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Abstract: In this paper, we introduce a novel family of statistical models called a
new alpha power type-1 family of distributions. Three sub-cases of the family are
discussed. Based on the novel family, a special model, explicitly, a new alpha power
type-1-Weibull distribution is studied in depth. The new model has very interest-
ing patterns of failure rates like increasing, decreasing, bathtub, and parabola-down.
Hence, it is so flexible. Based on the comparison analysis, among five well-known
models, it has an impact on health data analysis. Furthermore, the count data models
capable of handling overdispersion and zero-inflation are discussed and applied the real
health data. The zero-inflated negative binomial model in the frequentist approach has
shown its popularity in handling both overdispersion and zero-inflation simultaneously,
while the discrete Weibull model with the logit(q) link in the Bayesian approach out-
performed its counterparts.
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1 Introduction
In the training and implementation of health care and the health sector in general
(Malehi et al., 2015), statistical modeling and predicting real-life events are vital issue.
It is noted that the classical and modified statistical models have been applied to the
data in health applications. However, these models do not provide the best fit when
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the data show non-monotonic failure rates. This clearly demands the generalized or
extended versions of these classical models. This demand motivated many applied
researchers to propose a new flexible extensions of distributions by adding one or more
additional parameters to the baseline distribution. Therefore, this paper introduces a
novel new more flexible family of distributions called a new alpha power type-1 family
of distributions by introducing a new parameter α to the exponential type of family of
distributions. It is more suitable for skewed data with non-monotonic failure rates.

There are numerous recent developments in the distribution theory. Very recently,
Chesneau et al. (2022) introduced a new extended family of distributions called an
alternative to the Marshall-Olkin family of distributions. They used five different
estimation methods to reveal the alternating capacity of the new family to the existing
one and they used the sub-cases for the regression purpose.

Shehata et al. (2021) introduced a flexible family of distributions for the asymmetric
left-skewed bimodal real-life data with special attention to the flexibility patterns of
the probability density and hazard functions and they called it a novel two-parameter
G family of distributions.

It is observed that researchers used transformation, extension, and compounding
techniques to introduce a new family of distributions. Recently, Chesneau et al. (2019)
proposed a new family of probability distributions, based on a cosine-sine transforma-
tion by compounding a baseline distribution with the cosine and sine functions. Other
authors, Ahmad et al. (2019), used the same approach by adding an additional pa-
rameter to introduce a new class of probability distributions. They named the newly
suggested model the extended alpha power transformed family of distributions and the
extended alpha power transformed Weibull distribution is studied as a special model.
Another recent study on the discrete version is presented by Nekoukhou and Bidram
(2020). They introduced a similar class of distributions in the discrete case based on
geometric odds ratio.

The first part of this study introduces a new family of distributions called a new
alpha power type-1 family of distributions to the health data with the different patterns
of the data. The second part discusses the count models for overdispersion and zero-
inflation in the frequentist and Bayesian approaches. The rest of the paper is organized
as: Section 2 introduces a new alpha power type-1 family of distributions, Section 3
discusses special cases, Section 4 discusses basic statistical properties of the newly
proposed family, Section 5 presents an estimation of the model parameters of the new
sub-family of distributions, Section 6 illustrates the application to the new dataset.
Section 7 presents models for count outcomes, Section 8 gives the results for the count
models, and followed by summary points with concluding remarks are presented.

2 A new alpha power type-1 family of distributions
As we stated above numerous methods have been suggested in the literature to in-
troduce a new family of distributions. For instance, Nekoukhou and Bidram (2020)
introduced a class of distributions in the discrete case based on geometric odds ratio
with the cumulative distribution function (CDF)

F (z;ΩΩΩ, θ, α) = 1− θ(
R(z;ΩΩΩ)

S(z+1;ΩΩΩ) )
α

, z ∈ N0, 0 < θ < 1, α > 0,
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where ΩΩΩ is the vector of parameters for the baseline distribution, R (.; .) is an arbitrary
discrete CDF, and S (.; .) denotes its corresponding survival function. A well-known
method to introduce new distributions is given by the CDF and the probability density
function (PDF)

F (z;ξξξ) = 1− e−W [G(z;ξξξ)], z ∈ R, (1)

f (z;ξξξ) =
d

dz
{W [G(z;ξξξ)]} e−W [G(z;ξξξ)], z ∈ R,

respectively, where ξξξ is the vector of parameters and G (.; .) is the CDF for the baseline
distribution. In this paper, we suggest another new method to introduce a new family
of distributions called, a new alpha power type-1 family (NAPF1) of distributions. The
CDF of the NAPF1 is given by

F (z;α,ξξξ) = 1− α−W [G(z;ξξξ)], α > 1, z ∈ R, (2)

with PDF

f (z;α,ξξξ) =
d

dz
{W [G(z;ξξξ)]}α−W [G(z;ξξξ)] log(α), α > 1, z ∈ R. (3)

