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Abstract: Statistical methods are practical and unavoidable in analysis of physical
and engineering results. Study of anufacturing errors and uncertainties in construction
of radio frequency structures is one of cases which statistical quantities is used. In this
paper, we quantify uncertainty in the cutoff frequency of a waveguide using the chaos
polynomial expansion method. Different distributions for uncertainty in the waveg-
uide width are considered. We then investigate the effect of the distributions on the
waveguide cutoff frequency. Using statistical quantities, we determine the amount of
acceptable error during the construction of the waveguide such that it does not affect
the wavequide performance.
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1 Introduction
During the last few decades, computer simulations and statistical methods are usually
used for the design and analysis of many radio frequency (RF) structures. These
structures have an uncertainty in their dimensional parameters due to manufacturing
errors (Mesogitis et al., 2014). It is essential to study how these uncertainties affect on
the results of the structure, in other words, determination of uncertainty quantification
(UQ) is necessary to achieve an acceptable level of reliability in the results. The most
important step in the UQ process is choosing the random distribution for the uncertain
parameter. In some cases, the determination of these distributions can be carried out
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using experimental results. Here we attempt to show the effect of choosing different
distribution of an uncertainty for waveguide width on the cut off frequency (fc). For this
purpose, UQ process must be carried out using an appropriate method, in some cases,
which is the function of outputs are theoretically defined, monte carlo (MC) method is
used. MC method needs a lot of random samples of inputs to achieve results with the
desired accuracy which causes the result’s computation time to be increased. One of the
effective UQ methods is the generalized Polynomial Chaos expansion (gPC) (Ghanem
and Spanos, 1991). The gPC method has been used extensively in the last decade to
model uncertainty in many domains: stochastic elastic materials, finite deformations,
heat conduction, incompressible flows, reacting flows, finding the resolution of the
uncertain linear boltzmann equation, approximating of kinetic equations for kinetic
flocking models with Uncertainties, error evaluating in chromatography methods and
solving stochastic equations (Acharjee and Zabaras, 2006; Wan et all., 2006; Le Maitre
and Knio, 2007; Poette, 2019, 2022; Carrillo and Zanella, 2019; Pollock et al., 1979;
Xiu, 2009).

The geometry parameters of a superconducting radio frequency cavity were mod-
eled as uniformly distributed random variables (Schmidt et al., 2014). Hadj Kacem
et al. (2022) deal with the problem of the uncertainties interaction in the design pa-
rameters of a two-stage gearbox of a wind turbine. For this purpose, the gPC was
applied to simulate the dynamic behaviour of the wind turbine gearbox, using uniform
distribution for uncertain parameters. Another study, DeGennaro et al. (2015) demon-
strated the utility of gPC methods as a fast and accurate method for quantifying the
effects of ice shape uncertainty on the performance of airfoil. The results being in good
agreement with MC method also confirm that gPC methods are much more efficient
for the canonical airfoil icing uncertainty quantification problem than MC methods.

In most physical problems, the distribution of random variables is considered nor-
mal according to the central limit theorem (Barany and Vu, 2007). Or, for simplicity,
these distributions are assumed to be uniform, but so far, the effect of choosing these
distributions on the results has not been investigated. In this study, we investigate
the effect of choosing these distributions on the results. Here, we use the gPC method
instead of a MC method to determine the uncertainty of fc, in which its theoretical
equation is defined. The reason for using this method is that we can determine which
types of those distributions have a better agreement in comparison with the theoretical
result, fc. Another important subject in designing and building waveguides is deter-
mining how much manufacturing error is acceptable, which is called as dimensional
tolerance (Ameta et al., 2015). In this paper, the gPC method are presented in Section
2. The Uncertainty quantification of cutoff frequency of the waveguide are expressed
in Section 3. In Section 4 the validation results of the gPC method in comparison
with MC method are presented, after that, the effect of the different input distribu-
tions is discussed, and in the final part of this section, the dimensional tolerance of the
waveguide is determined

