Bi-objective optimization problem of a parallel system with random number of units

Elham Basiri*
Department of Mathematics and Applications, Kosar University of Bojnord, Bojnord, Iran

Received: October 7, 2022/ Revised: January 29, 2023/ Accepted: January 31, 2023

Abstract

This paper considers a parallel system that has a random number of units. The number of units follows a power series distribution which includes several distributions such as geometric, logarithmic and zero-truncated Poisson distributions. Pareto distribution is considered for the lifetime distribution of units. The optimal parameter is obtained for the distribution of sample size so that the expected cost is minimized and the whole reliability of the system is maximized. The weighted sum method has been utilized to convert this bi-objective model into a one-objective model. Numerical calculations have been performed to evaluate the obtained results.

Keywords: Bi-objective optimization; Optimal sample size; Parallel system.
Mathematics Subject Classification (2010): 62N05, 90C29.

1 Introduction

Todays, we are dealing with systems that consist of several components and are placed together based on a predetermined structure for a specific purpose, and each component performs a task independently or dependent on other components. These systems are called coherent systems. Among the most famous and simplest coherent systems, we can mention series and parallel systems. A series system works if and only if all the components work. A parallel system works if at least one of the components works.

Reliability is one of the most important characteristics of a system because by identifying the reliability of a system, it is possible to predict the failure time of that system. It is clear that the reliability of a system depends on the structure and reliability of its

[^0]components. Therefore, one way to increase the reliability of a system is to improve the reliability of its components. For this purpose, maintenance and repair activities should be done, which will increase the associated costs. Since cost is always one of the important criteria for decision-making, it is necessary to create a balance between these two criteria.

The problems related to systems have been studied by many researchers. For example, the most economical parallel and k-out-of- n systems were investigated by Nakagawa (1984) and Nakagawa (1985), respectively. To do this, two problems as finding the optimal number of elements and the optimal replacement time were solved by minimizing the mean cost rate. Coit and Smith (1996) studied the reliability and cost optimization problem by using a genetic algorithm in a series-parallel system with multiple choices for each subsystem. The problem of redundancy allocation for a series-parallel system by using a genetic algorithm and with the aim of maximizing the reliability of the system was investigated by Tavakkoli-Moghaddam et al. (2008). A bi-objective reliability-cost optimization problem in a series-parallel system, by considering a combination of objective functions and fuzzy membership functions, was studied by Garg et al. (2014) and Garg (2021). Two optimization problems for a parallel system that consists of dependent components were studied by Eryilmaz and Ozkut (2020). The first problem was finding the number of elements in the system that minimizes the mean cost rate of the system. The second problem was concerned with the optimal replacement time of the system. Considering series and parallel systems with their component's lifetimes follow the discrete Weibull distribution, Barmalzan (2020) obtained some ordering results for comparing these systems. Statistical evidences in lifetimes of sequential r-out-of- n systems, which were modelled by the concept of sequential order statistics, coming from homogeneous exponential populations were considered by Hashempour and Doostparast (2020). Kim and Ahn (2021) discussed one of the reliability optimization problems, i.e, locating the components of a series system. The problem investigated in this research was to minimize the cost function in order to achieve the desired reliability. Obtaining the Birnbaum component importance of the components for a consecutive- (k, k)-out-of- n : F system having two dependent subcomponents was discussed by Estabraqi and Meshkat (2021).

In all mentioned works, number of units was constant and predetermined. However, real systems are complex and large, so we might not know the exact number of units. The optimal number of units in a parallel system and replacement time based on minimizing the mean cost rate were studied by Nakagawa and Zhao (2012). In their paper, the number of units was a random variable from Poisson distribution. By minimizing the mean cost rate, Eryilmaz (2017) computed optimal number of units and replacement time for a parallel system with a random number of units that follows a power series class of distributions. Other works that deal with a system consisting of a random number of components were investigated by Al-Mutairi et al. (2011), Gupta et al. (2012), Hazra et al. (2014) and Ito et al. (2017).

In the present paper, the optimal number of units in a parallel system is the aim of paper, when the number of units is a random variable from a power series class of distributions and the failure time has a Pareto distribution with parameters α and β. As a special case, geometric, logarithmic and zero-truncated Poisson distributions with parameter θ are considered for the random sample size and a bi-objective optimization
problem is solved. Since the sample size is random, the decision variable is the parameter of its distribution, i.e, θ. The objective functions in this optimization problem are the expected cost and the reliability of the system. So, the model proposed in this paper has two objective functions as maximizing the reliability of the system and minimizing the associated cost. In order to convert this bi-objective problem into a one-objective problem the weighted sum method is applied.

The rest of the present paper is organized as follows. Section 2 provides the objective functions as well as the constraints of the optimization problem. To solve this constrained bi-objective optimization problem the weighted sum method is utilized. Three cases for the random sample size are considered and the results for each case are derived. Section 3 deals with the numerical computations for illustrating the theoretical results. Finally, the paper concludes in Section 4.

2 Bi-objective optimization problem

Consider a parallel system consisting of N components in which the i th component has a lifetime $T_{i}, i=1, \ldots, N$. Let T_{1}, \ldots, T_{N} be independent and identically distributed continuous non-negative random variables from a Pareto distribution with parameters α and β with probability density function (pdf) and cumulative distribution function given by

$$
\begin{align*}
f_{\alpha, \beta}(t) & =\frac{\alpha \beta^{\alpha}}{t^{\alpha+1}} ; \quad t>\beta, \quad \alpha, \beta>0 \\
F_{\alpha, \beta}(t) & =1-\left(\frac{\beta}{t}\right)^{\alpha} ; \quad t>\beta, \quad \alpha, \beta>0 \tag{1}
\end{align*}
$$

respectively. This famous and continuous lifetime model was first introduced by Vilfredo Pareto in 1898. After that, Pareto distribution has been used to model population sizes, environmental extrema, and insurance claims. In the past decades, Pareto distribution also has been used for lifetime data. See, for example, Ahmadi and Doostparast (2019), Sauer et al. (2020) and Ahmadi and Almetwally (2021).

Independently, suppose that the number of components, i.e. N, is a random variable having a power series distribution with probability mass function (pmf) given by

$$
\begin{equation*}
P(N=n)=\frac{a(n) \theta^{n}}{\psi(\theta)}, \quad n=1,2, \ldots \tag{2}
\end{equation*}
$$

where $\psi(\theta)=\sum_{n=1}^{\infty} a(n) \theta^{n}$ is positive, finite and differentiable and $a(n) \geq 0$ depends on only n. In this case, the lifetime of such a system is equal to $\max \left(T_{1}, \ldots, T_{N}\right)$. So, the survival function of such parallel system is given by (see, for example, Gupta et al. (2012))

$$
\begin{aligned}
R_{s y s}(t) & =P\left(\max \left(T_{1}, \ldots, T_{N}\right)>t\right) \\
& =1-\sum_{n=1}^{\infty}\left(F_{\alpha, \beta}(t)\right)^{n} P(N=n) \\
& =1-\sum_{n=1}^{\infty}\left(F_{\alpha, \beta}(t)\right)^{n} \frac{a(n) \theta^{n}}{\psi(\theta)}
\end{aligned}
$$

Figure 1: The values of $R_{s y s}$ for (a): $\alpha=0.1$ and $\beta=0.1$, (b): $\alpha=0.5$ and $\beta=0.1,(\mathbf{c}): \alpha=0.1$ and $\beta=0.5$, (d): $\alpha=0.5$ and $\beta=0.5$, when $N=n$ is fixed and $R^{*}=0.9$.