If α = e, the CDF in (2) becomes similar to (1). The function W [G(z;ξξξ)] fulfils the
conditions given in (i) and (ii), and it is straightforward that 0 ≤ F (z;α,ξξξ) ≤ 1. By
setting the odds ratio function W [G(z;ξξξ)] = G(z;ξξξ)

1−G(z;ξξξ) in (2) and (3), we obtain the
F (z;α,ξξξ) and f (z;α,ξξξ) of the NAPF1 as follows

F (z;α,ξξξ) = 1− α−( G(z;ξξξ)
1−G(z;ξξξ) ), α > 1, z ∈ R, (4)

f (z;α,ξξξ) =
log(α)g(z;ξξξ)

[1−G(z;ξξξ)]
2α

−( G(z;ξξξ)
1−G(z;ξξξ) ), α > 1, z ∈ R,

respectively. Next, the survival function S (z;α,ξξξ) = 1−F (z;α,ξξξ), and hazard function
h (z;α,ξξξ) = f(z;α,ξξξ)

S(z;α,ξξξ) are given by

S (z;α,ξξξ) = α−( G(z;ξξξ)
1−G(z;ξξξ) ), α > 1, z ∈ R,

h (z;α,ξξξ) =
log(α)g(z;ξξξ)

[1−G(z;ξξξ)]
2 , α > 1, z ∈ R,

respectively.
The extra parameter which replaces the exponent term in (4) gives the NAPF1 of

distributions with greater flexibility in fitting the application data.

3 Special cases
In this section, the special cases of the new family are discussed. Three important
members with Lomax distribution (NAPF1-Lomax), Gompertz distribution (NAPF1-
Gomp), and with Weibull distribution (NAPF1-Weib) are discussed (see Table 1, which
displays the baseline CDFs for the three distributions together with the CDFs and
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hazard functions for the three special cases). The analytical and graphical results for
the first two special cases are presented in the supplementary material. Particularly, as
an important case, the special case with two-parameter Weibull distribution is discussed
in detail.

Table 1: Some members of the NAPF1 of distributions.
Name G (z;ξξξ) F (z;α,ξξξ) h (z;α,ξξξ)

Lomax 1− (1 + λz)
−β

1− α−((1+λz)β−1) log(α)(λβ/(1+λz)(1+β)5)
(1+λz)−2β

Gompertz 1− e−λ/β(eβz−1) 1− α
−
(
eλβ−1

(eβz−1)−1
)
λ log(α)eβzeλ/β(e

βz−1)

Weibull 1− e−βzλ

1− α
−
(
eβzλ−1

)
λβ log(α)zλ−1eβz

λ

3.1 A new alpha power type-1-Weibull distribution
Let Z be a Weibull random variable with the CDF

G (z;ξξξ) = 1− e−βzλ

, λ, β > 0, z ≥ 0, (5)

where λ and β are the shape and scale parameters, respectively.
Based on (5), the g (z;ξξξ), S (z;ξξξ), and h (z;ξξξ) are given by

g (z;ξξξ) = λβzλ−1e−βzλ

,

S (z;ξξξ) = e−βzλ

,

h (z;ξξξ) = λβzλ−1,

respectively.
By inserting (5) into (4), we obtain the CDF of the NAPF1-Weibull (NAPF1-Weib,

for short) distribution as follows:

F (z;α,ξξξ) = 1− α
−
(
eβzλ−1

)
, α > 1, λ, β > 0, z ≥ 0.

In addition, the f (z;α,ξξξ), S (z;α,ξξξ), and h (z;α,ξξξ) are given by:

f (z;α,ξξξ) = λβ log(α)zλ−1eβz
λ

α
−
(
eβzλ−1

)
, (6)

S (z;α,ξξξ) = α
−
(
eβzλ−1

)
,

h (z;α,ξξξ) = λβ log(α)zλ−1eβz
λ

,

respectively. Following this, the graphical expression of the NAPF1-Weib model for
different parameter values is displayed as follows:

The f (z;α,ξξξ) of the NAPF1-Weib is elicited in Figure 1 (a) and it has attractive
flexible patterns like (i) decreasing-increasing-decreasing-constant or a polynomial type
(ii) right-skewed (iii) decreasing (iv) parabola-down (v) left-skewed. Figure 1 (b)
illustrates the h (z;α,ξξξ) for different parameter values, to show the different patterns
and how flexible the distribution is. It has the patterns like (i) increasing (ii) decreasing
(iii) bathtub (iv) parabola-down.
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(a) Visual illustration of the f (z;α,ξξξ) for the NAPF1-Weib.
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(b) Visual illustration of the h (z;α,ξξξ) for the NAPF1-Weib.
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Figure 1: Plots of the f (z;α,ξξξ) and h (z;α,ξξξ) for the NAPF1-Weib distribution for different sce-
narios.