2 The univariate gPC method
In the gPC method, the uncertainty influence of random model parameter, x, on a
desired quantity Y of the model is investigated. The quantity Y can be expressed as a
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convergence series of orthogonal polynomials

Y =

N∑
i=1

ciψi(ξi),

where ψi(ξi)s are the orthogonal polynomials which are dependent on the random
variables ξ having some standard distributions, N is the degree of polynomial expansion
and ci are the expansion coefficients. Orthogonal polynomial types suitable for each
standard distribution of ξ are listed in Table 1.

Table 1: Distributions types and orthogonal basis polynomial support ranges I
(Schmidt et al., 2012).

Distribution type Orthogonal basis polynomial I
Normal Hermit [−1, 1]
Uniform Legendre [−1, 1]

Beta Jacobi [1, 1]
Exponential Laguerre [0, 1]

Gamma Generalised Laguerre [0, 1]

The coefficients ci are determined by projecting the truncated expansion of Y on
each basis polynomial and exploiting its orthogonality in the domain I in Table 1.

ci = ⟨ 1

ψi(ξ)ψj(ξ)
⟩
∫
I

Y (ξ)ψ(ξ)f(ξ), (1)

where f(ξ) is probability density function(PDF) of the random variables ξ. Since the
quantity Y depends on the parameter x, a transformation has to be defined, mapping
the standard random variable ξi on the random variable xi. We used the inverse trans-
formation method that relies on the principle that continuous cumulative distribution
functions (CDFs) are uniformly bounded in the interval [0, 1] (Schmidt et al., 2012).
• Transfer from the standard uniform, [−1, 1], to the uniform, U [a, b],

x(ξi) =
b− a

2
ξi +

b+ a

2
ξi, (2)

where ξi is a random sample with standard uniform distribution, [−1, 1], and x is a
transformed random variable of the uniform interval [a, b] (Adelmann, 2015).
• Transfer from the standard normal, N(0, 1), to the normal, N(µ, σ),

x(ξi) = µ+ σξi, (3)

where ξi is a standard random sample in N(0, 1) and x is a transformed normal random
variable with mean µ and standard deviation σ (Adelmann, 2015). While the denomi-
nator in (1) can be computed analytically, the integral in the nominator is computed
by a numerical evaluation using a multidimensional cubature. Calculating the nodes
and weights for the numerical evaluation of the integral are described in Stoer (2006),
so expansion coefficients gain by (4),

cN = k

N∑
i=1

f(x(ti))ψi(ti)ω(ti), (4)
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where ti and ω(ti) represent the nodes and their weights for the numerical evaluation
of the integral. x(ti), represents the random samples of x that transformed in terms of
nodes, f(x(ti)) is the transformed function in terms of node points, ψi(ti) are Legendre
polynomial (pi(ti)). In the case of standard uniformly distributed and the expansion
coefficients are calculated numerically using the Clenshaw-Curtis or Gauss Legendre
numerical integration method. For example, in the Clenshaw-Curtis method, nodes
are defined as follows (Stoer, 2006),

ti = cos

(
(i− 1)π

N − 1

)
, i = 1, 2, . . . , N.

If the distribution of random variable is normal, ψi(ti) are hermit polynomial (Hi(ti))
and Gauss hermit numerical integration method is used for calculating the expansion
coefficients (Stoer, 2006). k is a coefficient relating to integral numerical solution
method.

To ensure sufficient accuracy in the stochastic moments of the quantity of interest,
the relative error in its estimated moments is controlled for an increasing number of
random samples. If for the expansion order N , expansion coefficients are equal to C⃗N

and for expansion order N + 1 the coefficients are equal to C⃗N+1, then, according to
the definition of the second order norm, the error of the gPC method is obtained in
terms of expansion coefficients using (5) (Mostajeran et al., 2021).

