tk

, r = a, b, c,
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ˆ̂
θr,III =

∑k
j=1 yj∑k

j=1

∑yj

i=1 x
∗
i:yj ,r

+ (n−
∑k

j=1 yj)tk
, r = a, b, c,

where

θ̂j =
− log(1− Wj

n+1 )

tj
, with Wj =

j∑
i=1

Yi,

Aij = log(
yj

(yj + 1− i)e−θ̂atj−1 + (i− 1)e−θ̂atj
),

Bij = log(
yj

(yj − i)e−θ̂atj−1 + ie−θ̂atj
),

x∗
i:yj ,r = tj−1 −

log g(i, yj , m̂j,r)

θ̂r
,

with m̂i,r = e−θ̂rti−1

e−θ̂rti−1−e−θ̂rti
,

g(i, yj , m̂j,r) =
m̂j,r(yj + 1)− i+

√
(i+ (yj − 1)m̂j,r)2 − 4yjm̂j,r(i− 1)

2m̂j,ryj
.

Since the number of inspection times and the size of censoring intervals are the cru-
cial factors influencing the efficiency of the estimators, it seems θ̂a, θ̂b and θ̂c may
need improvement when the size of censoring intervals is large and the number of
inspection times is small. For a preliminary assessment of the proposed methods,
we first consider different values of θ = 0.02, 0.04, 0.08, 0.1, and k = 2 as the num-
ber of inspection times. Besides, t1 = [F−1(0.6; 0.02) + . . . + F−1(0.6; 0.1)]/5 and
t2 = [F−1(0.9; 0.02)+. . .+F−1(0.9; 0.1)]/5 have been considered as two common inspec-
tion times for all of θ’s. Then, by considering k = 3 and θ = 0.02, 0.04, 0.08, 0.1 , t1 =
[F−1(0.4; 0.02)+ . . .+F−1(0.4; 0.1)]/5 , t2 = [F−1(0.64; 0.02)+ . . .+F−1(0.64; 0.1)]/5
and t3 = [F−1(0.84; 0.02) + . . .+F−1(0.84; 0.1)]/5, the influence of decreasing the size
of censoring intervals and increasing the values of k has been studied.

The results summarized in Tables 1-6 are the averages over 10000 repetitions, in
which yj > 0 : j = 1, 2, . . . , k. For each scenario, bias, the sum of square error
(SSE), and combined error (C.E.) were calculated. In addition, for the comparison
of estimators and their corresponding proposed re-estimators, the relative combined
error (R.C.E.) was taken into consideration. These measures of accuracy are defined
as follows

Bias(θ̂) = θ̂ − θ,

C.E.(θ̂) = |Bias(θ̂)|+

√
SSE(θ̂)

10000
,

R.C.E.(θ̂1, θ̂2) =
C.E.(θ̂2)

C.E.(θ̂1)
.
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Table 1: Comparison of θ̂a with its re-estimators, when t1 = 22, t2 = 53.
θ θ̂ n Bias(θ̂) SSE(θ̂) R.C.E(θ̂, θ̂a)

0.02 θ̂a 20 0.0001 0.2963 1
θa,I 0.0007 0.3546 0.837
θa,II 0.0007 0.3562 0.834
θa,III 0.0008 0.3627 0.820
θa 30 -0.00007 0.1971 1
θ̂a,I 0.0004 0.2319 0.856
θ̂a,II 0.0005 0.2323 0.854
θ̂a,III 0.0005 0.2353 0.842
θ̂a 50 -0.0003 0.1138 1
θ̂a,I 0.0002 0.1307 0.956
θ̂a,II 0.0002 0.1308 0.955
θ̂a,III 0.0002 0.1318 0.945

0.04 θ̂a 20 -0.0019 0.7364 1
θ̂a,I 0.0015 1.1597 0.853
θ̂a,II 0.0017 1.1852 0.838
θ̂a,III 0.0021 1.2979 0.781
θ̂a 30 -0.0023 0.5059 1
θ̂a,I 0.0010 0.7324 0.979
θ̂a,II 0.0011 0.7382 0.972
θ̂a,III 0.0013 0.7673 0.932
θ̂a 50 -0.0027 0.3259 1
θ̂a,I 0.0004 0.3917 1.272
θ̂a,II 0.0004 0.3925 1.268
θ̂a,III 0.0005 0.4014 1.227