4 Basic statistical properties of the new alpha power
type-1 family of distributions

In this section, we discuss the basic statistical properties of the NAPF1 distributions.
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4.1 Quantile function
Quantile function can be used for many purposes in theory and numerical applications
in statistics. For example, it can be used to draw simulations. The quantile function
of the NAPF1 distribution is obtained by applying the inversion technique. Thus,

Qxn (u) = FNAPF1(z;ξξξ)
−1,

1− α−( G(z;ξξξ)
1−G(z;ξξξ) ) = u, 0 < u < 1.

By solving the non-linear equation, it is derived as:

Qxn (u) =
log

(
α−(1−u)

)
1 + log

(
α−(1−u)

) . (7)

It should be noted that u∼ uniform(0, 1). The median(Med) is obtained by substituting
u = 1/2 in (7) as

Med =
log

(
α−1/2

)
1 + log

(
α−1/2

) .
Similarly, we can get the lower and upper quartiles by substituting u = 1/4 and u = 3/4
in (7), respectively.

4.2 Skewness and Kurtosis
The numerical results for Skewness(Sk) and Kurtosis(K) with the help of quartiles from
(7) can be given by

Sk =
(Q3 − 2Q2 +Q1)

(Q3 −Q1)
=

(q(0.75) − 2q(0.5) + q(0.25))

(q(0.75) − q(0.25))
,

K =
Q 7

8
−Q 5

8
+Q 3

8
−Q 1

8

Q 6
8
−Q 2

8

=
q(0.875) − q(0.625) + q(0.375) − q(0.125)

q(0.75) − q(0.25)
,

respectively.

4.3 Order statistics
Order statistics are widely used in applied statistics such as reliability and lifetime,
records, etc. Suppose that Z1, Z2, . . . , Zn is a random sample of size n following the
NAPF1 distribution with parameters (λ, β) and Z1:n, Z2:n, . . . , Zn:n are its correspond-
ing order statistics. Then, the density function of Zi:n for (i = 1, 2, . . . , n) is given by

fi:n (z) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
fNAPF1 (z;ξξξ) [FNAPF1 (z;ξξξ)]

i+j−1
.

By substituting the CDF and PDF of the NAPF1 (see (4) and (5)) into fi:n (z), we
obtain

fi:n (z) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
[log(α)]

i+1
[g (z;ξξξ)]

i−1 [
G(z;ξξξ)

]−2i−1
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×α−
[

G(z;ξξξ)

G(z;ξξξ)

]i−1
[
1− α

−G(z;ξξξ)

G(z;ξξξ)

]i+j−1

, z > 0,

fi:n (z) =

n−i∑
j=0

Ψjf
∗
NAPF1(z;ξξξ), (8)

where Ψj =
n!

(i− 1)!(n− i)!
(−1)j

(
n− i
j

)
, and f∗NAPF1(z;ξξξ) is the product of the

PDF and the CDF for the ith order statistics. The PDF of the order statistics for
NAPF1 can be obtained from (8) and its rth central moments and moments generating
function are given in the next section.

4.4 Moments and moment generating functions
Based on the PDF of the NAPF1 distribution given above, its rth central moments,
E (zr) = µ

′

r is obtained as follows

µ
′

r =

∫ +∞

0

zr
log(α)g(z;ξξξ)

[1−G(z;ξξξ)]
2α

−( G(z;ξξξ)
1−G(z;ξξξ) )dz,

=

∫ +∞

0

[log(α)]
i+1

zri−1 [g (z;ξξξ)]
i−1 [

G(z;ξξξ)
]−2i−1

α
−
[

G(z;ξξξ)

G(z;ξξξ)

]i−1

dz,

=

+∞∑
i=0

[
log(α)

i!

]i+1

Φr,i+1,

where
Φr,i+1 =

∫ +∞

0

zri−1 [g (z;ξξξ)]
i−1 [

G(z;ξξξ)
]−2i−1

α
−
[

G(z;ξξξ)

G(z;ξξξ)

]i−1

dz.

The moment generating function of NAPF1 can be obtained by using the last result of
µ

′

r in Mz (t) as

Mz (t) =

+∞∑
s=0

ts

s!
µ

′

r.

The next section deals with the maximum likelihood estimation for the model param-
eters of the NAPF1-Weib model.

5 Estimation
The method of maximum likelihood estimation for the model parameters for the
NAPF1-Weib is discussed in this section.

5.1 Maximum likelihood estimation
This sub-section deals with the computation of maximum likelihood estimators (MLEs)
for the model parameters of NAPF1-Weib. Let z1, · · · , zn be n observations of a random
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sample drawn from NAPF1-Weib with parameters α, λ, and β. Using the PDF of
NAPF1-Weib (see (6)), the likelihood function is written as

L (z1, · · · , zn | ξξξ) = (λβ log(α))n
n∏

i=1

zλ−1
i eβ

∑n
i=1 zλ

i α
−

∑n
i=1

(
eβzλi −1

)
,

and its log-likelihood function is given by

logL (z;α, λ, β) = n log(λ) + n log(β) + n log(log(α)) + (λ− 1)

n∑
i=1

log(zi)

− log(α)

n∑
i=1

(
eβz

λ
i − 1

)
+ β

n∑
i=1

zλi .