Error =

∥∥∥→
CN+1

−
→
CN

∥∥∥∥∥∥→
CN+1

∥∥∥ =

√ ∑
α∈χ(M,N+1)

∣∣cαN+1
− cαN

∣∣2√ ∑
α∈χ(M,N+1)

∣∣cαN+1

∣∣2 , (5)

where CN is the expansion coefficient, N is the polynomial expansion degree and M
is the number of random variables (here M = 1). α is related to expansion coefficient
that is calculated in Schmidt et al. (2012).

3 Uncertainty quantification of cutoff frequency of
the waveguide

The model
A waveguide is a transmission line that transmits RF waves produced by klystron to
other structures of a particle accelerator. Waveguides are classified into WR and WG
type, according to their structure dimensions and frequency ranges (Pozar, 2011). The
fc of a waveguide is an important electromagnetic parameter. Frequencies below the
fc are attenuated by the waveguide and waves are not transmitted by a waveguide.
Therefore, the operating frequency of the waveguide must be higher than the fc. The
waveguide which is studied here is known as the WR187 rectangular waveguide (Pozar,
2011). Figure 1 shows the dimensions of waveguide WR187 with 4.755 cm and 2.215
cm as width and high of the waveguide respectively.
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Figure 1: Rectangular Waveguide.

The fc of a rectangular waveguide can be calculated using (6),

(fc)mn =
1

2π

√(mπ
w

)2

+
(nπ
h

)2

, (6)

where c is the speed of the light, w and h are the width and height of the waveguide,
respectively; m and n are the quantum numbers associated with the wave that in
this study we computed T10 mode. To quantify the magnitude of uncertainty in the
parameter w and the quantity fc, the coefficient of variation, σr, was used by (7),

σr =
σ

µ
, (7)

where µ is the mean and σ is the standard deviation. Here we considered a relative
standard deviation of σr = 5% for µ = w = 4.755cm i.e. σ is 0.23cm. For calculation of
expansion coefficients, we first converted the standard range of integration to the devi-
ation interval of w. These transformations for both uniform and normal distributions
are shown in Table 2, using (2) and (3).

Table 2: Standard range of nodes(t) and changes interval for σr = 5% in w = 4.755cm.
Distribution type Standard range of nodes Divination interval of w (cm)

Normal ti ∼ U [−1, 1] x ∼ U [a = 4.51725, µ = 4.755, b = 4.99275]
Uniform tj ∼ N(0, 1) x ∼ N [µ = 4.755, σ = 0.23775]

4 Results
To determine which order of expansion to use for each distribution, we calculated
the relative error using (5).The respective expansion degree, N , with the lowest error
is chosen in each case for further analysis. Figure 2.a and Figure 2.b illustrate the
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Figure 2: Relative error estimated of output function versus expansion degree in the case of σr = 5%
in waveguide width, w, a. inputs with uniform distribution, b. inputs with normal distribution.

relative error estimated of the output function versus the expansion degree, N , for two
distributions, uniform and normal, respectively.

Figure 2.a shows that the relative error for uniform distribution decreases linearly
with polynomial expansion increasing. The relative error for normal distributions is
shown in Figure 2.b. The relative error approaches convergence after the 8th degree of
expansion. The respective expansion degree, N , with the lowest error is chosen in each
case for further analysis (i.e. N = 5 for uniform distribution and N = 11 for normal
distribution) and the PDFs of fc are then calculated. We validated the gPC method
comparing with the MC method for three different distributions of inputs separately.
(6) is used for calculating fc in MC method for the TE10 mode; m = 0, n = 0. After
obtaining the fc via MC method, we calculated the PDF of the fc. To compare gPC
and MC methods, the PDFs of fc calculated by both methods with uniform inputs,
w, are shown in Figure 5. The PDF provides an overview of how data is distributed,
so for a more accurate comparison, statistical values such as mean (fµ), standard
deviation(σ), and variance (V ar) are also presented in the Table 3.

