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Abstract: This paper considers a parallel system that has a random number of units.
The number of units follows a power series distribution which includes several distribu-
tions such as geometric, logarithmic and zero-truncated Poisson distributions. Pareto
distribution is considered for the lifetime distribution of units. The optimal parameter
is obtained for the distribution of sample size so that the expected cost is minimized
and the whole reliability of the system is maximized. The weighted sum method has
been utilized to convert this bi-objective model into a one-objective model. Numerical
calculations have been performed to evaluate the obtained results.
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1 Introduction
Todays, we are dealing with systems that consist of several components and are placed
together based on a predetermined structure for a specific purpose, and each component
performs a task independently or dependent on other components. These systems are
called coherent systems. Among the most famous and simplest coherent systems, we
can mention series and parallel systems. A series system works if and only if all the
components work. A parallel system works if at least one of the components works.

Reliability is one of the most important characteristics of a system because by iden-
tifying the reliability of a system, it is possible to predict the failure time of that system.
It is clear that the reliability of a system depends on the structure and reliability of its
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components. Therefore, one way to increase the reliability of a system is to improve
the reliability of its components. For this purpose, maintenance and repair activities
should be done, which will increase the associated costs. Since cost is always one of
the important criteria for decision-making, it is necessary to create a balance between
these two criteria.

The problems related to systems have been studied by many researchers. For ex-
ample, the most economical parallel and k-out-of-n systems were investigated by Nak-
agawa (1984) and Nakagawa (1985), respectively. To do this, two problems as finding
the optimal number of elements and the optimal replacement time were solved by min-
imizing the mean cost rate. Coit and Smith (1996) studied the reliability and cost opti-
mization problem by using a genetic algorithm in a series-parallel system with multiple
choices for each subsystem. The problem of redundancy allocation for a series-parallel
system by using a genetic algorithm and with the aim of maximizing the reliability
of the system was investigated by Tavakkoli-Moghaddam et al. (2008). A bi-objective
reliability-cost optimization problem in a series-parallel system, by considering a com-
bination of objective functions and fuzzy membership functions, was studied by Garg
et al. (2014) and Garg (2021). Two optimization problems for a parallel system that
consists of dependent components were studied by Eryilmaz and Ozkut (2020). The
first problem was finding the number of elements in the system that minimizes the
mean cost rate of the system. The second problem was concerned with the optimal
replacement time of the system. Considering series and parallel systems with their com-
ponent’s lifetimes follow the discrete Weibull distribution, Barmalzan (2020) obtained
some ordering results for comparing these systems. Statistical evidences in lifetimes
of sequential r-out-of-n systems, which were modelled by the concept of sequential
order statistics, coming from homogeneous exponential populations were considered
by Hashempour and Doostparast (2020). Kim and Ahn (2021) discussed one of the
reliability optimization problems, i.e, locating the components of a series system. The
problem investigated in this research was to minimize the cost function in order to
achieve the desired reliability. Obtaining the Birnbaum component importance of the
components for a consecutive-(k, k)-out-of-n:F system having two dependent subcom-
ponents was discussed by Estabraqi and Meshkat (2021).

In all mentioned works, number of units was constant and predetermined. However,
real systems are complex and large, so we might not know the exact number of units.
The optimal number of units in a parallel system and replacement time based on
minimizing the mean cost rate were studied by Nakagawa and Zhao (2012). In their
paper, the number of units was a random variable from Poisson distribution. By
minimizing the mean cost rate, Eryilmaz (2017) computed optimal number of units
and replacement time for a parallel system with a random number of units that follows
a power series class of distributions. Other works that deal with a system consisting of
a random number of components were investigated by Al-Mutairi et al. (2011), Gupta
et al. (2012), Hazra et al. (2014) and Ito et al. (2017).

In the present paper, the optimal number of units in a parallel system is the aim
of paper, when the number of units is a random variable from a power series class of
distributions and the failure time has a Pareto distribution with parameters α and β.
As a special case, geometric, logarithmic and zero-truncated Poisson distributions with
parameter θ are considered for the random sample size and a bi-objective optimization
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problem is solved. Since the sample size is random, the decision variable is the pa-
rameter of its distribution, i.e, θ. The objective functions in this optimization problem
are the expected cost and the reliability of the system. So, the model proposed in
this paper has two objective functions as maximizing the reliability of the system and
minimizing the associated cost. In order to convert this bi-objective problem into a
one-objective problem the weighted sum method is applied.

The rest of the present paper is organized as follows. Section 2 provides the ob-
jective functions as well as the constraints of the optimization problem. To solve this
constrained bi-objective optimization problem the weighted sum method is utilized.
Three cases for the random sample size are considered and the results for each case are
derived. Section 3 deals with the numerical computations for illustrating the theoretical
results. Finally, the paper concludes in Section 4.

2 Bi-objective optimization problem
Consider a parallel system consisting of N components in which the ith component has
a lifetime Ti, i = 1, . . . , N . Let T1, . . . , TN be independent and identically distributed
continuous non-negative random variables from a Pareto distribution with parameters
α and β with probability density function (pdf) and cumulative distribution function
given by

fα,β(t) =
αβα

tα+1
; t > β, α, β > 0,

Fα,β(t) = 1−
(
β

t

)α
; t > β, α, β > 0, (1)

respectively. This famous and continuous lifetime model was first introduced by Vil-
fredo Pareto in 1898. After that, Pareto distribution has been used to model population
sizes, environmental extrema, and insurance claims. In the past decades, Pareto distri-
bution also has been used for lifetime data. See, for example, Ahmadi and Doostparast
(2019), Sauer et al. (2020) and Ahmadi and Almetwally (2021).

Independently, suppose that the number of components, i.e. N , is a random variable
having a power series distribution with probability mass function (pmf) given by

P (N = n) =
a(n)θn

ψ(θ)
, n = 1, 2, . . . , (2)

where ψ(θ) =
∑∞
n=1 a(n)θ

n is positive, finite and differentiable and a(n) ≥ 0 depends
on only n. In this case, the lifetime of such a system is equal to max(T1, . . . , TN ). So,
the survival function of such parallel system is given by (see, for example, Gupta et al.
(2012))

Rsys(t) = P (max(T1, . . . , TN ) > t)

= 1−
∞∑
n=1

(Fα,β(t))
n
P (N = n)

= 1−
∞∑
n=1

(Fα,β(t))
n a(n)θ

n

ψ(θ)
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Figure 1: The values of Rsys for (a): α = 0.1 and β = 0.1, (b): α = 0.5 and β = 0.1, (c): α = 0.1
and β = 0.5, (d): α = 0.5 and β = 0.5, when N = n is fixed and R∗ = 0.9.
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Figure 2: The values of Rsys for (a): α = 0.1 and β = 0.1, (b): α = 0.5 and β = 0.1, (c): α = 0.1
and β = 0.5, (d): α = 0.5 and β = 0.5, when N ∼ Ge(θ) and R∗ = 0.9.
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= 1−
ψ
(
Fα,β(t)θ