The model parameters are estimated by taking the first partial derivatives of the
logL(z;α, λ, β) with respect to each model parameter and equating them to zero.

Therefore,

∂ logL(z;α, λ, β)

∂α
=

n

log(α)α
− 1

α

n∑
i=1

(
eβz

λ
i − 1

)
,

∂ logL(z;α, λ, β)

∂λ
=

n

λ
+

n∑
i=1

log(zi)− log(α)β

n∑
i=1

eβz
λ
i log(zi)z

λ
i + β

n∑
i=1

log(zi)z
λ
i ,

∂ logL(z;α, λ, β)

∂β
=

n

β
+ log(α)

n∑
i=1

eβz
λ
i zλi +

n∑
i=1

zλi .

Subsequently, the MLEs of the parameters α, λ, and β can be obtained by solving the
non-linear equation

UnUnUn =

(
∂ logL(z;α, λ, β)

∂α
,
∂ logL(z;α, λ, β)

∂λ
,
∂ logL(z;α, λ, β)

∂β

)T

= 0,

using numerical methods such as Newton-Raphson or Broyden’s methods.

6 An application to the breast cancer data
The new data on time-to-recovery of 686 breast cancer patients are taken from patient’s
medical record cards that were enrolled from October 2012 to April 2017 in Nigist
Elleni Mohamad memorial referral comprehensive hospital (NEMMRCH), Hossana,
south Ethiopia.

We illustrate the fitting capacity of the NAPF1-Weib model to the data by com-
paring it to three-parameter exponential flexible Weibull extension (EFWE) of El-
Desouky et al. (2016), three-parameter Poisson inverse Weibull (PIW) of Joshi and
Kumar (2021), two-parameter truncated exponential-exponential (TEE) of Mahdavi
and Oliveira (2017), five-parameter exponentiated Weibull-Weibull (EWW) of Hannan
and Elgarhy (2016), and a four-parameter exponentiated generalized Frechet (EGF) of
Cordeiro et al. (2013).
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The information criteria (IC) such as (i) AIC (Akaike, 1974), (ii) CAIC (Bozdogan,
1987), (iii) BIC (Schwarz, 1978), and (iv) HQIC (Hannan and Quinn, 1979) are used to
discriminate the best model. In addition to these criteria, the log-likelihood (−2 logL)
of the fitted models is also calculated. In all these, the model with the least value is
taken to be the best model to fit the data.

Table 2: MLE of the parameters and the corresponding standard errors (SE. in the parentheses) for
the fitted models.

Dist. â α̂ β̂ γ̂ σ̂ λ̂
(SE.) (SE.) (SE.) (SE.) (SE.) (SE.)

NAPF1-Weib 32.000 0.012 3.566
(8.747) (0.002) (0.112)

EGF 123.438 0.475 11.770 1.045
(40.335) (0.100) (2.175) (0.114)

EWW 2.402 17.498 0.768 3.045 0.003
(0.447) (2.253) (0.055) (0.132) (0.002)

TEE 23.514 1.730
(1.942) (0.047)

PIW 1.316 3.673 3.682
(0.026) (0.293) (0.099)

EFWE 0.516 0.538 0.055
(0.007) (0.112) (0.007)

Table 3: Model adequacy measures for the fitted models.
Dist. AIC CAIC BIC HQIC −2 logL
NAPF1-Weib 1215.46 1215.49 1229.05 1220.72 604.73
EGF 1230.97 1231.03 1249.10 1237.99 611.48
EWW 1290.48 1290.57 1313.14 1299.25 640.24
TEE 1317.45 1317.47 1326.51 1320.96 656.72
PIW 1440.46 1440.49 1454.05 1445.71 717.23
EFWE 1435.40 1435.43 1448.99 1440.66 714.70

Table 2 displays the MLEs and standard errors of the NAPF1-Weib model along
with the five competing models (EGF, EWW, TEE, PIW, and EFWE). Table 3 gives
the model comparison result (model adequacy measures) for all models considered in
this section. The new proposed model NAPF1-Weib, based on the five criteria, is shown
to be the best-performing model among the five competing models. This shows the
new proposed model outperforms the set of similar competing models and is applicable
to health data.

The second part of this study is concerned with the adaptation and implementation
of the count models for the overdispersed and zero-inflated count health data in both
frequentist and Bayesian settings.