Table 3: Calculated statistical quantities of fc for uniform distribution of random
inputs calculated by gPC and MC methods.

Distribution type / UQ method fµ (GHz) σ (GHz) V ar (GHz)
Uniform / gPC 3.16109400 0.10637118 0.01131482
Uniform / MC 3.16109400 0.10636041 0.01131253

Heavy overlap can be observed between the PDFs of fc calculated by both gPC
and MC methods in Figure 3. According to Table 3, the statistical quantities of fc are
mostly the same, for instance, the variances calculated for fc in both methods, are the
same up to 5 decimals.
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Figure 3: Comparison of PDFs of fc for uniform distribution of random inputs by gPC and MC
methods.

In Figure 4 and Table 4, we presented the PDFs and desired statistical quantities for
fc with normal distribution of inputs obtained by MC and gPC methods, respectively.
Heavy overlap of fc PDFs with normal inputs is shown in Figure 4.

Figure 4: Comparison of PDFs of fc for normal distribution of random inputs by gPC and MC
methods.

Table 4: Calculated statistical quantities of fc for normal distribution of random inputs
calculated by gPC and MC methods.

Distribution type / UQ method fµ(GHz) σ(GHz) Var (GHz)
Normal / gPC 3.3400012 0.49377452 0.24381327
Normal / MC 3.3400409 0.50955681 0.25964814

As an example, the standard deviation, σ, of fc calculated with method is about
6% lower than that of calculated with MC method. It seems that choosing truncated
normal distributions for the input parameter seems to produce a smaller difference in
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comprising the results of both methods; gPC and MC methods.
Figure 5 and Table 5 show the statistical results for truncated normal distribu-

tion.Figure 5 and the statistical results presented in Table 5 show that the gPC method
is more agreeing with the MC method considering the truncated normal distribution
than the two previous distributions. the next step was to examine the results related
to the comparison of input parameter distributions by gPC method.

Figure 5: Calculated statistical quantities of fc for truncated normal distribution of random inputs
by gPC and MC methods.

Table 5: Calculated statistical quantities of fc for truncated normal distribution of
random inputs calculated by gPC and MC methods.

Distribution type / UQ method fµ (GHz) σ (GHz) Var(GHz)
Truncated Normal / gPC 3.16109430 0.1047784 0.0109785
Truncated Normal / MC 3.34004090 0.1047772 0.0109783

In order to obtain the mean, fµ, and bias values of the fc obtained for σr = 5% in w,
We will compare three different distributions of random inputs in Table 6. Calculating
the percentile quantity allowed us to determine another index to evaluate fc deviations.
First, we calculated which percentile of the cutoff frequencies, fc, is equal to the exact
value of cutoff frequency, fE ,this quantity, which we call Q, shows what percentage
of fc, are lower than the fE . Second, we then calculated the percentage of frequencies
which is greater than fE i.e. (100 − Q)%. If this value is equal to 50, it means that
fc = fE and there is no deviation in the results, when it exceeds 50, it means that the
accumulation of fc exceeds fE and such deviation is not allowed because affects the
performance of the structure.

Mean, fµ, and standard deviation of results, σ, in cases of uniform and truncated
normal distribution show less dispersion than normal inputs case. Based on the results,
the bias of the fc with normal distribution is almost several times that of uniform and
truncated normal inputs. For all three distributions in Table 6, more than 50% of
the fc exceed the fc exceeding frequencies of 50% with normal inputs is more than
cases with uniform and truncated normal inputs. By calculating the quantity the
relative deviation, σr, for fc obtained for three distributions, the amount of uncertainty
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Table 6: Statistical quantities of fc for three different distribution of random inputs in
the case of σr = 5% in waveguide width ,w.