Figure 2: The values of $R_{s y s}$ for (a): $\alpha=0.1$ and $\beta=0.1$, (b): $\alpha=0.5$ and $\beta=0.1,(\mathbf{c}): \alpha=0.1$ and $\beta=0.5$, (d): $\alpha=0.5$ and $\beta=0.5$, when $N \sim G e(\theta)$ and $R^{*}=0.9$.

$$
\begin{align*}
& =1-\frac{\psi\left(F_{\alpha, \beta}(t) \theta\right)}{\psi(\theta)} \\
& =1-\frac{\psi\left[\left(1-\frac{\beta^{\alpha}}{t^{\alpha}}\right) \theta\right]}{\psi(\theta)}, \tag{3}
\end{align*}
$$

where (1) is used for the last equation.
Another criterion considered in this paper is the expected cost of system, which plays an important role in practices. Assuming c_{1} is the acquisition cost of one unit and c_{2} includes all costs resulting from system failure, the expected cost associated with the system is given by

$$
\begin{equation*}
C_{\text {sys }}=c_{1} \mathbb{E}_{\theta}(N)+c_{2}=c_{1} \theta \frac{\psi^{\prime}(\theta)}{\psi(\theta)}+c_{2}, \tag{4}
\end{equation*}
$$

since, from (2) the mean of the random variable N is

$$
\begin{equation*}
\mathbb{E}_{\theta}(N)=\sum_{n=1}^{\infty} n \frac{a(n) \theta^{n}}{\psi(\theta)}=\theta \frac{\psi^{\prime}(\theta)}{\psi(\theta)} \tag{5}
\end{equation*}
$$

In this paper, the problem is finding the optimal value for the number of units by maximizing $R_{\text {sys }}$ and minimizing $C_{\text {sys }}$, i.e.,

$$
\begin{cases}\operatorname{maximize} & R_{\text {sys }} \\ \text { minimize } & C_{\text {sys }}\end{cases}
$$

subject to constraints

$$
\begin{equation*}
C_{\text {sys }} \leq c^{*} \quad \text { and } \quad R_{\text {sys }} \geq R^{*}, \tag{6}
\end{equation*}
$$

where c^{*} and R^{*} are pre-fixed values. First notice that here N is a random variable but $\mathbb{E}_{\theta}(N)$ is always fixed that is a function of θ. So, the optimal value for θ, i.e. $\theta^{o p t}$, is the aim of paper.

Maximizing $R_{s y s}$ is equivalent to minimizing $1-R_{s y s}=\frac{\psi\left(F_{\alpha, \beta}(t) \theta\right)}{\psi(\theta)}$. So, the optimization problem changes to

$$
\text { minimize }\left\{\begin{array}{l}
1-R_{\text {sys }} \\
C_{\text {sys }}
\end{array}\right.
$$

subject to constraints in (6).
For multi-objective optimization problems determination of a single solution can be done using different methods such as utility theory, weighted sum method, and so on. To study these methods, for example, we can refer the reader to Ehrgott (2005). One of the most intuitive methods for solving multi-objective optimization problems is to optimize a weighted sum of the objective functions using any methods for single objective optimization. The general approach is to assign to each objective function f_{i} a weight $w_{i}>0$ and minimize the objective function $\sum w_{i} f_{i}$ subject to the problem constraints. In the present paper, in order to convert this multi-objective problem into a one-objective, the weighted sum method has been used. Since the cost and reliability functions have different scales, these values are divided by the corresponding optimal

Figure 3: The values of $R_{s y s}$ for (a): $\alpha=0.1$ and $\beta=0.1$, (b): $\alpha=0.5$ and $\beta=0.1,(\mathbf{c}): \alpha=0.1$ and $\beta=0.5$, (d): $\alpha=0.5$ and $\beta=0.5$, when $N \sim \log (\theta)$ and $R^{*}=0.9$.

Figure 4: The values of $R_{s y s}$ for (a): $\alpha=0.1$ and $\beta=0.1$, (b): $\alpha=0.5$ and $\beta=0.1,(\mathbf{c}): \alpha=0.1$ and $\beta=0.5,(\mathbf{d}): \alpha=0.5$ and $\beta=0.5$, when $N \sim T P(\theta)$ and $R^{*}=0.9$.

Figure 5: The values of $C_{s y s}$ for (a): $N=n,(\mathbf{b}): N \sim G e(\theta),(\mathbf{c}): N \sim \log (\theta),(\mathbf{d}): N \sim T P(\theta)$, when $c_{1}=c_{2}=1$ and $c^{*}=10$.
values, say $R_{s y s}^{*}$ and $C_{s y s}^{*}$, from the one-objective problems. So, the optimal value for θ would be obtained by minimizing a weighted sum of the objective functions where all weights are positive, as

$$
\begin{equation*}
H=w \frac{1-R_{s y s}}{1-R_{s y s}^{*}}+(1-w) \frac{C_{s y s}}{C_{s y s}^{*}}, \quad 0 \leq w \leq 1, \tag{7}
\end{equation*}
$$

subject to constraints

$$
C_{s y s} \leq c^{*} \quad \text { and } \quad 1-R_{s y s} \leq 1-R^{*}=R^{* *}
$$

Remark 2.1. When $N=n$ is a fixed value, (3) and (4) reduce to

$$
\begin{aligned}
R_{s y s}(t) & =1-\left(F_{\alpha, \beta}(t)\right)^{n}=1-\left(1-\frac{\beta^{\alpha}}{t^{\alpha}}\right)^{n} \\
C_{\text {sys }} & =c_{1} n+c_{2}
\end{aligned}
$$

respectively. In this case, the problem in (7) under the constraints in (6), is finding the best value for n, say $n_{\text {opt }}$.

In the sequel, for an illustration, special cases of power series distribution are considered and for each case the problem is solved.

1. Geometric distribution: If N is a geometric random variable with parameter θ, denoted by $G e(\theta)$, then in (2) we have $\psi(\theta)=\frac{\theta}{1-\theta}$ and $a(n)=1$, i.e.,

$$
P(N=n)=(1-\theta) \theta^{n-1}, \quad n=1,2, \ldots
$$

Table 1: The values of $R_{\text {sys }}$ for different values of n, t, α and β, when $N=n$ is fixed.

In this case, we find $\psi^{\prime}(\theta)=\frac{1}{(1-\theta)^{2}}$, and (3), (4) and (5) can be rewritten as

$$
R_{s y s}(t)=1-\frac{(1-\theta)\left(1-\frac{\beta^{\alpha}}{t^{\alpha}}\right)}{1-\theta\left(1-\frac{\beta^{\alpha}}{t^{\alpha}}\right)}
$$

Table 2: The values of $R_{s y s}$ for different values of θ, t, α and β, when $N \sim G e(\theta)$.