)
ψ(θ)

= 1−
ψ
[(

1− βα

tα

)
θ
]

ψ(θ)
, (3)

where (1) is used for the last equation.
Another criterion considered in this paper is the expected cost of system, which

plays an important role in practices. Assuming c1 is the acquisition cost of one unit
and c2 includes all costs resulting from system failure, the expected cost associated
with the system is given by

Csys = c1Eθ(N) + c2 = c1θ
ψ′(θ)

ψ(θ)
+ c2, (4)

since, from (2) the mean of the random variable N is

Eθ(N) =

∞∑
n=1

n
a(n)θn

ψ(θ)
= θ

ψ′(θ)

ψ(θ)
. (5)

In this paper, the problem is finding the optimal value for the number of units by
maximizing Rsys and minimizing Csys, i.e.,{ maximize Rsys

minimize Csys

subject to constraints
Csys ≤ c∗ and Rsys ≥ R∗, (6)

where c∗ and R∗ are pre-fixed values. First notice that here N is a random variable
but Eθ(N) is always fixed that is a function of θ. So, the optimal value for θ, i.e. θopt,
is the aim of paper.

Maximizing Rsys is equivalent to minimizing 1− Rsys =
ψ
(
Fα,β(t)θ

)
ψ(θ) . So, the opti-

mization problem changes to

minimize
{

1−Rsys
Csys

subject to constraints in (6).
For multi-objective optimization problems determination of a single solution can

be done using different methods such as utility theory, weighted sum method, and so
on. To study these methods, for example, we can refer the reader to Ehrgott (2005).
One of the most intuitive methods for solving multi-objective optimization problems
is to optimize a weighted sum of the objective functions using any methods for single
objective optimization. The general approach is to assign to each objective function fi
a weight wi > 0 and minimize the objective function

∑
wifi subject to the problem

constraints. In the present paper, in order to convert this multi-objective problem into
a one-objective, the weighted sum method has been used. Since the cost and reliability
functions have different scales, these values are divided by the corresponding optimal
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Figure 3: The values of Rsys for (a): α = 0.1 and β = 0.1, (b): α = 0.5 and β = 0.1, (c): α = 0.1
and β = 0.5, (d): α = 0.5 and β = 0.5, when N ∼ Log(θ) and R∗ = 0.9.
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Figure 4: The values of Rsys for (a): α = 0.1 and β = 0.1, (b): α = 0.5 and β = 0.1, (c): α = 0.1
and β = 0.5, (d): α = 0.5 and β = 0.5, when N ∼ TP (θ) and R∗ = 0.9.
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Figure 5: The values of Csys for (a): N = n, (b): N ∼ Ge(θ), (c): N ∼ Log(θ), (d): N ∼ TP (θ),
when c1 = c2 = 1 and c∗ = 10.

values, say R∗
sys and C∗

sys, from the one-objective problems. So, the optimal value for
θ would be obtained by minimizing a weighted sum of the objective functions where
all weights are positive, as

H = w
1−Rsys
1−R∗

sys

+ (1− w)
Csys
C∗
sys

, 0 ≤ w ≤ 1, (7)

subject to constraints

Csys ≤ c∗ and 1−Rsys ≤ 1−R∗ = R∗∗.

Remark 2.1. When N = n is a fixed value, (3) and (4) reduce to

Rsys(t) = 1− (Fα,β(t))
n
= 1−

(
1− βα

tα

)n
,

Csys = c1n+ c2,

respectively. In this case, the problem in (7) under the constraints in (6), is finding the
best value for n, say nopt.

In the sequel, for an illustration, special cases of power series distribution are con-
sidered and for each case the problem is solved.

1. Geometric distribution: If N is a geometric random variable with parameter
θ, denoted by Ge(θ), then in (2) we have ψ(θ) = θ

1−θ and a(n) = 1, i.e.,

P (N = n) = (1− θ)θn−1, n = 1, 2, . . . .
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Table 1: The values of Rsys for different values of n, t, α and β, when N = n is fixed.
n

α β t 1 2 3 4 5 6 7 8 9 10
0.1 0.1 0.5 0.8513 0.9779 0.9967 0.9995 0.9999 0.9999 0.9999 0.9999 1.0000 1.0000

1 0.7943 0.9576 0.9912 0.9982 0.9996 0.9999 0.9999 0.9999 0.9999 0.9999
2 0.7411 0.9329 0.9826 0.9955 0.9988 0.9996 0.9999 0.9999 0.9999 0.9999
3 0.7116 0.9168 0.9760 0.9930 0.9980 0.9994 0.9998 0.9999 0.9999 0.9999

0.5 1 0.9330 0.9955 0.9996 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000
2 0.8705 0.9832 0.9978 0.9997 0.9999 0.9999 0.9999 0.9999 1.0000 1.0000
3 0.8359 0.9730 0.9955 0.9992 0.9998 0.9999 0.9999 0.9999 0.9999 1.0000

1 2 0.9330 0.9955 0.9996 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000
3 0.8959 0.9891 0.9988 0.9998 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000

2 3 0.9602 0.9984 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
0.5 0.1 0.5 0.4472 0.6944 0.8310 0.9066 0.9483 0.9714 0.9842 0.9912 0.9951 0.9973

1 0.3162 0.5324 0.6803 0.7814 0.8505 0.8977 0.9301 0.9522 0.9673 0.9776
2 0.2236 0.3972 0.5320 0.6366 0.7178 0.7809 0.8299 0.8679 0.8974 0.9204
3 0.1825 0.3318 0.4538 0.5535 0.6350 0.7016 0.7561 0.8006 0.8370 0.8668

0.5 1 0.7071 0.9142 0.9748 0.9926 0.9978 0.9993 0.9998 0.9999 0.9999 0.9999
2 0.5000 0.7500 0.8750 0.9375 0.9687 0.9843 0.9921 0.9960 0.9980 0.9990
3 0.4082 0.6498 0.7927 0.8773 0.9274 0.9570 0.9745 0.9849 0.9911 0.9947

1 2 0.7071 0.9142 0.9748 0.9926 0.9978 0.9993 0.9998 0.9999 0.9999 0.9999
3 0.5773 0.8213 0.9245 0.9680 0.9865 0.9942 0.9975 0.9989 0.9995 0.9998

2 3 0.8164 0.9663 0.9938 0.9988 0.9997 0.9999 0.9999 0.9999 0.9999 1.0000
1 0.1 0.5 0.2000 0.3600 0.4880 0.5904 0.6723 0.7378 0.7902 0.8322 0.8657 0.8926

1 0.2000 0.3600 0.4880 0.5904 0.6723 0.7378 0.7902 0.8322 0.8657 0.8926
2 0.0500 0.0975 0.1426 0.1854 0.2262 0.2649 0.3016 0.3365 0.3697 0.4012
3 0.0333 0.0655 0.0967 0.1268 0.1559 0.1840 0.2112 0.2375 0.2629 0.2875

