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Abstract: The functional linear regression model with points of impact is a recent
augmentation of the classical functional linear model with many practically important
applications. It is assumed that there exists an unknown number of impact points,
that is discrete observation times where the corresponding functional values possess
significant influences on the response variable. In this paper, we obtain some asymp-
totic properties of the model that can be used for further statistical inferences about
the response variable. Specifically, rates of convergence for eigenfunctions estimates of
the predictor covariance operator evaluated at the impact points estimates are derived.
These are important results, because we do not have true eigenfunctions and impact
points in applications and we have to use their estimates instead.
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1 Introduction

Functional data analysis (FDA) is a branch of statistics that analyzes data provid-
ing information about curves, surfaces or anything else varying over a continuum. In
its most general form, under an FDA framework, each sample element of functional
data is considered to be a random function. The physical continuum over which these
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functions are defined is often time, but may also be spatial location, wavelength, prob-
ability, etc. Intrinsically, functional data are infinite dimensional. The high intrinsic
dimensionality of these data brings challenges for theory as well as computation, where
these challenges vary with how the functional data were sampled. However, the high
or infinite dimensional structure of the data is a rich source of information and there
are many interesting challenges for research and data analysis. Advances in technology
facilitate collecting and storing the data that are essentially in the form of curves. Be-
cause in practice, one may collect the values of the curves at a finite set of points, the
multivariate methods can be applied to these kinds of data. However, the number of
points observed per function may be much larger than the total number of functions.
On the other hand, the existence of strong correlations between the values of a func-
tion at consecutive points can make the multivariate methods inefficient. Therefore,
some theoretical justification is needed to provide the required definitions and con-
cepts regarding the essential nature of the data. Ramsay and Silverman (2005) gave
the theoretical and methodological development of FDA.

An important part of FDA is functional linear regression. This model has been
studied in depth in theoretical and applied statistical literature. The most frequently
used approach for estimating the slope function then is based on functional principal
components analysis (FPCA). See, e.g., Frank and Friedman (1993); Bosq (2000);
Muller and Stadtmuller (2005) in the context of generalized linear models. Alternative
approaches and further theoretical results can, for example, be found in Crambes et
al. (2009), Cardot and Johannes (2010), Comte and Johannes (2012), Delaigle and
Hall (2012), Khademnoe and Hosseini-Nasab (2016), and Shi and Cao (2022). Hall
and Horowitz (2007) showed that the approach based on FPCA to estimating the
slope function, achieved optimal convergence rates. James et al. (2009) proposed an
approach to obtain interpretable, flexible and accurate estimate of the slope function.
Li and Hsing (2010) considered a functional linear model, where only a finite number
of the predictor projections affects the response variable. They focused on the FPCA
to determine the number of effective projections.

To our knowledge, Mckeague and Sen (2010) are the first to explicitly study iden-
tifiability and estimation of a “point of impact”, that is, discrete observation time
where the corresponding functional value possess significant influence on the response
variable, in a functional regression model. They show that consistent estimators are
obtained by least squares, and calculated the convergence rates of the impact point
and the slope function estimators. Kneip et al. (2016) considered functional linear re-
gression, where scalar responses are modeled in dependence of i.i.d. predictor random
functions. They studied a generalization of the classical functional linear regression
model and assumed that there exists an unknown number of points of impact. In
addition to estimating a functional slope parameter, they determined the number and
locations of points of impact as well as corresponding regression coefficients. They
showed that this number can be estimated consistently. Furthermore, rates of con-
vergence for location of impact points estimates, regression coefficients and the slope
parameter were derived. Based on the work of Kneip et al. (2016), Poss et al. (2020)
investigated a nonparametric functional regression with points of impact when the
response variable is scalar. Liebl et al. (2020) used the spline approach introduced
by Crambes et al. (2009) to estimate the slope function and coefficients in the func-
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tional linear regression model with points of impact, and showed the efficiency of this
approach by a simulation study.