			θ								
α	β	t	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.1	0.1	0.5	0.8641	0.8774	0.8910	0.9051	0.9197	0.9347	0.9502	0.9662	0.982
		1	0.8110	0.8284	0.8465	0.8655	0.8853	0.9061	0.9279	0.9507	0.974
		2	0.7608	0.7816	0.8035	0.8267	0.8513	0.8774	0.9051	0.9347	0.966
		3	0.7328	0.7552	0.7790	0.8044	0.8315	0.8605	0.8916	0.9250	0.9610
	0.5	1	0.9393	0.9456	0.9521	0.9587	0.9653	0.9720	0.9789	0.9858	0.9528
		2	0.8819	0.8936	0.9057	0.9180	0.9307	0.9438	0.9572	0.9711	
		3	0.8499	0.8643	0.8792	0.8946	0.9106	0.9272	0.94	0.9622	0.9807
	1	2	0.9393	0.9456	0.9521	0.9587	0.9653	0.9720	0.9789	0.9858	0.9928
		3	0.9053	0.9149	0.9248	0.9348	0.945	0.9556	0.9663	0.9773	0.9885
	2	3	0.9640	0.9679	0.9718	0.97	0.9797	0.9837	0.9877	0.99	58
0.5	0.1	0.5	0.4733	0.5028	0.5361	0.5741	0.6180	0.6691	0.7294	0.8017	0.8899
		1	0.3394	0.3663	0.3978	0.4352	0.4805	0.5362	0.6065	0.6981	0.8222
		2	0.2424	0.2647	0.2915	0.3243	0.3654	0.4186	0.4898	0.5901	0.7422
		3	0.1988	0.2182	0.2418	0.2712	0.308	0.3583	0.4267	0.5275	0.6907
	0.5	1	0.7284	0.7511	0.7752	0.8009	0.8284	0.8578	0.8894	0.9234	0.9602
		2	0.5263	0.5555	0.5882	0.6250	0.6666	0.7142	0.7692	0.8333	0.9090
		3	0.4339	0.4630	0.4963	0.5348	0.5797	0.6329	0.6969	0.7752	
	1	2	0.7284	0.7511	0.7752	0.8009	0.8284	0.8578	0.8894	0.9234	0.9602
		3	0.6028	0.6306	0.661	0.6948	0.7320	0.7735	0.8199	0.8722	0.9317
	2	0	0.8317	0.8476	0.8640	0.8811	0.8989	0.9175	0.9368	0.9569	0.9780
1	0.1	0.5	0.2173	0.2380	0.2631	0.2941	0.3333	0.3846	0.4545	0.5555	0.7142
		1	0.1098	0.1219	0.1369	0.1562	0.1818	0.2173	0.2702	0.3571	0.5263
		2	0.0552	0.0617	0.0699	0.0806	0.0952	0.1162	0.1492	0.2083	0.3448
		3	0.0369	0.0413	0.0469	0.0543	0.0645	0.0793	0.1030	0.1470	0.2564
	0.5	1	0.5263	0.5555	0.5882	0.6250	0.6666	0.7142	0.7692	0.8333	0.9090
		2	0.2702	0.2941	0.3225	0.3571	0.4000	0.4545	0.5263	0.6250	0.7692
		3	0.1818	0.2000	0.2222	0.2500	0.2857	0.3333	0.4000	0.5000	-6666
	1	2	0.5263	0.5555	0.5882	0.6250	0.6666	0.7142	0.7692	0.8333	0.9090
		3	0.3571	0.3846	0.4166				0.6250	0.7142	
	2	3	0.6896	0.7142	0.7407	0.7692	0.8000	0.8333	0.8695	0.9090	0.9523
2	0.1	0.5	0.2173	0.2380	0.2631	0.2941	0.3333	0.3846	0.4545	0.5555	0.7142
		1	0.1098	0.1219	0.1369	0.1562	0.1818	0.2173	0.2702	0.3571	0.5263
		2	0.0552	0.0617	0.0699	0.0806	0.0952	0.1162	0.1492	0.2083	0.3448
		3	0.0369	0.0413	0.0469	0.0543	0.06	0.0793	0.1030	0.1470	0.25
	0.5	1	0.2702	0.2941	0.3225	0.3571	0.4000	0.4545	0.5263	0.6250	0.7692
			0.0689	0.0769	0.0869	0.1000	0.1176	0.1428	0.1818	0.2500	0.4000
		3	0.0307	0.0344	0.0392	0.045	0.0540	0.0666	0.0869	0.1250	0.222
	1	2	0.2702	0.2941	0.3225	0.3571	0.4000	0.4545	0.5263	0.6250	0.7692
		3	0.1219	0.0.1351	0.1515	0.1724	0.2000	0.2380	0.2941	0.3846	0.55
	2	3	0.4705	0.5000	0.5333	0.5714	0.6153	0.6666	0.7272	0.8000	0.888

$$
C_{s y s}=c_{1} \frac{1}{1-\theta}+c_{2}
$$

$$
\begin{equation*}
\mathbb{E}_{\theta}(N)=\frac{1}{1-\theta}, \tag{8}
\end{equation*}
$$

respectively.
2. Logarithmic distribution: Let N be a logarithmic random variable with parameter θ, denoted by $\log (\theta)$, i.e.,

$$
P(N=n)=\frac{-\theta^{n}}{n \log (1-\theta)}, \quad n=1,2, \ldots
$$

since $\psi(\theta)=-\log (1-\theta), a(n)=\frac{1}{n}$ and $\psi^{\prime}(\theta)=\frac{1}{1-\theta}$. So, (3), (4) and (5) become

$$
\begin{align*}
R_{\text {sys }}(t) & =1-\frac{\log \left[1-\theta\left(1-\frac{\beta^{\alpha}}{t^{\alpha}}\right)\right]}{\log (1-\theta)} \\
C_{\text {sys }} & =-c_{1} \frac{\theta}{(1-\theta) \log (1-\theta)}+c_{2} \\
\mathbb{E}_{\theta}(N) & =\frac{-\theta}{(1-\theta) \log (1-\theta)}, \tag{9}
\end{align*}
$$

respectively.
3. Zero-truncated Poisson distribution: Suppose N has a Poisson distribution truncated at point zero, with parameter θ, denoted by $T P(\theta)$, i.e.,

$$
P(N=n)=\frac{\theta^{n}}{n!\left(e^{\theta}-1\right)}, \quad n=1,2, \ldots
$$

It means in $(2), \psi(\theta)=\left(e^{\theta}-1\right), a(n)=\frac{1}{n!}$ and $\psi^{\prime}(\theta)=e^{\theta}$. Therefore, we have

$$
\begin{align*}
R_{s y s}(t) & =1-\frac{\exp \left[\theta\left(1-\frac{\beta^{\alpha}}{t^{\alpha}}\right) \theta\right]-1}{e^{\theta}-1} \\
C_{s y s} & =c_{1} \frac{\theta e^{\theta}}{e^{\theta}-1}+c_{2} \\
\mathbb{E}_{\theta}(N) & =\frac{\theta e^{\theta}}{e^{\theta}-1} \tag{10}
\end{align*}
$$

3 Numerical computations

In this section, in order to evaluate the results of Section 2, numerical computations have been performed. The values of $R_{\text {sys }}$ for different values of n, t, α and β are presented in Table 1 and Figure 1, when $N=n$ is a fixed value and $R^{*}=0.9$. Moreover, Tables 2-4 and Figures 2-4 present the values of $R_{s y s}$ for different values of θ, t, α, β and different distributions for N, when $R^{*}=0.9$. Also, Tables $5, ? ?$ and 7 and Figure 5 report the values of $C_{s y s}$ for different distributions for N, when $c^{*}=10$ and $c_{1}=c_{2}=1$. The results and plots in this paper have been obtained using R Statistical Software v3.3.1; (R Core Team, 2021).