0.1 θ̂a 20 -0.0296 9.4903 1
θ̂a,I -0.0115 3.2463 2.049
θ̂a,II -0.0098 3.2065 2.182
θ̂a,III -0.004 3.1429 2.729
θ̂a 30 -0.0287 8.8479 1
θ̂a,I -0.0093 2.6296 2.294
θ̂a,II -0.0083 2.6502 2.376
θ̂a,III -0.0048 2.6498 2.770
θ̂a 50 -0. 0283 8.44300 1
θ̂a,I -0.0082 1.9919 2.567
θ̂a,II -0.0079 1.9968 2.609
θ̂a,III -0.0060 1.9699 2.858
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Table 2: Comparison of θ̂a with its re-estimators, when t1 = 12, t2 = 24, t3 = 44.
θ θ̂ n Bias(θ̂) SSE(θ̂) R.C.E(θ̂, θ̂a)

0.02 θ̂a 20 0.0007 0.3580 1
θ̂a,I 0.0009 0.3814 0.945
θ̂a,II 0.0009 0.3829 0.941
θ̂a,III 0.0009 0.3847 0.933
θ̂a 30 0.0004 0.2407 1
θ̂a,I 0.0006 0.2556 0.94
θ̂a,II 0.0006 0.2560 0.939
θ̂a,III 0.0006 0.2574 0.933
θ̂a 50 0.0001 0.1390 1
θ̂a,I 0.0003 0.1466 0.936
θ̂a,II 0.0003 0.1467 0.933
θ̂a,III 0.0003 0.1473 0.928

0.04 θ̂a 20 0.0003 0.9439 1
θ̂a,I 0.0015 1.1437 0.817
θ̂a,II 0.0016 1.1599 0.807
θ̂a,III 0.0018 1.2110 0.78
θ̂a 30 -0.00007 0.6365 1
θ̂a,I 0.0011 0.7656 0.814
θ̂a,II 0.0012 0.7698 0.809
θ̂a,III 0.0013 0.7848 0.793
θ̂a 50 -0.0005 0.3603 1
θ̂a,I 0.0007 0.4249 0.899
θ̂a,II 0.0007 0.4256 0.897
θ̂a,III 0.0008 0.4309 0.882

0.1 θ̂a 20 -0.0132 3.8959 1
θ̂a,I -0.0038 3.6984 1.387
θ̂a,II -0.0024 4.0125 1.422
θ̂a,III 0.0018 5.1582 1.299
θ̂a 30 -0.0114 3.1843 1
θ̂a,I -0.0010 2.9406 1.574
θ̂a,II -0.0003 3.1320 1.593
θ̂a,III 0.0023 3.7414 1.322
θ̂a 50 -0. 01769 2.3179 1
θ̂a,I -0.00003 2.0753 1.801
θ̂a,II 0.0003 2.1420 1.743
θ̂a,III 0.0016 2.4009 1.522
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Table 3: Comparison of θ̂b with its re-estimators, when t1 = 22, t2 = 53.
θ θ̂ n Bias(θ̂) SSE(θ̂) R.C.E(θ̂, θ̂b)

0.02 θ̂b 20 -0.0008 0.3172 1
θ̂b,II 0.0007 0.3540 0.958
θ̂b,III 0.0008 0.3604 0.943
θ̂b 30 -0.0005 0.2222 1
θ̂b,II 0.0004 0.2319 0.993
θ̂b,III 0.0005 0.2349 0.979
θ̂b 50 -0.0004 0.1348 1
θ̂b,II 0.0002 0.1310 1.054
θ̂b,III 0.0002 0.1321 1.042

0.04 θ̂b 20 -0.0026 0.8333 1
θ̂b,II 0.0016 1.1861 0.942
θ̂b,III 0.0020 1.2978 0.878
θ̂b 30 -0.0016 0.6052 1
θ̂b,II 0.0011 0.7612 0.956
θ̂b,III 0.0014 0.7939 0.915
θ̂b 50 -0.0011 0.3649 1
θ̂b,II 0.0005 0.4107 1.029
θ̂b,III 0.0007 0.4211 0.994