Functional linear regression models with points of impact have many applications in
some fields including engineering, psychology, medical sciences and etc. For example,
in genome-wide expression studies, we may identify the location of genes that their
activity is associated with clinical outcomes, or psychologists may be interested in un-
derstanding the moments of an affective documentary video that can recall a particular
emotional state for the video viewers.

In this paper, we investigate some asymptotic properties of the estimators provided
by Kneip et al. (2016), which are required in further statistical inferences. The paper
is organized as follows. In Section 2, we introduce functional linear regression model
with points of impact. Section 3 contains main results of our work, where we derive
some asymptotic properties of the estimators in the functional linear regression model
with points of impact. The results of analyzing Google AdWords data are found in
Section 4. Finally Section 5 contains our conclusions.

2 Model and notations

2.1 Functional linear regression model with points of impact

We consider linear regression involving a scalar response variable Y and a functional
predictor variable X € L?(Z), Z = [a, b], where [a,b] is a bounded interval of R. It is
assumed that data consist of an i.i.d. sample (X;,Y;), i =1,...,n, from (X,Y). The
functional variable X is such that E[[, X?(t)dt] < oo and for simplicity the variables
are supposed to be centered in the following: E(Y) =0and E(X(t)) =0fort € Z, a.e.
In this paper, we study the following functional linear regression model with points of
impact

s
Yi:/B(t)Xi(t)dt—i—ZﬁrXi(TT)+5i7 i=1,...,n, (1)

z r=1
where €;, i = 1,...,n are i.i.d. centered real random variables with E(e?) = 02 < oo,

which are independent of X;(t) for all ¢, 3 € L?(Z) is an unknown, bounded slope
function and [ 3 (¢) X; (t) dt describes a common effect of the whole trajectory X;(-)
on Y;. In addition, the model incorporates an unknown number S € N of “points of
impact”, that is, specific time points 71, . . ., 7¢ with the property that the corresponding
functional values X;(71),. .., X;(7s) possess some significant influence on the response
variable Y;. Throughout the paper, we will assume that all points of impact are in the
interior of the interval, 7, € (a,b), r =1,...,5.

2.2 Parameter estimates

In model (1), the function B(t), the number S > 0, as well as 7. and S,, r = 1, ...,
S, are unknown and have to be estimated from the data. Let Ay > Ao > --- > 0
denote the nonzero eigenvalues of the covariance operator I' of X, while 1,19, ...
denote the corresponding system of orthonormal eigenfunctions. We use the Kneip et
al. (2016) method to estimate the number and locations of impact points. In situations
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where it can be assumed that [ 3 (t) X; (t)dt = 0 a.e., we have Y; = Z BrXi (1r) +

gi, ©=1,...,n and the regression coefficients may be obtained by least bquareb method
when replacmg S by S and the unknown points of impact 7, by their estimates 7.
More precisely, in this case an estimator 8 = (f1,.. .,BS)T of B = (By,...,Bs)" is
determined by minimizing Y .-, (Yi—ZSS:l bs X;(7s))? over all possible values by, . .., bg.
In the general case with S(t) # 0 for some ¢, let M, A, ... and 1,1, ... denote
eigenvalues and eigenfunctions of the empirical covariance operator of X1, ..., X,. This
is easily verified that fab Bt)X;(t)dt = > o2, an(Xi, ), where o, = (B,¢,). Given
estimates 71, ..., 74 and a suitable cut-off parameter k, estimates ,é = (Bl, e ,Bg)T

B=(B1,....0s)  and &1, ..., dy of ay, ..., oy, are determined by minimizing > ;- (Y;—
Z’: L ar(X ) — Zf 1bsXi(75))? over all a,, by, 7 =1,...,k, s = 1,...,5. Based
on the estimated coefficients &g, ..., &k, an estimator of the slope function 3 is then

given by B(t) = Sor_, Gy (t).