Table 3: The values of $R_{\text {sys }}$ for different values of θ, t, α and β, when $N \sim \log (\theta)$.

			θ								
α	β	t	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.1	0.1	0.5	0.8578	0.8647	0.8720	0.8799	0.8885	0.8980	0.9087	0.9213	0.9376
		1	0.8027	0.8117	0.8214	0.8319	0.8434	0.8562	0.8708	0.8883	0.9111
		2	0.7510	0.7617	0.7733	0.7860	0.8000	0.8157	0.8339	0.8550	0.8848
		3	0.7223	0.7338	0.7463	0.7601	0.7754	0.7927	0.8127	0.8370	0.8695
	0.5	1	0.9362	0.9395	0.9431	0.9468	0.9508	0.955	0.9601	0.96	0.9730
		2	0.8763	0.8824	0.8889	0.8959	0.9034	0.9117	0.9211	0.9320	0.9462
		3	0.8430	0.8505	0.8585	0.8671	0.8765	0.8869	0.8986	0.9125	0.9306
	1	2	0.9362	0.9395	0.9431	0.9468	0.9508	0.9552	0.9601	0.9657	0.9730
			0.9007	0.9057	0.9110	0.9167	0.9229	0.9296	0.9371	0.9460	0.9573
	2	3	0.9622	0.9642	0.9663	0.9686	0.9710	0.9736	0.9765	0.9799	0.9841
0.5	0.1	0.5	0.4602	0.4749	0.4916	0.5108	0.5332	0.5602	0.5935	0.6372	0.7011
		1	0.3277	0.3409	0.3563	0.3744	0.3964	0.4236	0.4590	0.5079	0.5850
		2	0.2329	0.2437	0.2565	0.2720	0.2911	0.3156	0.3487	0.3969	0.4789
		3	0.1906	0.2000	0.2112	0.2248	0.2419	0.2641	0.2947	0.3406	0.4221
	0.5	1	0.7178	0.7294	0.7421	0.7560	0.7715	0.7890	0.8094	0.8341	0.8671
		2	0.5131	0.5278	0.5443	0.5631	0.5849	0.6107	0.6421	0.6826	0.7403
		3	0.4210	0.4355	0.4520	0.4712	0.4939	0.5213	0.5557	0.601	0.6697
	1	2	0.7178	0.7294	0.7421	0.7560	0.7715	0.7890	0.8094	0.8341	0.8671
		3	0.5901	0.6042	0.6198	0.6374	0.6575	0.6808	0.7086	0.7435	0.8921
	2	3	0.8242	0.8324	0.8412	0.8507	0.8611	0.8726	0.8858	0.9013	0.9216
1	0.1	0.5	0.2086	0.2186	0.2305	0.2450	0.2630	0.2863	0.3181	0.3652	0.4471
		1	0.1048	0.1106	0.1176	0.1263	0.1375	0.1525	0.1741	0.2090	0.2787
		2	0.0525	0.0556	0.0594	0.0641	0.0703	0.0789	0.0916	0.1132	0.1613
		3	0.0350	0.0371	0.0397	0.0430	0.0473	0.0532	0.0622	0.0777	0.1139
	0.5	1	0.5131	0.5278	0.5443	0.5631	0.5849	0.610	0.6421	0.6826	0.7403
		2	0.2600	0.2716	0.2853	0.3017	0.3219	0.3475	0.3816	0.4306	
		3	0.1741	0.1829	0.1934	0.2062	0.2223	0.2435	0.2728	0.3173	0.3979
	1	2	0.5131	0.5278	0.5443	0.5631	0.5849	0.6107	0.6421	0.6826	0.7403
		3	0.3451	0.3587	0.3743	0.3928	0.4150	0.4425	0.4778	0.5264	0.6020
	2	3	0.6782	0.6908	0.7046	0.7198	0.7369	0.7564	0.7793	0.8072	0.8450
2	0.1		0.0420	0.0445	0.0476	0.0515	0.0565	0.0635	0.0741	0.0922	0.1335
		1	0.0105	0.0111	0.0119	0.0130	0.0143	0.0162	0.0191	0.0243	0.0374
		2	0.0026	0.0028	0.0030	0.0032	0.0036	0.0040	0.0048	0.0061	0.0096
		3	0.0011	0.0012	0.0013	0.0014	0.0016	0.001	0.0021	0.0027	0.0043
	0.5	1	0.2600	0.2716	0.2853	0.3017	0.3219	0.3475	0.3816	0.4306	0.5118
		2	0.0656	0.0694	0.0741	0.0799	0.0874	0.0977	0.1130	0.1386	0.1938
		3	0.029	0.0310	0.0331	0.0359	0.0395	0.044	0.0521	0.06	0.0969
	1	2	0.2600	0.2716	0.2853	0.3017	0.3219	0.3475	0.3816	0.4306	0.5118
		3	0.1164	0.1227	0.130	0.1398	0.1520	0.1682	0.191	0.228	0.3010
	2	3	0.4574	0.4721	0.4888	0.5080	0.5305	0.5574	0.5909	0.6347	0.6989

From the results of Tables 1-7 and Figures 1-5, we find the following:

- By increasing values of n and θ, values of $R_{\text {sys }}$ and $C_{s y s}$ increase, when all other

Table 4: The values of $R_{\text {sys }}$ for different values of θ, t, α and β, when $N \sim T P(\theta)$.