0.5 1 0.5000 0.7500 0.8750 0.9375 0.9687 0.9843 0.9921 0.9960 0.9980 0.9990
2 0.2500 0.4375 0.5781 0.6835 0.7626 0.8220 0.8665 0.8998 0.9249 0.9436
3 0.1666 0.3055 0.4212 0.5177 0.5981 0.6651 0.7209 0.7674 0.8061 0.8384

1 2 0.5000 0.7500 0.8750 0.9375 0.9687 0.9843 0.9921 0.9960 0.9980 0.9990
3 0.3333 0.5555 0.7037 0.8024 0.8683 0.9122 0.9414 0.9609 0.9739 0.9826

2 3 0.6666 0.8888 0.9629 0.9876 0.9958 0.9986 0.9995 0.9998 0.9999 0.9999
2 0.1 0.5 0.0400 0.0784 0.1152 0.1506 0.1846 0.2172 0.2485 0.2786 0.3074 0.3351

1 0.0100 0.0199 0.0297 0.0394 0.0490 0.0585 0.0679 0.0772 0.0864 0.0956
2 0.0025 0.0049 0.0074 0.0099 0.0124 0.0149 0.0173 0.0198 0.0222 0.0247
3 0.0011 0.0020 0.0033 0.0044 0.0055 0.0066 0.0077 0.0088 0.0099 0.0110

0.5 1 0.2500 0.4375 0.5781 0.6835 0.7626 0.8220 0.8665 0.8998 0.9249 0.9436
2 0.0625 0.1210 0.1760 0.2275 0.2758 0.3210 0.3634 0.4032 0.4405 0.4755
3 0.0277 0.0547 0.0810 0.1065 0.1313 0.1555 0.1789 0.2017 0.2239 0.2455

1 2 0.2500 0.4375 0.5781 0.6835 0.7626 0.8220 0.8665 0.8998 0.9249 0.9436
3 0.1111 0.2098 0.2976 0.3757 0.4450 0.5067 0.5615 0.6102 0.6535 0.6920

2 3 0.4444 0.6913 0.8285 0.9047 0.9470 0.9705 0.9836 0.9909 0.9949 0.9971

In this case, we find ψ′(θ) = 1
(1−θ)2 , and (3), (4) and (5) can be rewritten as

Rsys(t) = 1−
(1− θ)

(
1− βα

tα

)
1− θ

(
1− βα

tα

) ,
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Table 2: The values of Rsys for different values of θ, t, α and β, when N ∼ Ge(θ).
θ

α β t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.1 0.5 0.8641 0.8774 0.8910 0.9051 0.9197 0.9347 0.9502 0.9662 0.9828

1 0.8110 0.8284 0.8465 0.8655 0.8853 0.9061 0.9279 0.9507 0.9747
2 0.7608 0.7816 0.8035 0.8267 0.8513 0.8774 0.9051 0.9347 0.9662
3 0.7328 0.7552 0.7790 0.8044 0.8315 0.8605 0.8916 0.9250 0.9610

0.5 1 0.9393 0.9456 0.9521 0.9587 0.9653 0.9720 0.9789 0.9858 0.9928
2 0.8819 0.8936 0.9057 0.9180 0.9307 0.9438 0.9572 0.9711 0.9853
3 0.8499 0.8643 0.8792 0.8946 0.9106 0.9272 0.9444 0.9622 0.9807

1 2 0.9393 0.9456 0.9521 0.9587 0.9653 0.9720 0.9789 0.9858 0.9928
3 0.9053 0.9149 0.9248 0.9348 0.9451 0.9556 0.9663 0.9773 0.9885

2 3 0.9640 0.9679 0.9718 0.9757 0.9797 0.9837 0.9877 0.9917 0.9958
0.5 0.1 0.5 0.4733 0.5028 0.5361 0.5741 0.6180 0.6691 0.7294 0.8017 0.8899

1 0.3394 0.3663 0.3978 0.4352 0.4805 0.5362 0.6065 0.6981 0.8222
2 0.2424 0.2647 0.2915 0.3243 0.3654 0.4186 0.4898 0.5901 0.7422
3 0.1988 0.2182 0.2418 0.2712 0.3087 0.3583 0.4267 0.5275 0.6907

0.5 1 0.7284 0.7511 0.7752 0.8009 0.8284 0.8578 0.8894 0.9234 0.9602
2 0.5263 0.5555 0.5882 0.6250 0.6666 0.7142 0.7692 0.8333 0.9090
3 0.4339 0.4630 0.4963 0.5348 0.5797 0.6329 0.6969 0.7752 0.8734

1 2 0.7284 0.7511 0.7752 0.8009 0.8284 0.8578 0.8894 0.9234 0.9602
3 0.6028 0.6306 0.6611 0.6948 0.7320 0.7735 0.8199 0.8722 0.9317

2 3 0.8317 0.8476 0.8640 0.8811 0.8989 0.9175 0.9368 0.9569 0.9780
1 0.1 0.5 0.2173 0.2380 0.2631 0.2941 0.3333 0.3846 0.4545 0.5555 0.7142

1 0.1098 0.1219 0.1369 0.1562 0.1818 0.2173 0.2702 0.3571 0.5263
2 0.0552 0.0617 0.0699 0.0806 0.0952 0.1162 0.1492 0.2083 0.3448
3 0.0369 0.0413 0.0469 0.0543 0.0645 0.0793 0.1030 0.1470 0.2564

0.5 1 0.5263 0.5555 0.5882 0.6250 0.6666 0.7142 0.7692 0.8333 0.9090
2 0.2702 0.2941 0.3225 0.3571 0.4000 0.4545 0.5263 0.6250 0.7692
3 0.1818 0.2000 0.2222 0.2500 0.2857 0.3333 0.4000 0.5000 0.6666

1 2 0.5263 0.5555 0.5882 0.6250 0.6666 0.7142 0.7692 0.8333 0.9090
3 0.3571 0.3846 0.4166 0.4545 0.5000 0.5555 0.6250 0.7142 0.8333

2 3 0.6896 0.7142 0.7407 0.7692 0.8000 0.8333 0.8695 0.9090 0.9523
2 0.1 0.5 0.2173 0.2380 0.2631 0.2941 0.3333 0.3846 0.4545 0.5555 0.7142

1 0.1098 0.1219 0.1369 0.1562 0.1818 0.2173 0.2702 0.3571 0.5263
2 0.0552 0.0617 0.0699 0.0806 0.0952 0.1162 0.1492 0.2083 0.3448
3 0.0369 0.0413 0.0469 0.0543 0.0645 0.0793 0.1030 0.1470 0.2564