Distribution type / UQ method fµ (GHz) bias (GHz) (100−Q)% (GHz)
Uniform 3.16109400 0.00790286 52.1550
Normal 3.34000129 0.18681015 62.3635

Truncated normal 3.16109430 0.00790316 52.1880

created in fc due to each of these distributions has been determined (Figure 6). Figure
6 in which the waveguide width (w = 4.755 cm) has a deviation of σr = 5% with
truncated normal distribution has lees σr in fc i.e. 3.31% . Based on the results, the
truncated normal distribution is more appropriate for use with gPC than the other two
distributions.

Figure 6: The amount of uncertainty in the fc due to the uncertainty, σr = 5%, in w, for three
different distributions.

Figure 7 shows the PDFs of fc for three different distributions of w. The dashed
line indicates the fE . All three output PDFs of fc are almost symmetrical. The normal
distribution has led to a greater dispersion in the fc values than two other distributions
and it is also slightly skewed to the right. The results have shown that a deviation of
5% in the waveguide width causes cutoff variation, which is unacceptable and affects
waveguide performance. In order to determine the dimensional tolerance, we considered
different σr in which (100 − Q)% was less than 50%. We reduced the uncertainty of
w, to σr = 2%. we calculated the statistical quantities based on three distributions of
inputs (Table 7). fµ and positive values of bias show that 2% uncertainty of w also
increases fc from fE . The percentage ((100 − Q)% shows that more than 50% of the
amount of fc have exceeded the fE .
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Figure 7: Comparison of cutoff frequency PDFs for three different distributions for random inputs.

Table 7: Statistical quantities of fc for three different distribution of random inputs in
the case of σr = 2% in waveguide width ,w.

Distribution type / UQ method fµ (GHz) bias (GHz) (100−Q)% (GHz)
Uniform 3.1544529 0.0012618 50.8607
Normal 3.1952275 0.0420364 56.1638

Truncated normal 3.1544533 0.0012622 50.8750

To obtain tolerance, we considered σr = 1% calculated statistical quantities of fc
(Table 8). As shown in Table 8, bias values are negative and close to zero. This shows
thatthe σr = 1% for w, does not increase the fc from fE so there is no change in the
waveguide’s performance. In addition, the accumulation of fc greater than fE is less
than 50%, which confirms the results. It can be concluded that a deviation of 1%, in w
is allowed. This deviation is equal to 4.755mm. that means, a manufacturer is allowed
to consider the waveguide width to be 4.755mm smaller or larger than its actual width.
This number is called the dimensional tolerance of this type of waveguide (relative to
sensitivity in fc).

Table 8: Statistical quantities of fc for three different distribution of random inputs in
the case of σr = 1% in waveguide width ,w.

Distribution type / UQ method fµ (GHz) bias (GHz) (100−Q)% (GHz)
Uniform 3.1531065 −8.464× 10−5 49.9925
Normal 3.1520012 −0.001190 49.6150

Truncated normal 3.1533099 −0.0001187 49.8925

5 Conclusion
Radio Frequency (RF) structures have an uncertainty in their dimensional parame-
ters due to manufacturing errors which causes an uncertainty in the output results.
Therefore, the study of these uncertainties improve the results of the structure and
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the quality of the structure design. The distribution type of random inputs is im-
portant in the uncertainty quantification of the results. In this article, we considered
the manufacturing error in the WR178 waveguide width, (w), as uncertain variable.
We chose three different distributions include uniform, normal and truncated normal
distributions for samples of w and investigated its effect on the cutoff frequency using
univariable gPC method separately. The simulation of the waveguide was carried out
using CST Microwave Studio software. It was shown that the results of two methods
are in a good agreement using comparison the results of gPC method with MC method.
From the statistical quantities results, it was concluded that the truncated normal dis-
tribution has lower contribution and the normal distribution has high contribution in
the uncertainty of fc. Furthermore, we found that the dimensional tolerance of the
waveguide width is about 1%. This deviation in the waveguide dimension does not
affect on the waveguide performance.
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