α	β	t									
			1	2	,	4	5	6	7	8	9909
0.1		0.5	0.9067	0.9458	0.9705	0.9848	0.9925	0.9964	0.9983	0.9992	0.9996
		1	0.8671	0.9203	0.9552	0.9761	0.9878	0.9939	0.9970	0.9985	0.9993
		2	0.8280	0.8938	0.9384	0.9661	0.9820	0.9907	0.9953	0.9976	0.9988
	0.5	3	0.8055	0.8779	0.9279	0.9595	0.9781	0.9884	0.9940	0.9969	0.9984
		1	0.9596	0.9775	0.9883	0.9942	0.9973	0.9987	0.9994	0.9997	0.9998
		2	0.9195	0.9537	0.9751	0.9873	0.9938	0.9970	0.9986	0.9993	0.9997
		3	0.8962	0.9392	0.9666	0.9826	0.9913	0.9958	0.9980	0.9990	0.9995
	1	2	0.9596	0.9775	0.9883	0.9942	0.9973	0.9987	0.9994	0.9997	0.9998
		3	0.9361	0.9637	0.9808	0.9903	0.9953	0.9978	0.9990	0.9995	0.9998
	2	3	0.9764	0.9870	0.9933	0.9967	0.9985	0.9993	0.9997	0.9998	0.9999
0.5	0.1	0.5	0.5704	0.6836	0.7772	0.8483	0.8991	0.9339	0.9571	0.9723	0.9822
		1	0.4288	0.5420	0.6448	0.7311	0.7996	0.8521	0.8915	0.9206	0.9420
		2	0.3169	0.4170	0.5143	0.6021	0.6776	0.7404	0.7916	0.8331	0.8664
		3	0.2639	0.3537	0.4438	0.5279	0.6026	0.6672	0.7220	0.7681	0.8067
	0.5	1	0.8019	0.8753	0.9262	0.9584	0.9774	0.9880	0.9938	0.9968	0.9984
		2	0.6224	0.7310	0.8175	0.8807	0.9241	0.9525	0.9706	0.9820	0.9890
		3	0.5302	0.6453	0.7431	0.8196	0.8760	0.9159	0.9434	0.9621	0.9747
	1	2	0.8019	0.8753	0.9262	0.9584	0.9774	0.9880	0.9938	0.9968	0.9984
		3	0.6938	0.7920	0.8662	. 91	0.9506	0.9711	0.9833	0.9904	0.9945
	2	3	0.8827	0.9305	0.9615	0.9797	0.9898	0.9950	0.9976	0.9988	0.9994
1	0.1	0.5	0.2867	0.3812	0.4748	0.5609	0.6364	0.7005	0.7540	0.7983	0.8348
		1	0.1505	0.2096	0.2727	0.3358	0.3961	0.4523	0.5038	0.5508	0.5935
		2	0.0771	0.1100	0.1465	0.1846	0.2226	0.25982	0.2955	0.3297	0.3624
		3	0.0518	0.0745	0.1001	0.1271	0.1545	0.18171	0.2083	0.2341	0.2592
	0.5	1	0.6224	0.7310	0.8175	0.8807	0.9241	0.9525	0.9706	0.9820	0.9890
		2	0.3499	0.4550	0.5552	0.6439	0.7183	0.7788	0.8269	0.8649	0.8947
		3	0.2428	0.3278	0.4140	0.4956	0.5692	0.6336	0.6892	0.7366	0.7769
	1	2	0.6224	0.7310	0.8175	0.8807	0.9241	0.9525	0.9706	0.9820	0.9890
		3	0.4484	0.5627	0.6652	0.7501	0.8166	0.8668	0.9038	0.9308	0.9503
	2	3	0.7697	0.8516	0.9099	0.9478	0.9708	0.9841	0.9915	0.9955	0.9976
2	0.1	0.5	0.0620	0.0889	0.1190	0.1506	0.1824	0.2139	0.2444	0.2739	0.3023
		1	0.0157	0.0229	0.0311	0.0399	0.0491	0.0583	0.0676	0.0769	0.0860
		2	0.0039	0.0057	0.0078	0.0101	0.0125	0.0149	0.0173	0.0198	0.0222
		3	0.0017	0.0025	0.0035	0.0045	0.0055	0.0066	0.0077	0.0088	0.0099
	0.5	1	0.3499	0.4550	0.5552	0.6439	0.7183	0.7788	0.8269	0.8649	0.8947
		2	0.0958	0.1358	0.1799	0.2253	0.2702	0.3134	0.3546	0.3936	0.4302
		3	0.0433	0.0624	0.0841	0.1071	0.1305	0.1538	0.1768	0.1993	0.2212
	1	2	0.3499	0.4550	0.5552	0.6439	0.7183	0.7788	0.8269	0.8649	0.8947
		3	0.1663	0.2304	0.2983	0.3655	0.4291	0.4877	0.5410	0.5890	0.6321
	2	3	0.5676	0.6810	0.7749	0.8464	0.8976	0.9328	0.9563	0.9717	0.9818

parameters are held fixed.

- For fixed values of n, θ and $\beta, R_{\text {sys }}$ is a decreasing function of α and t.

Table 5: The values of $C_{\text {sys }}$ for different values of n, when $c_{1}=c_{2}=1$ and $N=n$ is fixed.

n	1	2	3	4	5	6	7	8	9	10
$C_{\text {sys }}$	2	3	4	5	6	7	8	9	10	11

Table 6: The values of $C_{\text {sys }}$ for different values of θ, when $c_{1}=c_{2}=1$.

Distribution	θ								
	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
Geometric	2.1111	2.2500	2.4285	2.6666	3.000	3.5000	4.3333	6.0000	11.0000
Logarithmic	2.0545	2.1203	2.2015	2.3050	2.4426	2.6370	2.9380	3.4853	4.9086

Table 7: The values of $C_{\text {sys }}$ for different values of θ, when $c_{1}=c_{2}=1$ and $N \sim T P(\theta)$.

θ	1	2	3	4	5	6	7	8	9	10
$C_{\text {sys }}$	2.5819	3.3130	4.1571	5.0746	6.0339	7.0149	8.0063	9.0026	10.0011	11.0004

Table 8: The values of $n_{\text {opt }}, R_{s y s}^{o p t}$ and $C_{s y s}^{o p t}$ for some selected values of w, t, α and β, when $N=n, R^{*}=0.9, c_{1}=c_{2}=1$ and $c^{*}=10$.

- $R_{\text {sys }}$ increases as β increases, when all other parameters are held fixed.

It is troublesome to compute the optimal value for $\theta, \theta^{o p t}$, that minimizes H with respect to $R_{s y s} \geq R^{*}$ and $C_{s y s} \leq c^{*}$. However, it would be easy to do this with a computer. For this purpose, first we should find the interval $\left(\theta_{1}, \infty\right)$ that the condition $R_{\text {sys }} \geq R^{*}$ is satisfied. Since $R_{s y s}$ is increasing in θ, the aforementioned inequality is equivalent to say that $\theta \geq \theta_{1}$, where θ_{1} can be obtained by solving the equation $R_{s y s}=R^{*}$.

Then, we should obtain the interval $\left(0, \theta_{2}\right)$ that the condition $C_{s y s} \leq c^{*}$ is satisfied. Similarly, since $C_{\text {sys }}$ is an increasing function of θ, we can write

$$
C_{s y s} \leq c^{*} \quad \Longleftrightarrow \quad \theta \leq \theta_{2}
$$

in which θ_{2} is the solution of the equation $C_{s y s}=c^{*}$.
Three cases will be happened:

- If $\theta_{1}>\theta_{2}$, then the problem has no answer.
- If $\theta_{1}=\theta_{2}$, then the optimal value for θ is $\theta^{o p t}=\theta_{1}=\theta_{2}$.