0.5 1 0.2702 0.2941 0.3225 0.3571 0.4000 0.4545 0.5263 0.6250 0.7692
2 0.0689 0.0769 0.0869 0.1000 0.1176 0.1428 0.1818 0.2500 0.4000
3 0.0307 0.0344 0.0392 0.0454 0.0540 0.0666 0.0869 0.1250 0.2222

1 2 0.2702 0.2941 0.3225 0.3571 0.4000 0.4545 0.5263 0.6250 0.7692
3 0.1219 0.0.1351 0.1515 0.1724 0.2000 0.2380 0.2941 0.3846 0.5555

2 3 0.4705 0.5000 0.5333 0.5714 0.6153 0.6666 0.7272 0.8000 0.8888

Csys = c1
1

1− θ
+ c2,
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Eθ(N) =
1

1− θ
, (8)

respectively.
2. Logarithmic distribution: Let N be a logarithmic random variable with param-
eter θ, denoted by Log(θ), i.e.,

P (N = n) =
−θn

n log(1− θ)
, n = 1, 2, . . . ,

since ψ(θ) = − log(1− θ), a(n) = 1
n and ψ′(θ) = 1

1−θ . So, (3), (4) and (5) become

Rsys(t) = 1−
log

[
1− θ

(
1− βα

tα

)]
log(1− θ)

,

Csys = −c1
θ

(1− θ) log(1− θ)
+ c2,

Eθ(N) =
−θ

(1− θ) log(1− θ)
, (9)

respectively.
3. Zero-truncated Poisson distribution: Suppose N has a Poisson distribution
truncated at point zero, with parameter θ, denoted by TP (θ), i.e.,

P (N = n) =
θn

n!(eθ − 1)
, n = 1, 2, . . . .

It means in (2), ψ(θ) = (eθ − 1), a(n) = 1
n! and ψ′(θ) = eθ. Therefore, we have

Rsys(t) = 1−
exp

[
θ
(
1− βα

tα

)
θ
]
− 1

eθ − 1
,

Csys = c1
θeθ

eθ − 1
+ c2,

Eθ(N) =
θeθ

eθ − 1
. (10)

3 Numerical computations
In this section, in order to evaluate the results of Section 2, numerical computations
have been performed. The values of Rsys for different values of n, t, α and β are
presented in Table 1 and Figure 1, when N = n is a fixed value and R∗ = 0.9.
Moreover, Tables 2-4 and Figures 2-4 present the values of Rsys for different values of
θ, t, α, β and different distributions for N , when R∗ = 0.9. Also, Tables 5, ?? and 7
and Figure 5 report the values of Csys for different distributions for N , when c∗ = 10
and c1 = c2 = 1. The results and plots in this paper have been obtained using R
Statistical Software v3.3.1; (R Core Team, 2021).
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Table 3: The values of Rsys for different values of θ, t, α and β, when N ∼ Log(θ).
θ

α β t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.1 0.1 0.5 0.8578 0.8647 0.8720 0.8799 0.8885 0.8980 0.9087 0.9213 0.9376

1 0.8027 0.8117 0.8214 0.8319 0.8434 0.8562 0.8708 0.8883 0.9111
2 0.7510 0.7617 0.7733 0.7860 0.8000 0.8157 0.8339 0.8550 0.8848
3 0.7223 0.7338 0.7463 0.7601 0.7754 0.7927 0.8127 0.8370 0.8695

0.5 1 0.9362 0.9395 0.9431 0.9468 0.9508 0.9552 0.9601 0.9657 0.9730
2 0.8763 0.8824 0.8889 0.8959 0.9034 0.9117 0.9211 0.9320 0.9462
3 0.8430 0.8505 0.8585 0.8671 0.8765 0.8869 0.8986 0.9125 0.9306

1 2 0.9362 0.9395 0.9431 0.9468 0.9508 0.9552 0.9601 0.9657 0.9730
3 0.9007 0.9057 0.9110 0.9167 0.9229 0.9296 0.9371 0.9460 0.9573

2 3 0.9622 0.9642 0.9663 0.9686 0.9710 0.9736 0.9765 0.9799 0.9841
0.5 0.1 0.5 0.4602 0.4749 0.4916 0.5108 0.5332 0.5602 0.5935 0.6372 0.7011

1 0.3277 0.3409 0.3563 0.3744 0.3964 0.4236 0.4590 0.5079 0.5850
2 0.2329 0.2437 0.2565 0.2720 0.2911 0.3156 0.3487 0.3969 0.4789
3 0.1906 0.2000 0.2112 0.2248 0.2419 0.2641 0.2947 0.3406 0.4221

0.5 1 0.7178 0.7294 0.7421 0.7560 0.7715 0.7890 0.8094 0.8341 0.8671
2 0.5131 0.5278 0.5443 0.5631 0.5849 0.6107 0.6421 0.6826 0.7403
3 0.4210 0.4355 0.4520 0.4712 0.4939 0.5213 0.5557 0.6015 0.6697

1 2 0.7178 0.7294 0.7421 0.7560 0.7715 0.7890 0.8094 0.8341 0.8671
3 0.5901 0.6042 0.6198 0.6374 0.6575 0.6808 0.7086 0.7435 0.7921

2 3 0.8242 0.8324 0.8412 0.8507 0.8611 0.8726 0.8858 0.9013 0.9216
1 0.1 0.5 0.2086 0.2186 0.2305 0.2450 0.2630 0.2863 0.3181 0.3652 0.4471

1 0.1048 0.1106 0.1176 0.1263 0.1375 0.1525 0.1741 0.2090 0.2787
2 0.0525 0.0556 0.0594 0.0641 0.0703 0.0789 0.0916 0.1132 0.1613
3 0.0350 0.0371 0.0397 0.0430 0.0473 0.0532 0.0622 0.0777 0.1139

0.5 1 0.5131 0.5278 0.5443 0.5631 0.5849 0.6107 0.6421 0.6826 0.7403
2 0.2600 0.2716 0.2853 0.3017 0.3219 0.3475 0.3816 0.4306 0.5118
3 0.1741 0.1829 0.1934 0.2062 0.2223 0.2435 0.2728 0.3173 0.3979

1 2 0.5131 0.5278 0.5443 0.5631 0.5849 0.6107 0.6421 0.6826 0.7403
3 0.3451 0.3587 0.3743 0.3928 0.4150 0.4425 0.4778 0.5264 0.6020

2 3 0.6782 0.6908 0.7046 0.7198 0.7369 0.7564 0.7793 0.8072 0.8450
2 0.1 0.5 0.0420 0.0445 0.0476 0.0515 0.0565 0.0635 0.0741 0.0922 0.1335

1 0.0105 0.0111 0.0119 0.0130 0.0143 0.0162 0.0191 0.0243 0.0374
2 0.0026 0.0028 0.0030 0.0032 0.0036 0.0040 0.0048 0.0061 0.0096
3 0.0011 0.0012 0.0013 0.0014 0.0016 0.0018 0.0021 0.0027 0.0043