Discrete and count data are collected in many application areas, mainly medicine,
health, Biology, sometimes in finance and industry (Haselimashhadi et al., 2016; Cameron
and Trivedi, 2013). The are two precise examples in the health sector (medicine). The
first one is the length of stay in the hospital, usually used as a pointer of the quality
of healthcare and planning capacity within a hospital (Atienza et al., 2008; Carter and
Potts, 2014). The second one is the number of visits to a doctor (specialist) (José and
Santos, 2005), sometimes considered as a measure of demand in healthcare. The are
also some other examples in different areas of application like high-throughput genomic
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data generated by next-generation sequencing experiments (Bao et al., 2014; Ozsolak
and Milos, 2011; Robinson and Smyth, 2008) or lifetime data, such as the number of
cycles before a machine breaks down (Haselimashhadi et al., 2016; Nakagawa and Os-
aki, 1975). This kind of data can also be collected from reproductive health services. A
good example is the number of antenatal care (ANC) service visits of pregnant women
from early pregnancy to their 9 months of pregnancy period. This kind of study was
done by Workie and Lakew (2018) in Ethiopia, in which they used Bayesian count
regression models to determine the potential determining factors for this service in
health facilities.

Most researchers in the literature use the models Poisson (P), QuasiPoisson, Nega-
tive binomial (NB), Zero-inflated-Poisson (ZIP), zero-inflated-negative-binomial (ZINB),
Conway-Maxwell-Poisson (COMP), discrete Weibull (DW) and their mixtures with an-
other truncated form to model count data.

As implemented by Adesina et al. (2021), DW distribution gives hopeful results for
modelling count data as compared to the models P and NB distributions and their
mixtures such as Poisson Tweedie, zero-inflated regression, and COMP distribution.
It is also observed that this model can capture over and under-dispersion simultane-
ously and gives a closed-form analytical expression of the quantiles of the conditional
distribution (Sellers and Shmueli, 2010).

The Quasi-maximum likelihood estimation or Poisson maximum likelihood is taken
to be the well-known method of estimation of the model parameters in the frequentist
approach. This is because (i) it gives convenient or satisfactory (but may not be
accurate) results; (ii) it has no computational burden and is easily available in many
software packages; (iii) it is recommended when doubt exist about the form of the
variance function.

Recently, some studies have shown interest in adopting the Bayesian techniques for
estimating and fitting count data, as it is observed that it is efficient in its estimation.
This technique also has the capacity to deal with complex models that lacking ana-
lytically manageable likelihood functions, and are flexible to be adapted to produce
estimates that are excellent and perfect substitutes for maximum likelihood estimates
(Adesina et al., 2017; Cameron and Trivedi, 2005).

It is clearly known that analysing discrete count data by using the ordinary regres-
sion models will cause problem in the analysis results mainly invalid and or incorrect
estimates, confidence intervals (CI), and P-values. This can happen because these
kinds of data possess the commonly known feature of overdispersion and sometimes
zero-inflation and typically are highly skewed. Hence, it is not an easy task for re-
searchers to do this without evaluation of the nature of the data. In this study, we are
interested in exploring the appropriate fitting capacity of those models for count data
in the health application area.

7 Models for count outcomes
Assume that the random variable Y follows an exponential family of distributions with
the following PDF

f (y|η, ϕ) = exp{ [yη − ψ(η)]

ϕ
+ c (y, ϕ)}, y ∈ R+, (9)
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for definite fixed unknown parameters η and ϕ (often called natural or canonical and
dispersion parameter, respectively) and for known functions ψ(.) and c(., .). Then, it is
easy to write the first two moments by following the function ψ(.) as: E(Y ) = µ = ψ

′
(η)

and V ar(Y ) = σ2 = ϕψ
′′
(η), based on the computation of Molenberghs et al. (2007).

From this calculation, the mean and variance can be related as: σ2 = ϕψ′′[ψ
′−1(µ)] =

ϕν(µ), where ν(.) is a variance function defining the mean-variance relationship.
A basic example of exponential families for the normal, binary, count, and time-

to-event cases is given by Molenberghs et al. (2010). The normal one is seen as a
case of the exponential family for its particular feature that it needs an overdispersion
parameter which should exceed 1. Thus, it lacks a mean-variance relationship while
others are held to exist (Roozegar et al., 2022).

It is flexible to explain the relationship between the two variables Y and X, where
Y1,Y2, . . . ,YN are an N number of outcomes and X1,X2, . . . ,Xp are a p dimensional
vectors of covariates. This finds a member of the class called GLM, with an assumption
of Yi having f (yi | θi, ϕ) densities belonging to an exponential family. Model specifica-
tion can be done by modeling the means: µi = h(ηi) = h(xxxTi ξξξ), where h(.) is a known
function, and ξξξ is a vector of p fixed and unknown regression parameters (coefficients).
Usually, h−1(.) is taken to be a link function, while the natural link function is taken
to be h(.) = ψ

′
(.).

7.1 Models for overdispersion and zero-inflation
Let Yi be Poisson distributed random variables, then the probability mass function
(PMF) is given by

f (yi | λi) =
e−λiλyi

i

yi!
, yi = 0, 1, 2, . . . , i = 1, 2, . . . , n, λi > 0, (10)

for which the natural parameter ηi= log(λi), the mean µi = λi, dispersion parameter
ϕ = 1, and the variance function ν(µi) = µi = λi. The natural logarithm is for the
link function which gives an ordinary Poisson regression with log(λi) = xxxTi ξξξ.