Table 9: The values of $\theta^{o p t}, R_{s y s}^{o p t}$ and $C_{s y s}^{o p t}$ for some selected values of w, t, α and β, when $N \sim G e(\theta), R^{*}=0.9, c_{1}=c_{2}=1$ and $c^{*}=10$.

- If $\theta_{1}<\theta_{2}$, then we should find the optimal answer in $\left(\theta_{1}, \theta_{2}\right)$, i.e., $\theta_{1} \leq \theta^{o p t} \leq \theta_{2}$. For this in (7), we set $R_{s y s}^{*}=R_{s y s}\left(\theta_{2}\right)$ and $C_{s y s}^{*}=C_{s y s}\left(\theta_{1}\right)$. Finally, we obtain the optimal value for $\theta, \theta^{o p t}$, numerically. For the case that $N=n$ is a fixed value, with a similar analysis we can find the optimal value for $n, n_{\text {opt }}$.

Table 8 gives the optimal values for $n, n_{\text {opt }}$, and the resulting cost and reliability functions for some selected values of w, t, α and β, when $R^{*}=0.9, c_{1}=c_{2}=1$ and $c^{*}=10$. Similarly, the optimal values of $\theta, \theta^{o p t}$, for different distributions for N,

Table 10: The values of $\theta^{o p t}, R_{s y s}^{o p t}$ and $C_{s y s}^{o p t}$ for some selected values of w, t, α and β, when $N \sim \log (\theta), R^{*}=0.9, c_{1}=c_{2}=1$ and $c^{*}=10$.

w	α	0.1						0.5		
	β	0.1			0.5			0.5		
	t	0.5	1	2	1	2	3	1	.	3
	θ_{1}	0.6193	0.8556	0.9380	0.0000	0.4551	0.7102	0.9637	0.9990	0.9998
	θ_{2}	0.9690	0.9690	0.9690	0.9690	0.9690	0.9690	0.9690	0.9690	0.9690
	$R_{\text {sys }}^{*}$	0.9552	0.9360	0.9168	0.9806	0.9614	0.9501	0.9039		-
	$C_{\text {sys }}^{*}$	2.6846	4.0629	6.4451	2.0000	2.3757	2.9788	9.0101	-	-
C	$\theta^{\text {opt }}$	0.6193	0.8556	0.9380	0.0000	0.4551	0.7102	0.9637		
	$R_{\text {sys }}^{\text {opt }}$	0.9000	0.9000	0.9000	0.9330	0.9000	0.9000	0.9000		-
	$C_{s y s}^{\text {opt }}$	2.6845	4.0625	6.4445	2.0000	2.3756	2.9787	9.0121	-	-
0.1	$\theta^{\text {opt }}$	0.6193	0.8556	0.9380	0.0000	0.4551	0.7102	0.9637	-	-
	$R_{s y s}^{o p t}$	0.9000	0.9000	0.9000	0.9330	0.9000	0.9000	0.9000		
	$C_{s y s}^{\text {opt }}$	2.6845	4.0625	6.4445	2.0000	2.3756	2.9787	9.0121	-	-
$\begin{array}{r}\hline 0.2 \\ \\ \\ \hline\end{array}$	$\theta^{\text {opt }}$	0.6193	0.8556	0.9380	0.3179	0.4551	0.7102	0.9637		-
	$R_{\text {sys }}^{\text {opt }}$	0.9000	0.9000	0.9000	0.9437	0.9000	0.9000	0.9000	-	-
	$C_{s y t}^{\text {ops }}$	2.6845	4.0625	6.4445	2.2182	2.3756	2.9787	9.0121	-	
0.3	$\theta^{\text {opt }}$	0.6275	0.8556	0.9380	0.5528	0.5939	0.7102	0.9637		
	$R_{s y s}^{o p t}$	0.9008	0.9000	0.9000	0.9531	0.9112	0.9000	0.9000	-	-
	$C_{s y s}^{o s p t}$	2.7058	4.0625	6.4445	2.5360	2.6229	2.9787	9.0121	-	-
0.4	$\theta^{\text {opt }}$	0.7386	0.8556	0.9380	0.6826	0.7145	0.7578	0.9637	-	
	$R_{s y s}^{o p t}$	0.9133	0.9000	0.9000	0.9592	0.9225	0.9063	0.9000	-	-
	$C_{s y s}^{\text {opt }}$	3.1062	4.0625	6.4445	2.8743	2.9966	3.2065	9.0121	-	-
$\begin{array}{r}0.5 \\ \\ \\ \hline\end{array}$	$\theta^{\text {opt }}$	0.8105	0.8612	0.9380	0.7681	0.7927	0.8246	0.9637	-	-
	$R_{s y s}^{o p t}$	0.9228	0.9012	0.9000	0.9638	0.9312	0.9165	0.9000	-	-
	$C_{s y s}^{o p t}$	3.5720	4.1430	6.4445	3.2667	3.4307	3.7013	9.0121	-	-
0.6	$\theta^{\text {opt }}$	0.8624	0.8996	0.9380	0.8305	0.8493	0.8728	0.9637		-
	$R_{s y s}^{o p t}$	0.9308	0.9109	0.9000	0.9677	0.9384	0.9250	0.9000	-	-
	$C_{s y s}^{\text {opt }}$	4.1609	4.8985	6.4445	3.7613	3.9787	4.3284	9.0121	-	-
0.7	$\theta^{\text {opt }}$	0.9029	0.9293	0.9507	0.8796	0.8935	0.9103	0.9637	-	-
	$R_{s y s}^{o p t}$	0.9382	0.9199	0.9061	0.9713	0.9451	0.9329	0.9000	-	-
	$C_{s y s}^{\text {opt }}$	4.9883	5.9660	7.4151	4.4525	4.7466	5.2093	9.0121	-	-
0.8	$\theta^{\text {opt }}$	0.9365	0.9540	0.9680	0.9209	0.9303	0.9414	0.9689	-	-
	$R_{s y s}^{o p t}$	0.9456	0.9290	0.9162	0.9749	0.9518	0.9408	0.9038	-	-
	$C_{s y s}^{\text {opt }}$	6.3529	7.7389	9.8046	5.5896	6.0120	6.6666	9.9904	-	-
0.9	$\theta^{\text {opt }}$	0.9666	0.9689	0.9689	0.9581	0.9633	0.9689	0.9689	-	-
	$R_{\text {sys }}^{\text {opt }}$	0.9543	0.9359	0.9168	0.9791	0.9597	0.9501	0.9038	-	-
	$C_{s y s}^{\text {opt }}$	9.5313	9.9875	9.9854	8.2163	8.9440	9.9898	9.9904	-	-
1	$\theta^{\text {opt }}$	0.9689	0.9689	0.9689	0.9689	0.9689	0.9689	0.9689	-	-
	$R_{s y s}^{o p t}$	0.9552	0.9359	0.9168	0.9806	0.9613	0.9501	0.9038	-	-
	$C_{s y s}^{o p t}$	9.9852	9.9875	9.9854	9.9845	9.9864	9.9898	9.9904	-	-

are presented in Tables 9-11. In Tables 9 and 10, dash (-) means that there is no $\theta^{\text {opt }}$ which satisfies the conditions in (6). From Tables 8-11 we find that the values of $n_{\text {opt }}$ (when $N=n$ is fixed), $\theta^{o p t}$ (when N is a random variable), $R_{s y s}^{o p t}$ and $C_{s y s}^{o p t}$ are non-decreasing in w, when all other parameters are held fixed. Also, from the results of Tables 8 - 11 one can see that the optimal values may change by selecting different