3 Main results

The theoretical properties related to this work are presented in Theorems 3.1-3.4,
below.

Theorem 3.1. If the conditions of Theorem 5 of Kneip et al. (2016) hold, then for
large enough positive integer j, we have

o yhyd

Z S - < const.j log j.
« [\ = A

I#j

Proof. We are first going to decompose the sum into four terms as follows

< APA
;IM " —Ti+T+T+T
J
where
(3] AZN2 i1 332 2\ )2 o AA?
A2 A2 A A2 A AP\
Z Jyﬁzzlﬂ,ﬁzlﬂ,nz —
—1 )‘] l:[1]+1 |>\l ]| |>\l ] —2j+ ‘ l_)\ ‘

Now, look at the terms of the above relation. Hall and Hosseini-Nasab (2006) showed
that if the Assumptions 3 and 4 of Kneip et al. (2016) hold, then

max{l,j}
|l — jlmax{\;, \;}

Thus, based on conditions of Theorem 5 of Kneip et al. (2016) it is concluded that

LYY :
7j
Zl i\ < const. Z l_ lj)/\l

|A; — M|7h < const.
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31 1.1

< const Z LA
- — (=DM
3] .
= D P
cons ;j—l
(4]
< const.jz - J 7
1=1 J— [5]
< const.j,
Tl BPY Y- 2L AFAE
J J
= t
T2 Z PV Z G — DN
1=[4)+1 I=[5]+1
i—1 1
AZA?
< const Z ( L ;)‘/7\
=[5+ l
Jj—1 1
= const.j Z —
=i+ 7
Jj—1
< const.j(1+/ - dx)
AEFEE
< const.jlogj,
NPV 5 APARL
T3 = —J < const. J
zgﬂ RYER Y] z_;d (T=4)A;
2; !
< const —
=41
2j
< const.j Z —
=41
< const.jlogj,
< ATA? < ATA?
Ta= Z —J1 = const. J
1=2j+1 A= Al 1o N TN
< const. Z J
1=2j+1 Aj = A
< cons.jlogj.

See Khademnoe and Hosseini-Nasab (2016) to prove the last inequality. Based on the
above results, it is concluded that
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< APAZ -
g ——— < const.jlogj.
= A=Al
Hence the result follows and the Theorem 3.1 is proved. O

Note that the result given in Theorem 3.1 is a general result in functional linear
regression. Theorem 3.1 is important for obtaining the asymptotic results related
to the estimators in functional linear regression, and then for finding the asymptotic
distribution of prediction in the functional linear regression model with points of impact
and will be widely used in our next works.

Definition 3.2. Y,, = O,(n%) if and only if for each ¢ > 0, there exist M > 0 such
that P(|n=%Y,|> M) <, for all n.

Theorem 3.3. Suppose that there exist some p > 1 and some 0? < C < oo such that
Clj=m < X\; <Cj " and A\j — N\jy1 > C71j7#7L for all j > 1. Under the conditions
of Theorem & of Kneip et al. (2016), forr=1,...,5 and j > 1 we have

Proof. We have

Ly;(t) = E[X,¢)X(1)],

for j = 1,2,.... The Cauchy-Schwarz inequality, Assumption 3 and Equation (4.6) of
Kneip et al. (2016), together imply that

|¢j(7ﬁr)_wj(7_r)| = A;l

D (7)) - F(wm)\

o —1
= A

< A WEX ) AE((X () — X ()2

= X\ VEX ) - X))
= A 20,(n7) = 0,(j n ).

B[00 (X() - X() |

O

Theorem 3.4. Under the conditions of Theorem 3.3, forr = 1,...,8 and j > 1 we
have

. . P
$j(F) = Pj(r) + Op(j2 ™).
Proof. Equation (A.11) of Kneip et al. (2016) implies that

A=A +0,n7),
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while (A.19) from Kneip et al. (2016) yields

thus

By Taylor expansions we have
A+ 0p(n =)™ = A 4+ 0y (n ),
and from Assumption 3 of Kneip et al. (2016) we obtain
)\;1 < const.j*.