From (10), it is observed that it presents the equality of variance-mean relationship.
However, in practice (in real data) it fails to hold true for the observed or sample
variance is greater than the sample mean and which leads to overdispersion.

This can happen due to the absence of the relevant covariates, heterogeneity of
sampling units, hierarchical structures, and excess of zeros (Demétrio et al., 2014;
Grunwald et al., 2011). This initiates us to adapt models that take into account this
problem and to overcome incorrect and misleading inferences (Oliveira, 2014).

Thus, it is reasonable to extend the Poisson model by adding a dispersion parameter
ϕ, by assuming λi vary according to some distributions and let’s take λi as continuous
for its positive support, then this leads to λi to follow a gamma distribution whose
PMF given by

f (yi | λi, ϕ) =
Γ(yi +

1

ϕ
)

Γ(
1

ϕ
)Γ(yi + 1)

(
ϕλi

1 + ϕλi

)yi
(

1

1 + ϕλi

) 1
ϕ

, yi = 0, 1, 2, ..., (11)

ϕ > 0, λi > 0.



Family of distributions and modelling overdispersion 94

The mean and variance, respectively given as: E(Yi) = λi and V ar(Yi) = λi + λ2iϕ.
The model given by (11) is said to be NB which relatively is more flexible and can
accommodate more additional shapes than the one given in (10).

One of the prominent data issues in this study is zero-inflation and it is carried out
by ZIP and ZINB models which approach is verified by other scholars like Abdullah
and Ahmad (2013); Güneri and Durmuş (2021); Hu et al. (2011); Famoye and Singh
(2006); Altun (2018) and Adesina (2021).

7.2 Discrete Weibull distribution
The DW distribution was first introduced by Nakagawa and Osaki (1975) as a dis-
cretized form of a continuous Weibull distribution, which is analogous to the geometric
distribution that is the discretized form of the exponential and is termed to be a type
I DW. Latter, Chanialidis (2015) introduced other types of DW distributions as type
II and III. Type I has unbounded support as compared to type II, also type I has a
more straightforward interpretation as compared to type III (Adesina et al., 2017).

Let the random variable Y has a type-I DW distribution, then the CDF of Y is
defined as

F (y; q, β) =

{
1− q(1+y)β , y = 0, 1, 2, . . .

0, if y < 0,

and the PMF of Y is given by

f (y; q, β) = qy
β

− q(1+y)β , y = 0, 1, 2, . . . .

For the DW regression model, let the random variable Y be the vector of the
response variables with the possible assumed values 0, 1, 2, . . . and let X1, X2, . . . , Xp

be a p-dimensional vector of covariates. It is further assumed that the conditional
distribution of Y given X follows a DW distribution with parameters q and β. There
are a number of possible ways to link the parameters q and β to the covariates, the
commonly suggested are a logit and log links that follow
(i) q is related to X as follows

log

(
q

1− q

)
= θ0 + θ1x1 + · · ·+ θpxp,

or
log (− log(q)) = θ0 + a1x1 + · · ·+ θpxp. (12)

(ii) β is related to X as follows log (β) = A0+A1x1+ · · ·+Apxp,or in the matrix form

log (β) = XA, (13)

where A = (A0, A1, · · · , Ap)
T
.

In order to handle the more intricate correlations, Bolstad (2007) suggested one
extra parametrization for q by a logit link function and a linkage between the sec-
ond parameter β and the covariates, which further has presented it to be reasonably
operational for the statistical conclusion.
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7.2.1 Bayesian case for discrete Weibull model

The regression model for the Bayesian DW model can be devised by considering the
regression parameters θ = (θ0, θ1, . . . , θp)

T and A = (A0, A1, . . . , Ap)
T . This approach

has two advantages: (i) there is a likelihood of considering the prior information, (ii)
this procedure gives an automatic display of credible intervals (CI) for all the model
parameters. To formulate the likelihood function for the approach, let us suppose the
following pieces of informations are given, the response variable yi and the row vector
of covariates xi = (1, xi1, xi2, . . . , xip), where i = 1, 2, . . . , n and Y is for the vector of
the response variable and X is for the vector of covariates. Hence, with the help of this
idea and combining (12) and (13), the likelihood function is given by

L (θ,A | X,Y ) =

n∏
i=1

( exiθ

1 + xiθ

)y
xiA

i

−
(

exiθ

1 + exiθ

)(1+yi)
xiA

 . (14)

It is noted from (14) that q = exiθ

1+exiθ
. The prior distribution on the regression param-

eters is considered as the DW model has no conjugate prior. Thus, the Laplace prior
for θ and A are considered (Sellers and Shmueli, 2010), which take the following form

p (θ | µ) =
µ

2
e−µ|θ|, µ > 0,

p (A | γ) =
γ

2
e−γ|A|, γ > 0.