Table 11: The values of $\theta^{o p t}, R_{s y s}^{o p t}$ and $C_{s y s}^{o p t}$ for some selected values of w, t, α and β, when $N \sim T P(\theta), R^{*}=0.9, c_{1}=c_{2}=1$ and $c^{*}=10$.

w	$\begin{aligned} & \alpha \\ & \beta \\ & t \end{aligned}$	0.1						0.5		
		0.1			0.5			0.5		
		0.5	1	2	1	2	3	1	2	3
	θ_{1}	0.8609	1.5723	2.1149	0.0000	0.5632	1.0734	2.4329	4.3944	5.5564
	θ_{2}	8.9988	8.9988	8.9988	8.9988	8.9988	8.9988	8.9988	8.9988	8.9988
	$R_{\text {sys }}^{*}$	0.9996	0.9993	0.9988	0.9998	0.9997	0.9995	0.9983	0.9989	0.9747
	$C_{\text {sys }}^{*}$	2.4914	2.9842	3.4050	2.0000	2.3079	2.6309	3.6670	5.4493	6.5780
0	$\theta^{o p t}$	0.860	1.572	2.1149	0.0000	0.5632	1.0734	2.432	4.3944	5.5564
	$R_{\text {sys }}^{\text {opt }}$	0.9000	0.9000	0.9000	0.9330	0.9000	0.9000	0.9000	0.9000	0.9000
	$C_{\text {sys }}^{\text {opt }}$	2.4914	2.9841	3.4051	2.0000	2.3079	2.6309	3.6670	5.4493	6.5779
0.1	$\theta^{o p t}$	7.0427	7.1086	7.1049	6.9762	6.9973	7.0695	7.0770	6.4953	5.9164
	$R_{\text {sys }}^{\text {opt }}$	0.9983	0.9972	0.9956	0.9994	0.9986	0.9981	0.9941	0.9625	0.9132
	$C_{\text {sys }}^{\text {opt }}$	8.0489	8.1144	8.1108	7.9827	8.0037	8.0755	8.0830	7.5051	6.9324
0.2	$\theta^{o p t}$	8.1046	8.2262	8.2866	7.9735	8.0431	8.1451	8.3067	8.1909	7.9894
	$R_{\text {sys }}^{\text {opt }}$	0.9992	0.9988	0.9980	0.9997	0.9994	0.9991	0.9974	0.9836	0.9620
	$C_{\text {sys }}^{\text {opt }}$	9.1070	9.2284	9.2887	8.9763	9.0457	9.1475	9.3087	9.1932	8.9922
0.3	$\theta^{o p t}$	8.7970	8.9550	8.9987	8.6244	8.7251	8.8466	8.9987	8.9987	8.9987
	$R_{\text {sys }}^{\text {opt }}$	0.9995	0.9993	0.9988	0.9998	0.9996	0.9995	0.9983	0.9890	0.9747
	$C_{\text {sys }}^{\text {opt }}$	9.7983	9.9562	9.9988	9.6259	9.7265	9.8478	9.9998	9.9998	9.9998
≥ 0.4	$\theta^{o p t}$	8.9987	8.9987	8.9987	8.9987	8.9987	8.9987	8.9987	8.9987	8.9987
	$R_{\text {sys }}^{\text {opt }}$	0.9996	0.9993	0.9988	0.9998	0.9997	0.9995	0.9983	0.9890	0.9747
	$C_{\text {sys }}^{\text {opt }}$	9.9998	9.9998	9.9988	9.9998	9.9998	9.9998	9.9998	9.9998	9.9998

values of w. If the cost is a more important criterion than reliability, then the w can be considered less than 0.5 . On the other hand, if we consider the reliability criterion as the most important one, then we must choose w larger than 0.5 , as we expected intuitively. So, the values of w can be determined by the decision-maker.

For comparing the obtained results and based on Tables 8-11, and (8), (9) and (10), the values of $n^{\text {opt }}$ and $\mathbb{E}_{\theta^{\text {opt }}}(N)$ have been obtained in Table 12. From Table 12 one can observe that, for most cases the optimal number of units is larger under truncated Poisson distribution. We also can observe that an increasing in w leads to a smaller difference between the results of different distributions.

4 Conclusions

This paper studied the problem of optimization in a parallel system with a random number of units. The distribution of the number of units is assumed to follow a power series class of distributions that contains well-known distributions such as geometric, logarithmic and modified or truncated Poisson distributions. Optimal number of units for the system which minimizes the expected cost and maximizes the reliability of the system is computed. The two-objective optimization problem is reduced to a oneobjective problem by using the weighted sum method. In this method, we consider the weight w for the reliability and the weight $1-w$ for the cost function. If the cost is more important criterion than reliability, then w can be considered less than 0.5 . On

Table 12: The values of $n_{\text {opt }}$ and $\mathbb{E}_{\theta \text { opt }}(N)$ for some selected values of w, t, α, β and different distributions for N, when $R^{*}=0.9, c_{1}=c_{2}=1$ and $c^{*}=10$.