0.5 1 0.2600 0.2716 0.2853 0.3017 0.3219 0.3475 0.3816 0.4306 0.5118
2 0.0656 0.0694 0.0741 0.0799 0.0874 0.0977 0.1130 0.1386 0.1938
3 0.029 0.0310 0.0331 0.0359 0.0395 0.0445 0.0521 0.0654 0.0969

1 2 0.2600 0.2716 0.2853 0.3017 0.3219 0.3475 0.3816 0.4306 0.5118
3 0.1164 0.1227 0.1304 0.1398 0.1520 0.1682 0.1914 0.2284 0.3010

2 3 0.4574 0.4721 0.4888 0.5080 0.5305 0.5574 0.5909 0.6347 0.6989

From the results of Tables 1-7 and Figures 1-5, we find the following:
• By increasing values of n and θ, values of Rsys and Csys increase, when all other



Bi-objective optimization problem of a parallel system 42

Table 4: The values of Rsys for different values of θ, t, α and β, when N ∼ TP (θ).

l

θ
α β t 1 2 3 4 5 6 7 8 9

0.1 0.1 0.5 0.9067 0.9458 0.9705 0.9848 0.9925 0.9964 0.9983 0.9992 0.9996
1 0.8671 0.9203 0.9552 0.9761 0.9878 0.9939 0.9970 0.9985 0.9993
2 0.8280 0.8938 0.9384 0.9661 0.9820 0.9907 0.9953 0.9976 0.9988
3 0.8055 0.8779 0.9279 0.9595 0.9781 0.9884 0.9940 0.9969 0.9984

0.5 1 0.9596 0.9775 0.9883 0.9942 0.9973 0.9987 0.9994 0.9997 0.9998
2 0.9195 0.9537 0.9751 0.9873 0.9938 0.9970 0.9986 0.9993 0.9997
3 0.8962 0.9392 0.9666 0.9826 0.9913 0.9958 0.9980 0.9990 0.9995

1 2 0.9596 0.9775 0.9883 0.9942 0.9973 0.9987 0.9994 0.9997 0.9998
3 0.9361 0.9637 0.9808 0.9903 0.9953 0.9978 0.9990 0.9995 0.9998

2 3 0.9764 0.9870 0.9933 0.9967 0.9985 0.9993 0.9997 0.9998 0.9999
0.5 0.1 0.5 0.5704 0.6836 0.7772 0.8483 0.8991 0.9339 0.9571 0.9723 0.9822

1 0.4288 0.5420 0.6448 0.7311 0.7996 0.8521 0.8915 0.9206 0.9420
2 0.3169 0.4170 0.5143 0.6021 0.6776 0.7404 0.7916 0.8331 0.8664
3 0.2639 0.3537 0.4438 0.5279 0.6026 0.6672 0.7220 0.7681 0.8067

0.5 1 0.8019 0.8753 0.9262 0.9584 0.9774 0.9880 0.9938 0.9968 0.9984
2 0.6224 0.7310 0.8175 0.8807 0.9241 0.9525 0.9706 0.9820 0.9890
3 0.5302 0.6453 0.7431 0.8196 0.8760 0.9159 0.9434 0.9621 0.9747

1 2 0.8019 0.8753 0.9262 0.9584 0.9774 0.9880 0.9938 0.9968 0.9984
3 0.6938 0.7920 0.8662 0.9174 0.9506 0.9711 0.9833 0.9904 0.9945

2 3 0.8827 0.9305 0.9615 0.9797 0.9898 0.9950 0.9976 0.9988 0.9994
1 0.1 0.5 0.2867 0.3812 0.4748 0.5609 0.6364 0.7005 0.7540 0.7983 0.8348

1 0.1505 0.2096 0.2727 0.3358 0.3961 0.4523 0.5038 0.5508 0.5935
2 0.0771 0.1100 0.1465 0.1846 0.2226 0.25982 0.2955 0.3297 0.3624
3 0.0518 0.0745 0.1001 0.1271 0.1545 0.18171 0.2083 0.2341 0.2592

0.5 1 0.6224 0.7310 0.8175 0.8807 0.9241 0.9525 0.9706 0.9820 0.9890
2 0.3499 0.4550 0.5552 0.6439 0.7183 0.7788 0.8269 0.8649 0.8947
3 0.2428 0.3278 0.4140 0.4956 0.5692 0.6336 0.6892 0.7366 0.7769

1 2 0.6224 0.7310 0.8175 0.8807 0.9241 0.9525 0.9706 0.9820 0.9890
3 0.4484 0.5627 0.6652 0.7501 0.8166 0.8668 0.9038 0.9308 0.9503

2 3 0.7697 0.8516 0.9099 0.9478 0.9708 0.9841 0.9915 0.9955 0.9976
2 0.1 0.5 0.0620 0.0889 0.1190 0.1506 0.1824 0.2139 0.2444 0.2739 0.3023

1 0.0157 0.0229 0.0311 0.0399 0.0491 0.0583 0.0676 0.0769 0.0860
2 0.0039 0.0057 0.0078 0.0101 0.0125 0.0149 0.0173 0.0198 0.0222
3 0.0017 0.0025 0.0035 0.0045 0.0055 0.0066 0.0077 0.0088 0.0099

0.5 1 0.3499 0.4550 0.5552 0.6439 0.7183 0.7788 0.8269 0.8649 0.8947
2 0.0958 0.1358 0.1799 0.2253 0.2702 0.3134 0.3546 0.3936 0.4302
3 0.0433 0.0624 0.0841 0.1071 0.1305 0.1538 0.1768 0.1993 0.2212

1 2 0.3499 0.4550 0.5552 0.6439 0.7183 0.7788 0.8269 0.8649 0.8947
3 0.1663 0.2304 0.2983 0.3655 0.4291 0.4877 0.5410 0.5890 0.6321

2 3 0.5676 0.6810 0.7749 0.8464 0.8976 0.9328 0.9563 0.9717 0.9818

parameters are held fixed.
• For fixed values of n, θ and β, Rsys is a decreasing function of α and t.
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Table 5: The values of Csys for different values of n, when c1 = c2 = 1 and N = n is
fixed.

n 1 2 3 4 5 6 7 8 9 10
Csys 2 3 4 5 6 7 8 9 10 11

Table 6: The values of Csys for different values of θ, when c1 = c2 = 1.
θ

Distribution 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Geometric 2.1111 2.2500 2.4285 2.6666 3.000 3.5000 4.3333 6.0000 11.0000
Logarithmic 2.0545 2.1203 2.2015 2.3050 2.4426 2.6370 2.9380 3.4853 4.9086

Table 7: The values of Csys for different values of θ, when c1 = c2 = 1 and N ∼ TP (θ).
θ 1 2 3 4 5 6 7 8 9 10

Csys 2.5819 3.3130 4.1571 5.0746 6.0339 7.0149 8.0063 9.0026 10.0011 11.0004

Table 8: The values of nopt, Roptsys and Coptsys for some selected values of w, t, α and β,
when N = n, R∗ = 0.9, c1 = c2 = 1 and c∗ = 10.