The maximization of the posterior density under those priors, for the pre-specified µ
and γ, resembles maximising the logL penalised log-likelihood as

logL (θ,A | X,Y )− µ

p∑
j=1

| θj | −γ
p∑

k=1

| Ak | .

Further consideration of Gamma (α, λ) hyper prior for µ and γ to get the posterior
density (Sellers and Shmueli, 2010) can be done as

p (θ,A | X,Y ) ∝ L (θ,A | X,Y )× p (θ | µ)× p (A | γ)× p (µ)× p (γ) .

8 Results for count models
The data for this part is collected on congestive heart failure (CHF) disease patients
from NEMMRCH at Hossana, South Ethiopia. The data is taken from 107 CHF
patients following their treatments from September 30, 2018 to June 25, 2020. The
descriptive summary measures for the data, the numerical and graphical confirmation
of overdispersion and zero-inflation in the data are given in the supplementary material.
The variable of interest (response), here, is the number of doctor visits (the number of
times the patients have seen their doctor). The important results of the models will
be presented in this section.
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8.1 Test result for overdispersion and zero-inflation
The presence of overdispersion is tested by using the function “dispersiontest(chf, trafo
= 1)” of the R package AER and it is distributed asymptotically normal with mean
zero and variance 1. The input “chf” of the function represents the response variable
and “trafo=1” represents the linear transformation. The test statistic with the p-value
and alpha (z = 1.862, P-value = 0.025, and alpha= 1.120) confirms that the data is
overdispersed due to the known feature in the data. This feature as shown next is due
to the excess structural zeros in the data. Thus, since the P-value is much smaller than
the z-value and the alpha is greater than 1, over-dispersion in the data is confirmed.

The test for excess zeros with the test statistic distributed as Chi-square with 1 df
(Chi-square = 19.713, df = 1, and p-value=8.99e-06) shows that there is zero-inflation
in the data.

8.2 Model comparison for the count models for the frequentist
approach

This sub-section presents the numerical results for the count models in the frequentist
settings and the comparison among these models is based on the -2logL, AIC, and BIC
measures. The significant covariates are identified by ∗.

Table 4: Comparison of P, NB, ZIP, ZINB, and COMP models. The table summarizes the parameter
estimates and standard errors (SE.) together with model comparison criteria results.

P NB ZIP
Effect Parameter Estimate (SE.) Estimate (SE.) Estimate (SE.)
Intercept ξ0 -0.155(0.395) -0.694(0.274)∗ -0.594(0.310)
sex-male ξ1 -0.309(0.141)∗ -0.203(0.101)∗ 0.033(0.117)
time ξ2 0.570(0.056)∗ 0.315(0.031)∗ 0.368(0.029)∗
Place-Urban ξ3 -0.015(0.141) -0.019(0.097) -0.019(0.110)
wieghts ξ4 0.006(0.007) 0.005(0.004) 0.004(0.005)
heart-disease-yes ξ5 0.240(0.142) 0.155(0.095) 0.027(0.110)
-2logL 530.6 959.4 448.8
AIC 1075.2 973.4 923.5
BIC 1101.8 1000.0 972.9

ZINB COMP
Effect Parameter Estimate (SE.) Estimate (SE.)
Intercept ξ0 -2.911(1.224)∗ -0.785(0.375)∗
sex-male ξ1 1.067(0.467)∗ -0.167(0.142)∗
time ξ2 0.711(0.139)∗ 0.302(0.034)∗
Place-Urban ξ3 -0.040(0.428) 0.035(0.127)
wieghts ξ4 -0.010(0.020) 0.004(0.006)
heart-disease-yes ξ5 -0.742(0.475) 0.059(0.128)
-2logL 448.8 476.3
AIC 921.5 964.7
BIC 967.1 987.5

Based on the results of Table 4, the five models are compared based on the model
comparison criteria. Accordingly, the model improvement is done in the order ZINB,
ZIP, COMP, NB, and P, respectively. Thus, the first four models are better performing
compared to the P model. Furthermore, the ZINB is the best frequentist count model
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to deal with the count overdispersed data (the number of doctor visits that the patients
committed).

Based on the ZINB model, the male patients were longer visited by doctors than
the female patients, and the patients with a longer time until they get recovered longer
visited their doctors than patients with relatively shorter follow-up times.

8.3 Model comparison for the count models for the Bayesian
approach

In this sub-section, Bayesian DW with log and logit link is compared to the Bayesian
P without and with random effects, Geometric (Ge), and NB models. The R package
MCMCglmm with MCMCglmm() function does not support the mixture models ZIP,
ZINB, and COMP. Hence, the potential candidate models in the Bayesian setting are
P, NB, Ge, and DW.

Table 5: Comparison of the six models in the Bayesian approach using the ICs, where the table
displays posterior mean for the parameter, and the 95% CIs (lower CI (l-95% ), upper CI (u-95% ))
for the posterior mean of the parameters.