	0.1						0.5		
β	0.1			0.5			0.5		
w	0.5	1	2		2	3		2	3
$0 \quad N=n$	2	2	2		2	2	2	4	5
$G e(\theta)$	1.5713	2.3299	3.1436	1.0000	1.3381	1.7658	3.7271	8.9928	-
$\log (\theta)$	1.6844	3.0618	5.4408	1.0000	1.3755	1.9786	8.0062		
$T P(\theta)$	1.4914	1.9841	2.4050	1.0000	1.3078	1.6309	2.6670	4.449	5.577
$0.1 \mathrm{~N}=n$	9	9	9	9	9	9	9	8	7
$G e(\theta)$	1.5713	2.3299	3.1436	1.3473	1.3923	1.7658	3.7271	8.992	
$\log (\theta)$	1.6844	3.0618	5.4408	1.0000	1.3755	1.9786	8.0062		
$T P(\theta)$	7.0488	7.1144	7.1107	6.9827	7.0037	7.0755	7.0829	6.505	5.932
$0.2 N=n$	9	9	9	9	9	9	9	9	9
$G e(\theta)$	2.2527	2.5157	3.1436	2.0567	2.1626	2.3239	3.7271	8.992	
$\log (\theta)$	1.6844	3.0618	5.4408	1.2182	1.3755	1.9786	8.0062		
$T P(\theta)$	8.1070	8.2284	8.2886	7.9762	8.0456	8.1474	8.3087	8.193	7.992
$0.3 N=n$	9	9	9	9	9	9	9	9	9
$G e(\theta)$	3.0030	3.3738	3.7230	2.7151	2.8776	3.1036	3.9510	8.992	
$\log (\theta)$	1.7058	3.0618	5.4408	1.5360	1.6228	1.9786	8.0062		
$T P(\theta)$	8.7983	8.9561	8.9998	8.6259	8.7265	8.8478	8.9998	8.999	8.999
$0.4 N=n$	9	9	9	9	9	9	9	9	9
$G e(\theta)$	3.7893	4.2716	4.7303	3.4036	3.6258	3.9184	5.0301	8.992	
$\log (\theta)$	2.1059	3.0618	5.4408	1.8740	1.9964	2.2065	8.0062	-	-
$T P(\theta)$	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.999
$0.5 N=n$	9	9	9	9	9	9	9	9	9
$G e(\theta)$	4.6794	5.29100	5.8719	4.1858	4.4742	4.8449	6.2539	8.992	
$\log (\theta)$	2.5713	3.1420	5.4408	2.2663	2.4300	2.7008	8.0062	-	-
$T P(\theta)$	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.999
$0.6 \mathrm{~N}=\mathrm{n}$	9	9	9	9	9	9	9	9	9
$G e(\theta)$	5.7703	6.5359	7.2674	5.1413	5.5126	5.9772	7.7519	8.992	
$\log (\theta)$	3.1599	3.8981	5.4408	2.7605	2.9779	3.3276	8.0062		-
$T P(\theta)$	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.999	8.999
$0.7 \mathrm{~N}=n$	9	9	9	9	9	9	9	9	9
$G e(\theta)$	7.2411	8.2169	8.9847	6.4308	6.9108	7.5018	8.9847	8.992	
$\log (\theta)$	3.9873	4.9613	6.4069	3.4510	3.7460	4.2086	8.0062		
$T P(\theta)$	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.999	8.999
$0.8 \mathrm{~N}=n$	9	9	9	9	9	9	9	9	9
$G e(\theta)$	8.9847	8.9847	8.9847	8.4388	8.9847	8.9847	8.9847	8.992	
$\log (\theta)$	5.3498	6.7354	8.7884	4.5888	5.0110	5.6625	8.9767		
$T P(\theta)$	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.999	8.999
$0.9 \mathrm{~N}=$	9	9	9	9	9	9	9	9	9
$G e(\theta)$	8.9847	8.9847	8.9847	8.9847	8.9847	8.9847	8.9847	8.992	
$\log (\theta)$	8.5138	8.9767	8.9767	7.2077	7.9419	8.9767	8.9767		-
$T P(\theta)$	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.999
$N=$	9	9	9	9	9	9	9	9	9
$G e(\theta)$	8.9847	8.9847	8.9847	8.9847	8.9847	8.9847	8.9847	8.992	
$\log (\theta)$	8.9767	8.9767	8.9767	8.9767	8.9767	8.9767	8.9767	-	-
$T P(\theta)$	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998	8.9998

the other hand, if we consider the reliability criterion as the most important one, then we must choose w larger than 0.5 , as we expected intuitively.

Acknowledgement

The author would like to thank the referees for their careful reading and constructive comments which improved the paper.

References

Ahmad, H.H. and Almetwally, E. (2021). Generalizations of pareto distribution with applications to lifetime data. Journal of Physics: Conference Series, 1943(1):012141.

Ahmadi, M.V. and Doostparast, M. (2019). Pareto analysis for the lifetime performance index of products on the basis of progressively first-failure-censored batches under balanced symmetric and asymmetric loss functions. Journal of Applied Statistics, 46(7):1196-1227.

Al-Mutairi, D.K., Ghitany, M.E. and Gupta, R.C. (2011). Estimation of reliability in a series system with random sample size. Computational Statistics and Data Analysis, 55:964-972.

Barmalzan, G. (2020). Comparisons for series and parallel systems with discrete Weibull components via separate comparisons of parameters. Journal of Statistical Modelling: Theory and Applications, 1(1):53-64.

Coit, D.W. and Smith, A.E. (1996). Reliability optimization of series-parallel systems using a genetic algorithm. IEEE Transactions on reliability, 45(2):254-260.

Ehrgott, M. (2005). Multicriteria Optimization. Vol. 491, Springer Science \& Business Media.

Eryilmaz, S. (2017). A Note on Optimization Problems of a Parallel System with a Random Number of Units. International Journal of Reliability, Quality and Safety Engineering, 24(05):1750022.

Eryilmaz, S. and Ozkut, M. (2020). Optimization problems for a parallel system with multiple types of dependent components. Reliability Engineering and System Safety, 199:106911.

Estabraqi, J. and Meshkat, R.S. (2021). Importance of components in a consecutive(k, k)-out-of- n : F system having two dependent subcomponents based on Birnbaum measure. Journal of Statistical Modelling: Theory and Applications, 2(1):59-65.

Garg, H., Rani, M., Sharma, S.P. and Vishwakarma, Y. (2014). Bi-objective optimization of the reliability-redundancy allocation problem for series-parallel system. Journal of Manufacturing Systems, 33(3):335-347.

Garg, H. (2021). Bi-objective reliability-cost interactive optimization model for seriesparallel system. International Journal of Mathematical, Engineering and Management Sciences, 6(5):1331-1344.

Gupta, R.C., Ghitany, M.E. and Al-Mutairi, D.K. (2012). Estimation of reliability in a parallel system with random sample size. Mathematics and Computers in Simulation, 83:44-55.

Hashempour, M. and Doostparast, M. (2020). Mathematics of evidences in dynamic systems with exponential component lifetimes and optimal sample size determination. Journal of Statistical Modelling: Theory and Applications, 1(1):91-100.

Hazra, N.K., Nanda, A.K. and Shaked, M. (2014). Some aging properties of parallel and series systems with a random number of components. Naval Research Logistics (NRL), 61(3):238-243.

Kim, S. and Ahn, N. (2021). An Optimal Algorithm for the Reliability Optimization Problem of a Series System with Selectable Alternatives. Industrial Engineering and Management Systems, 20(1):61-68.

Ito, K., Zhao, X. and Nakagawa, T. (2017). Random number of units for K-out-of- n systems. Applied Mathematical Modelling, 45:563-572.

Nakagawa, T. (1984). Optimal number of units for a parallel system. Journal of Applied probability, 21(2):431-436.

Nakagawa, T. (1985). Optimal number of units for a parallel system. IEEE Transactions on Reliability, 34(3):248-250.

Nakagawa, T. and Zhao, X. (2012). Optimization problems of a parallel system with a random number of units. IEEE Transactions on Reliability, 61(2):543-548.

R Core Team (2021). R: A language and environment for statistical computing. Austria, Vienna: R Foundation for Statistical Computing. https://www.R-project.org/.

Sauer, L., Lio, Y. and Tsai, T.R. (2020). Reliability inference for the multicomponent system based on progressively type II censored samples from generalized Pareto distributions. Mathematics, 8(7):1176.

Tavakkoli-Moghaddam, R., Safari, J. and Sassani, F. (2008). Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm. Reliability Engineering and System Safety, 93(4):550-556.

[^0]: *Corresponding author: elhambasiri@kub.ac.ir