α 0.1 0.5
β 0.1 0.5 0.5

w t 0.5 1 2 1 2 3 1 2 3
n1 2 2 2 1 2 2 2 4 5
n2 9 9 9 9 9 9 9 9 9
R∗
sys 1.000 0.999 0.999 1.000 1.000 0.999 0.999 0.998 0.991

C∗
sys 3 3 3 2 3 3 3 5 6

0 nopt 2 2 2 1 2 2 2 4 5
Roptsys 0.978 0.958 0.933 0.933 0.983 0.973 0.914 0.938 0.927
Coptsys 3 3 3 2 3 3 3 5 6

0.1 nopt 9 9 9 9 9 9 9 8 7
Roptsys 1.000 0.999 0.999 1.000 1.000 0.999 0.999 0.996 0.974
Coptsys 10 10 10 10 10 10 10 9 8

{0.2, . . . , 1} nopt 9 9 9 9 9 9 9 9 9
Roptsys 1.000 0.999 0.999 1.000 1.000 0.999 0.999 0.998 0.991
Coptsys 10 10 10 10 10 10 10 10 10

• Rsys increases as β increases, when all other parameters are held fixed.
It is troublesome to compute the optimal value for θ, θopt, that minimizes H with

respect to Rsys ≥ R∗ and Csys ≤ c∗. However, it would be easy to do this with a
computer. For this purpose, first we should find the interval (θ1,∞) that the condition
Rsys ≥ R∗ is satisfied. Since Rsys is increasing in θ, the aforementioned inequality
is equivalent to say that θ ≥ θ1, where θ1 can be obtained by solving the equation
Rsys = R∗.

Then, we should obtain the interval (0, θ2) that the condition Csys ≤ c∗ is satisfied.
Similarly, since Csys is an increasing function of θ, we can write

Csys ≤ c∗ ⇐⇒ θ ≤ θ2,

in which θ2 is the solution of the equation Csys = c∗.
Three cases will be happened:

• If θ1 > θ2, then the problem has no answer.
• If θ1 = θ2, then the optimal value for θ is θopt = θ1 = θ2.
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Table 9: The values of θopt, Roptsys and Coptsys for some selected values of w, t, α and β,
when N ∼ Ge(θ), R∗ = 0.9, c1 = c2 = 1 and c∗ = 10.

α 0.1 0.5
β 0.1 0.5 0.5

w t 0.5 1 2 1 2 3 1 2 3
θ1 0.3636 0.5708 0.6819 0.0000 0.2527 0.4337 0.7317 0.8888 0.9233
θ2 0.8888 0.8888 0.8888 0.8888 0.8888 0.8888 0.8888 0.8888 0.8888
R∗
sys 0.9809 0.9720 0.9626 0.9920 0.9837 0.9786 0.9559 0.9000 -

C∗
sys 2.5715 3.3303 4.1436 2.0000 2.3382 2.7660 4.7281 10.0000 -

0 θopt 0.3636 0.5708 0.6819 0.0000 0.2527 0.4337 0.7317 0.8888 -
Roptsys 0.9000 0.9000 0.9000 0.9330 0.9000 0.9000 0.9000 0.9000 -
Coptsys 2.5714 3.3302 4.1442 2.0000 2.3382 2.7659 4.7276 10.0000 -

0.1 θopt 0.3636 0.5708 0.6819 0.2578 0.2818 0.4337 0.7317 0.8888 -
Roptsys 0.9000 0.9000 0.9000 0.9494 0.9035 0.9000 0.9000 0.9000 -
Coptsys 2.5714 3.3302 4.1442 2.3474 2.3923 2.7659 4.7276 10.0000 -

0.2 θopt 0.5561 0.6025 0.6819 0.5138 0.5376 0.5697 0.7317 0.8888 -
Roptsys 0.9280 0.9067 0.9000 0.9662 0.9356 0.9221 0.9000 0.9000 -
Coptsys 3.2529 3.5162 4.1442 3.0571 3.1629 3.3243 4.7276 10.0000 -

0.3 θopt 0.6670 0.7036 0.7314 0.6317 0.6525 0.6778 0.7469 0.8888 -
Roptsys 0.9450 0.9287 0.9142 0.9742 0.9508 0.9405 0.9051 0.9000 -
Coptsys 4.0038 4.3747 4.7237 3.7156 3.8778 4.1041 4.9514 10.0000 -

0.4 θopt 0.7361 0.7659 0.7886 0.7062 0.7242 0.7448 0.8012 0.8888 -
Roptsys 0.9559 0.9428 0.9312 0.9793 0.9606 0.9523 0.9239 0.9000 -
Coptsys 4.7894 5.2727 5.7309 4.4047 4.6261 4.9198 6.0306 10.0000 -

0.5 θopt 0.7863 0.8110 0.8297 0.7611 0.7765 0.7936 0.8401 0.8888 -
Roptsys 0.9640 0.9533 0.9438 0.9831 0.9678 0.9610 0.9378 0.9000 -
Coptsys 5.6807 6.2911 6.8730 5.1861 5.4742 5.8450 7.2542 10.0000 -

0.6 θopt 0.8267 0.8470 0.8624 0.8055 0.8186 0.8327 0.8710 0.8888 -
Roptsys 0.9706 0.9619 0.9541 0.9862 0.9737 0.9682 0.9492 0.9000 -
Coptsys 6.7716 7.5383 8.2710 6.1425 6.5137 6.9784 8.7527 10.0000 -

0.7 θopt 0.8619 0.8783 0.8887 0.8445 0.8553 0.8667 0.8887 0.8888 -
Roptsys 0.9764 0.9694 0.9625 0.9889 0.9789 0.9745 0.9559 0.9000 -
Coptsys 8.2418 9.2193 9.9881 7.4317 7.9135 8.5047 9.9897 10.0000 -

0.8 θopt 0.8887 0.8887 0.8887 0.8815 0.8887 0.8887 0.8887 0.8888 -
Roptsys 0.9809 0.9719 0.9625 0.9915 0.9837 0.9786 0.9559 0.9000 -
Coptsys 9.9882 9.9883 9.9881 9.4439 9.9900 9.9891 9.9897 10.0000 -

{0.9, 1} θopt 0.8887 0.8887 0.8887 0.8887 0.8887 0.8887 0.8887 0.8888 -
Roptsys 0.9809 0.9719 0.9625 0.9920 0.8887 0.9786 0.9559 0.9000 -
Coptsys 9.9882 9.9883 9.9881 9.9880 9.9900 9.9891 9.9897 10.0000 -

• If θ1 < θ2, then we should find the optimal answer in (θ1, θ2), i.e., θ1 ≤ θopt ≤ θ2.
For this in (7), we set R∗

sys = Rsys(θ2) and C∗
sys = Csys(θ1). Finally, we obtain the

optimal value for θ, θopt, numerically. For the case that N = n is a fixed value, with a
similar analysis we can find the optimal value for n, nopt.