DW(Log) DW(Logit) P-MCMCglmm
Par. Post.mean Lower Upper Post.mean Lower Upper Post.mean Lower Upper
θ̂0 -0.051 -0.560 0.650 -0.310 -0.945 0.374 -0.849 -1.316 -0.442 ∗
θ̂1 0.174 -0.075 0.382 -0.235 -0.452 0.072 -0.193 -0.362 -0.032 ∗
θ̂2 -0.564 -0.664 -0.446∗ 0.587 0.477 0.709∗ 0.327 0.279 0.384∗
θ̂3 0.015 -0.226 0.234 -0.049 -0.261 0.246 -0.003 -0.172 0.146
θ̂4 -0.005 -0.016 0.004 0.007 -0.006 0.018 0.007 0.001 0.016 ∗
θ̂5 -0.147 -0.392 0.063 0.186 -0.061 0.450 0.160 -0.079 0.332
β̂ 2.099 1.884 2.345∗ 2.081 1.860 2.315 ∗
AIC 937.21 935.92 974.43
BIC 963.81 962.51 1001.02
DIC 936.84 934.79 969.64

P-MCMCglmmR Ge-MCMCglmm NB-MCMCglmm
Par. Post.mean Lower Upper Post.mean Lower Upper Post.mean Lower Upper
θ̂0 -0.447 -0.899 -0.157∗ 0.309 -0.297 1.040 -0.149 -0.897 0.619
θ̂1 -0.163 -0.371 -0.059∗ 0.152 -0.009 0.519 -0.315 -0.572 -0.032∗
θ̂2 0.304 0.260 0.354∗ -0.291 -0.365 -0.224∗ 0.567 0.461 0.686∗
θ̂3 -0.074 -0.185 0.094 0.084 -0.087 0.313 -0.018 -0.282 0.238
θ̂4 0.002 -0.002 0.010 0.001 -0.011 0.013 0.007 -0.007 0.020
θ̂5 0.033 -0.062 0.209 -0.174 -0.289 -0.079∗ 0.243 -0.029 0.501
AIC 976.12 1071.02 1082.14
BIC 1002.72 1097.61 1108.73
DIC 969.40 1061.03 1100.70

Table 5 displays the results for the Bayesian approach for the models DW (both
for log and logit links), P-MCMCglmm without random effect (P-MCMCglmm), P-
MCMCglmm with a normal random effect (P-MCMCglmmR), Ge-MCMCglmm and
NB-MCMCglmm. The normal random effect is imposed on the P model to refer to
the correlation in the data. The models P, Ge, and NB were treated with the help of
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the R package MCMCglmm. The discrimination of the models is done based on the
three ICs, where the model with the least ICs is chosen to be the best model. In the
class of MCMCglmm, the P model without random effect outperformed the P model
with random effect, Ge, and NB. The DW model (for which the R package BDWreg is
implemented) with both link functions is best model to fit the data and it handles the
overdispersion in the data.

Furthermore, DW with logit(q) link function or DW(Logit) is a better model as
compared to DW(Log). Hence, further Bayesian inference can be done with this model.
Time (time until a patient recovers) and β are significant in DW models for both link
functions. Most of the covariates including β have a positive relationship with the
response variable.

Additionally, as displayed in the supplementary material, for simulated data, the
95% HPD shows the parameters interval where they are significant. Thus, the red lined
cross like interval shows the significant parameters which Table 5 displays.

Discussion and conclusions
In this study, a new data set (breast cancer) is considered and the proposed model is
compared to the recent models. The NAPF1-Weib, EFWE, EGF, EWW, TEE, and
PIW models were applied to the above mentioned public health data. The NAPF1-
Weib model has shown its supremacy based on the five adequacy measures.

The results of the frequentist approach are obtained by using the maximum like-
lihood estimation technique. The count models are very important for the regression
modelling of count data as discussed by Adesina et al. (2017); Abdullah and Ahmad
(2013); Güneri and Durmuş (2021); Hu et al. (2011); Famoye and Singh (2006); Altun
(2018) and Adesina (2021). In this study, the known five-count models (P, NB, ZIP,
ZINB, COMP) were compared. The ZINB outperformed the others and it handles
both overdispersion and zero-inflation in the present data.

The Bayesian approach outperformed the frequentist counterpart. In the Bayesian
approach, the DW model with the logit(q) link outperformed the DW model with the
log(q) link and the models in the class of MCMCglmm, which is supported by the
results of Adesina et al. (2017) and Hadfield (2010). This makes it the best model for
overdispersed count data in public health. In the absence of the Bayesian DW model,
the Bayesian P model with normal random effects can treat correlation besides the
overdispersion in the count data. The DW model is a discrete model used for both
under-dispersed and overdispersed count data.

The newly proposed family of distributions is taken to be an alternative performing
family to the exponential type family. The DW model with the logit(q) link is the best
model capable of dealing with the overdispersion in the count data.
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