These results and (4.6) of Kneip et al. (2016) together imply that

(0 (F) — D3 (7)) < (0(G*) + 0p(n7)).0p(n™") = O, (j*n ™),

and the assertion of the theorem is an immediate consequence. O

4 Application to real data

The methodology is applied to a real data set called Google AdWords. The data set is
important and one of the most popular online advertising platform. The main pricing
mechanism at Google AdWords is the so-called Pay-Per-Click (PPC) mechanism. Here,
advertisers (e.g., an online outdoor shop in our application) can bid for a sponsored
“impression” to be presented along with Google’s search results when a user search a
query related to a specific keyword. The basic building block of an online ad campaign is
a text collection of keywords related to the promulgated products. The limited number
of sponsored impressions is allocated by an auction. When impression comes out on
the display, their advertisers are selected according to their ad-rank, which is basically
their original bid, that is, the maximum “costs-per-click” an advertiser is willing to pay
times the quality score. The relevance of an advertiser’s impression is measured at a
discrete metric from 1, the lowest, to 10, the best. Google AdWords auctions are time
continuous and an advertiser only pays if a user clicks on the displayed impression.
To model the relationship between the yearly clicks and the yearly trajectories
of daily impressions from April 1st, 2012 to March 31th, 2013, Liebl et al. (2020)
used a functional linear regression model with points of impact. More specifically,
they used the logarithm of the yearly sum of clicks as the response variable, that is
Y, = log(Zfi‘r)l clicks;t), where the index i denotes the ith keyword of the given ad
campaign. Moreover, X;(t) = log(impressions;), i =1,...,903, and t = 1,.. ., 365.
Using Kneip et al. (2016) estimation procedure, we have recognized five points of
impact. Locations of these impact points in [0,1] are as follows: 71 = 0.2 (The 75th
day), 72 = 0.7 (The 257th day), 73 = 0.04 (The 14th day), 74 = 0.87 (The 316th day),
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Table 1: Some of the estimated eigenfunctions of the covariance operator X evaluated

at the impact points estimates 7,; 7 =1,...,5. For each j, the estimated eigenfunction
;(-) is evaluated at the impact points estimates 7,.; r =1,...,5.

J r

1 2 3 ! 5

T 0.878 1.135 0.965 1.038 1.049

2 1.247 -1.328 0.797 -0.978 1.153

3 0460 0.782 0.581 0.575 0.158

4 -0.340 -1.418 -0.950 1.632 0.569

5 -0.560 1.014 -1.389 -0.024 0.328

10 0.717 0.891 -0.100 2.366 -0.398

0

15 -0.928 -1.180 -0.691 0.894 1.039
20 0.383 -0.723 0.288 2.422 1.415
30 -1.308 0.708 0.634 1.244 1.358
40 -1.522 -1.104 -0.181 -0.408 -0.389
50 -1.173 -0.216 -0.551 0.168 -1.215

and 75 = 0.31 (The 113th day). Table 1 provides some of the estimated eigenfunctions
of the covariance operator X evaluated at the impact points estimates 7,.; r =1,...,5.
Based on Theorems 3.3 and 3.4, these estimates can be used asymptotically for making
any inference about the true values of the eigenfunctions of the covariance operator X
evaluated at the impact points 7.; r =1,...,5.

5 Conclusions

Based on Theorems 3.3 and 3.4, the estimators ¢;(7,) and Jjj (7) have the same rates of
convergence for estimating 1;(7,) and 1;(7,), respectively. These are important results,
because we do not have 7, and 1); in practice and we have to use their estimates instead.
The obtained asymptotic properties will be used in many statistical inferences about
the functional linear regression model with points of impact, for example for finding
the asymmetric distribution of prediction and confidence intervals, and performing
hypothesis tests.
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