Table 8 gives the optimal values for n, nopt, and the resulting cost and reliability
functions for some selected values of w, t, α and β, when R∗ = 0.9, c1 = c2 = 1
and c∗ = 10. Similarly, the optimal values of θ, θopt, for different distributions for N ,
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Table 10: The values of θopt, Roptsys and Coptsys for some selected values of w, t, α and β,
when N ∼ Log(θ), R∗ = 0.9, c1 = c2 = 1 and c∗ = 10.

α 0.1 0.5
β 0.1 0.5 0.5

w t 0.5 1 2 1 2 3 1 2 3
θ1 0.6193 0.8556 0.9380 0.0000 0.4551 0.7102 0.9637 0.9990 0.9998
θ2 0.9690 0.9690 0.9690 0.9690 0.9690 0.9690 0.9690 0.9690 0.9690
R∗
sys 0.9552 0.9360 0.9168 0.9806 0.9614 0.9501 0.9039 - -

C∗
sys 2.6846 4.0629 6.4451 2.0000 2.3757 2.9788 9.0101 - -

0 θopt 0.6193 0.8556 0.9380 0.0000 0.4551 0.7102 0.9637 - -
Roptsys 0.9000 0.9000 0.9000 0.9330 0.9000 0.9000 0.9000 - -
Coptsys 2.6845 4.0625 6.4445 2.0000 2.3756 2.9787 9.0121 - -

0.1 θopt 0.6193 0.8556 0.9380 0.0000 0.4551 0.7102 0.9637 - -
Roptsys 0.9000 0.9000 0.9000 0.9330 0.9000 0.9000 0.9000 - -
Coptsys 2.6845 4.0625 6.4445 2.0000 2.3756 2.9787 9.0121 - -

0.2 θopt 0.6193 0.8556 0.9380 0.3179 0.4551 0.7102 0.9637 - -
Roptsys 0.9000 0.9000 0.9000 0.9437 0.9000 0.9000 0.9000 - -
Coptsys 2.6845 4.0625 6.4445 2.2182 2.3756 2.9787 9.0121 - -

0.3 θopt 0.6275 0.8556 0.9380 0.5528 0.5939 0.7102 0.9637 - -
Roptsys 0.9008 0.9000 0.9000 0.9531 0.9112 0.9000 0.9000 - -
Coptsys 2.7058 4.0625 6.4445 2.5360 2.6229 2.9787 9.0121 - -

0.4 θopt 0.7386 0.8556 0.9380 0.6826 0.7145 0.7578 0.9637 - -
Roptsys 0.9133 0.9000 0.9000 0.9592 0.9225 0.9063 0.9000 - -
Coptsys 3.1062 4.0625 6.4445 2.8743 2.9966 3.2065 9.0121 - -

0.5 θopt 0.8105 0.8612 0.9380 0.7681 0.7927 0.8246 0.9637 - -
Roptsys 0.9228 0.9012 0.9000 0.9638 0.9312 0.9165 0.9000 - -
Coptsys 3.5720 4.1430 6.4445 3.2667 3.4307 3.7013 9.0121 - -

0.6 θopt 0.8624 0.8996 0.9380 0.8305 0.8493 0.8728 0.9637 - -
Roptsys 0.9308 0.9109 0.9000 0.9677 0.9384 0.9250 0.9000 - -
Coptsys 4.1609 4.8985 6.4445 3.7613 3.9787 4.3284 9.0121 - -

0.7 θopt 0.9029 0.9293 0.9507 0.8796 0.8935 0.9103 0.9637 - -
Roptsys 0.9382 0.9199 0.9061 0.9713 0.9451 0.9329 0.9000 - -
Coptsys 4.9883 5.9660 7.4151 4.4525 4.7466 5.2093 9.0121 - -

0.8 θopt 0.9365 0.9540 0.9680 0.9209 0.9303 0.9414 0.9689 - -
Roptsys 0.9456 0.9290 0.9162 0.9749 0.9518 0.9408 0.9038 - -
Coptsys 6.3529 7.7389 9.8046 5.5896 6.0120 6.6666 9.9904 - -

0.9 θopt 0.9666 0.9689 0.9689 0.9581 0.9633 0.9689 0.9689 - -
Roptsys 0.9543 0.9359 0.9168 0.9791 0.9597 0.9501 0.9038 - -
Coptsys 9.5313 9.9875 9.9854 8.2163 8.9440 9.9898 9.9904 - -

1 θopt 0.9689 0.9689 0.9689 0.9689 0.9689 0.9689 0.9689 - -
Roptsys 0.9552 0.9359 0.9168 0.9806 0.9613 0.9501 0.9038 - -
Coptsys 9.9852 9.9875 9.9854 9.9845 9.9864 9.9898 9.9904 - -

are presented in Tables 9-11. In Tables 9 and 10, dash (−) means that there is no
θopt which satisfies the conditions in (6). From Tables 8-11 we find that the values of
nopt (when N = n is fixed), θopt (when N is a random variable), Roptsys and Coptsys are
non-decreasing in w, when all other parameters are held fixed. Also, from the results
of Tables 8-11 one can see that the optimal values may change by selecting different
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Table 11: The values of θopt, Roptsys and Coptsys for some selected values of w, t, α and β,
when N ∼ TP (θ), R∗ = 0.9, c1 = c2 = 1 and c∗ = 10.

α 0.1 0.5
β 0.1 0.5 0.5

w t 0.5 1 2 1 2 3 1 2 3
θ1 0.8609 1.5723 2.1149 0.0000 0.5632 1.0734 2.4329 4.3944 5.5564
θ2 8.9988 8.9988 8.9988 8.9988 8.9988 8.9988 8.9988 8.9988 8.9988
R∗
sys 0.9996 0.9993 0.9988 0.9998 0.9997 0.9995 0.9983 0.9989 0.9747

C∗
sys 2.4914 2.9842 3.4050 2.0000 2.3079 2.6309 3.6670 5.4493 6.5780

0 θopt 0.8609 1.5723 2.1149 0.0000 0.5632 1.0734 2.4329 4.3944 5.5564
Roptsys 0.9000 0.9000 0.9000 0.9330 0.9000 0.9000 0.9000 0.9000 0.9000
Coptsys 2.4914 2.9841 3.4051 2.0000 2.3079 2.6309 3.6670 5.4493 6.5779

0.1 θopt 7.0427 7.1086 7.1049 6.9762 6.9973 7.0695 7.0770 6.4953 5.9164
Roptsys 0.9983 0.9972 0.9956 0.9994 0.9986 0.9981 0.9941 0.9625 0.9132
Coptsys 8.0489 8.1144 8.1108 7.9827 8.0037 8.0755 8.0830 7.5051 6.9324