0.08 θ̂b 20 -0.0169 3.7875 1
θ̂b,II -0.0020 2.5925 2.002
θ̂b,III 0.0015 3.350464 1.831
θ̂b 30 -0.0122 2.4194 1
θ̂b,II -0.0007 2.1369 1.808
θ̂b,III 0.0016 2.6168 1.564
θ̂b 50 -0.0082 1.4616 1
θ̂b,II -0.0005 1.4568 1.609
θ̂b,III 0.0006 1.6451 1.503

0.1 θ̂b 20 -0.0295 9.4922 1
θ̂b,II -0.0097 3.2403 2.176
θ̂b,III -0.0043 3.1955 2.714
θ̂b 30 -0.0228 6.1137 1
θ̂b,II -0.00621 2.6843 2.104
θ̂b,III -0.0024 2.8653 2.461
θ̂b 50 -0. 0162 3.5046 1
θ̂b,II -0.0035 2.0207 1.965
θ̂b,III -0.0012 2.2020 2.178
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Table 4: Comparison of θ̂b with its re-estimators, when t1 = 12, t2 = 24, t3 = 44

θ θ̂ n Bias(θ̂) SSE(θ̂) R.C.E(θ̂, θ̂b)
0.02 θ̂b 20 -0.0006 0.3888 1

θ̂b,II 0.0009 0.3813 0.964
θ̂b,III 0.0009 0.3830215 0.955
θ̂b 30 -0.0003 0.2797 1
θ̂b,II 0.0006 0.2554 1
θ̂b,III 0.0006 0.2567 0.994
θ̂b 50 -0.0002 0.1720 1
θ̂b,II 0.0003 0.1466 1.066
θ̂b,III 0.0003 0.1472 1.061

0.04 θ̂b 20 -0.0020 0.9395 1
θ̂b,II 0.0015 1.1452 0.956
θ̂b,III 0.0017 1.1912 0.926
θ̂b 30 -0.0012 0.6850 1
θ̂b,II 0.0011 0.7667 0.955
θ̂b,III 0.0012 0.7813 0. 937
θ̂b 50 -0.0007 0.4096 1
θ̂b,II 0.0007 0.4261 0.985
θ̂b,III 0.0008 0.4315 0.969

0.08 θ̂b 20 -0.0112 2.6915 1
θ̂b,II 0.0008 3.1345 1.487
θ̂b,III 0.0031 3.9060 1.208
θ̂b 30 -0.0071 1.8251 1
θ̂b,II 0.0015 2.3793 1.221
θ̂b,III 0.0027 2.7398 1.071
θ̂b 50 -0.0042 1.1925 1
θ̂b,II 0.0011 1.4711 1.149
θ̂b,III 0.0016 1.5740 1.071

0.1 θ̂b 20 -0.0210 5.7930 1
θ̂b,II -0.0035 3.7724 1.965
θ̂b,III 0.0004 4.7081 2.036
θ̂b 30 -0.0145 3.4146 1
θ̂b,II -0.0007 3.0091 1.823
θ̂b,III 0.0018 3.5660 1.595
θ̂b 50 -0. 0089 1.9702 1
θ̂b,II 0.0005 2.1604 1.504
θ̂b,III 0.0019 2.4293 1.312
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Table 5: Comparison of θ̂c with its re-estimators, when t1 = 22, t2 = 53.
θ θ̂ n Bias(θ̂) SSE(θ̂) R.C.E(θ̂, θ̂c)

0.02 θ̂c 20 -0.0009 0.3038 1
θ̂c,II 0.0007 0.3530 0.957
θ̂c,III 0.0008 0.3589 0.942
θ̂c 30 -0.0006 0.2152 1
θ̂c,II 0.0004 0.2317 0.995
θ̂c,III 0.0005 0.2348 0.981
θ̂c 50 -0.0004 0.1296 1
θ̂c,II 0.0002 0.1310 1.051
θ̂c,III 0.00024 0.1320 1.040

0.04 θ̂c 20 -0.0037 0.9542 1
θ̂c,II 0.0015 1.1328 1.114
θ̂c,III 0.0018 1.2123 1.053
θ̂c 30 -0.0023 0.7422 1
θ̂c,II 0.0011 0.7445 1.128
θ̂c,III 0.0013 0.7720 1.084
θ̂c 50 -0.0015 0.4746 1
θ̂c,II 0.0005 0.4074 1.218
θ̂c,III 0.0007 0.4177 1.177

0.08 θ̂c 20 -0.0261 7.1873 1
θ̂c,II -0.0048 2.0296 2.774
θ̂c,III -0.0019 2.3909 3.052
θ̂c 30 -0.02033 4.6648 1
θ̂c,II -0.0003 1.6165 2.640
θ̂c,III -0.0014 1.8438 2.805
θ̂c 50 -0.0140 2.7067 1
θ̂c,II -0.0022 1.1673 2.344
θ̂c,III -0.0013 1.2521 2.444

0.1 θ̂c 20 -0.0439 19.4018 1
θ̂c,II -0.0147 3.5774 2.615
θ̂c,III -0.0102 2.9577 3.209
θ̂c 30 -0.03711 13.9994 1
θ̂c,II -0.0114 2.6294 2.697
θ̂c,III -0.0083 2.3522 3.144
θ̂c 50 -0. 02876 8.6107 1
θ̂c,II -0.0082 1.7563 2.705
θ̂c,III -0.0064 1.6647 3.008
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Table 6: Comparison of θ̂c with its re-estimators, when t1 = 12, t2 = 24, t3 = 44.
θ θ̂ n Bias(θ̂) SSE(θ̂) R.C.E(θ̂, θ̂c)

0.02 θ̂c 20 -0.0006 0.3275 1
θ̂c,II 0.0009 0.3812 0.896
θ̂c,III 0.0009 0.3827 0.888
θ̂c 30 -0.0004 0.2363 1
θ̂c,II 0.0006 0.2554 0.938
θ̂c,III 0.0006 0.2567 0.933
θ̂c 50 -0.0003 0.1720 1
θ̂c,II 0.0003 0.1466 1.002
θ̂c,III 0.0003 0.1472 0.997

0.04 θ̂c 20 -0.0028 1.0180 1
θ̂c,II 0.0015 1.1347 1.059
θ̂c,III 0.0017 1.1710 1.031
θ̂c 30 -0.0018 0.7620 1
θ̂c,II 0.0011 0.7624 1.072
θ̂c,III 0.0012 0.7754 1.052
θ̂c 50 -0.0010 0.4779 1
θ̂c,II 0.0007 0.4254 1.102
θ̂c,III 0.0008 0.4308 1.084

0.08 θ̂c 20 -0.0191 4.6202 1
θ̂c,II -0.00006 2.7751 2.431
θ̂c,III 0.0019 3.3745 2.006
θ̂c 30 -0.0138 3.0749 1
θ̂c,II 0.0008 2.1357 2.038
θ̂c,III 0.0018 2.4127 1.808
θ̂c 50 -0.0086 2.0517 1
θ̂c,II 0.0006 1.3682 1.863
θ̂c,III 0.0011 1.4408 1.754

0.1 θ̂c 20 -0.0344 12.3515 1
θ̂c,II -0.0055 3.3061 2.938
θ̂c,III -0.0020 3.8676 3.204
θ̂c 30 -0.02739 8.202775 1
θ̂c,II -0.0026 2.5404 3.019
θ̂c,III -0.0005 2.8913 3.205
θ̂c 50 -0. 0192 4.6671 1
θ̂c,II -0.0009 1.8276 2.819
θ̂c,III 0.0001 2.0020 2.857
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5 Conclusions
Tables 1-2 show that the negative bias of θ̂a can be reduced by using the proposed
methods. Methods I and II perform better than Method III when 1

θ < t1, but Method
III is preferred for large value of n. However, θ̂a can be improved in a better way, by
using Method III, when 2

θ < t1. For example, as you see in Table 1, for t1 = 22, t2 = 53,
θ = 0.1 and n = 50, the combined error of θ̂a is about one-thirds, when Method III
is used. Tables 3-6 show that the negative bias of θ̂b and θ̂c are reduced by using
Methods II and III when 1

θ < t1. However, Method III is preferred when 2
θ < t1. It

must be noted that θ̂a, θ̂b, θ̂c (and even other estimators of θ) might be improved by
the proposed methods when the size of the first censoring interval is small and when
the next censoring intervals are large. According to the results given in the tables, it
can be concluded that Methods I, II and III can
a) reduce the negative biases of θ̂a, θ̂b and θ̂c when their values are bigger than 1

t1
,

b) improve θ̂a, θ̂b and θ̂c when their values are bigger than 1
t1

, and when the sample
size increases,
c) improve θ̂a, θ̂b and θ̂c when their values are bigger than 2

t1
even for small values of

n.
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