0.2 θopt 8.1046 8.2262 8.2866 7.9735 8.0431 8.1451 8.3067 8.1909 7.9894
Roptsys 0.9992 0.9988 0.9980 0.9997 0.9994 0.9991 0.9974 0.9836 0.9620
Coptsys 9.1070 9.2284 9.2887 8.9763 9.0457 9.1475 9.3087 9.1932 8.9922

0.3 θopt 8.7970 8.9550 8.9987 8.6244 8.7251 8.8466 8.9987 8.9987 8.9987
Roptsys 0.9995 0.9993 0.9988 0.9998 0.9996 0.9995 0.9983 0.9890 0.9747
Coptsys 9.7983 9.9562 9.9988 9.6259 9.7265 9.8478 9.9998 9.9998 9.9998

≥ 0.4 θopt 8.9987 8.9987 8.9987 8.9987 8.9987 8.9987 8.9987 8.9987 8.9987
Roptsys 0.9996 0.9993 0.9988 0.9998 0.9997 0.9995 0.9983 0.9890 0.9747
Coptsys 9.9998 9.9998 9.9988 9.9998 9.9998 9.9998 9.9998 9.9998 9.9998

values of w. If the cost is a more important criterion than reliability, then the w can
be considered less than 0.5. On the other hand, if we consider the reliability criterion
as the most important one, then we must choose w larger than 0.5, as we expected
intuitively. So, the values of w can be determined by the decision-maker.

For comparing the obtained results and based on Tables 8-11, and (8), (9) and (10),
the values of nopt and Eθopt(N) have been obtained in Table 12. From Table 12 one
can observe that, for most cases the optimal number of units is larger under truncated
Poisson distribution. We also can observe that an increasing in w leads to a smaller
difference between the results of different distributions.

4 Conclusions
This paper studied the problem of optimization in a parallel system with a random
number of units. The distribution of the number of units is assumed to follow a power
series class of distributions that contains well-known distributions such as geometric,
logarithmic and modified or truncated Poisson distributions. Optimal number of units
for the system which minimizes the expected cost and maximizes the reliability of the
system is computed. The two-objective optimization problem is reduced to a one-
objective problem by using the weighted sum method. In this method, we consider the
weight w for the reliability and the weight 1 − w for the cost function. If the cost is
more important criterion than reliability, then w can be considered less than 0.5. On
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Table 12: The values of nopt and Eθopt(N) for some selected values of w, t, α, β and
different distributions for N , when R∗ = 0.9, c1 = c2 = 1 and c∗ = 10.

α 0.1 0.5
β 0.1 0.5 0.5

w t 0.5 1 2 1 2 3 1 2 3
0 N = n 2 2 2 1 2 2 2 4 5

Ge(θ) 1.5713 2.3299 3.1436 1.0000 1.3381 1.7658 3.7271 8.9928 -
Log(θ) 1.6844 3.0618 5.4408 1.0000 1.3755 1.9786 8.0062 - -
TP (θ) 1.4914 1.9841 2.4050 1.0000 1.3078 1.6309 2.6670 4.4493 5.5779

0.1 N = n 9 9 9 9 9 9 9 8 7
Ge(θ) 1.5713 2.3299 3.1436 1.3473 1.3923 1.7658 3.7271 8.9928 -
Log(θ) 1.6844 3.0618 5.4408 1.0000 1.3755 1.9786 8.0062 - -
TP (θ) 7.0488 7.1144 7.1107 6.9827 7.0037 7.0755 7.0829 6.5051 5.9323

0.2 N = n 9 9 9 9 9 9 9 9 9
Ge(θ) 2.2527 2.5157 3.1436 2.0567 2.1626 2.3239 3.7271 8.9928 -
Log(θ) 1.6844 3.0618 5.4408 1.2182 1.3755 1.9786 8.0062 - -
TP (θ) 8.1070 8.2284 8.2886 7.9762 8.0456 8.1474 8.3087 8.1931 7.9921

0.3 N = n 9 9 9 9 9 9 9 9 9
Ge(θ) 3.0030 3.3738 3.7230 2.7151 2.8776 3.1036 3.9510 8.9928 -
Log(θ) 1.7058 3.0618 5.4408 1.5360 1.6228 1.9786 8.0062 - -
TP (θ) 8.7983 8.9561 8.9998 8.6259 8.7265 8.8478 8.9998 8.9998 8.9998

0.4 N = n 9 9 9 9 9 9 9 9 9
Ge(θ) 3.7893 4.2716 4.7303 3.4036 3.6258 3.9184 5.0301 8.9928 -
Log(θ) 2.1059 3.0618 5.4408 1.8740 1.9964 2.2065 8.0062 - -
TP (θ) 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998

0.5 N = n 9 9 9 9 9 9 9 9 9
Ge(θ) 4.6794 5.29100 5.8719 4.1858 4.4742 4.8449 6.2539 8.9928 -
Log(θ) 2.5713 3.1420 5.4408 2.2663 2.4300 2.7008 8.0062 - -
TP (θ) 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998

0.6 N = n 9 9 9 9 9 9 9 9 9
Ge(θ) 5.7703 6.5359 7.2674 5.1413 5.5126 5.9772 7.7519 8.9928 -
Log(θ) 3.1599 3.8981 5.4408 2.7605 2.9779 3.3276 8.0062 - -
TP (θ) 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998

0.7 N = n 9 9 9 9 9 9 9 9 9
Ge(θ) 7.2411 8.2169 8.9847 6.4308 6.9108 7.5018 8.9847 8.9928 -
Log(θ) 3.9873 4.9613 6.4069 3.4510 3.7460 4.2086 8.0062 - -
TP (θ) 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998

0.8 N = n 9 9 9 9 9 9 9 9 9
Ge(θ) 8.9847 8.9847 8.9847 8.4388 8.9847 8.9847 8.9847 8.9928 -
Log(θ) 5.3498 6.7354 8.7884 4.5888 5.0110 5.6625 8.9767 - -
TP (θ) 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998

0.9 N = n 9 9 9 9 9 9 9 9 9
Ge(θ) 8.9847 8.9847 8.9847 8.9847 8.9847 8.9847 8.9847 8.9928 -
Log(θ) 8.5138 8.9767 8.9767 7.2077 7.9419 8.9767 8.9767 - -
TP (θ) 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998

1 N = n 9 9 9 9 9 9 9 9 9
Ge(θ) 8.9847 8.9847 8.9847 8.9847 8.9847 8.9847 8.9847 8.9928 -
Log(θ) 8.9767 8.9767 8.9767 8.9767 8.9767 8.9767 8.9767 - -
TP (θ) 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998 8.9998

the other hand, if we consider the reliability criterion as the most important one, then
we must choose w larger than 0.5, as we expected intuitively.
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