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Abstract: This paper considers the Type I hybrid censoring and investigates the op-
timal value for the sample size which is assumed as a truncated binomial random
variable. Rayleigh distribution is considered for the lifetime distribution. Towards
this end, various factors can be considered and the most important is the sampling
cost criterion. Since the sample size is a random variable, the optimal parameter of
the random sample size is determined so that the total cost of the test does not ex-
ceed a pre-determined value. Numerical calculations and a simulation study have been
performed to evaluate the obtained results. Finally, the conclusion of the article is
presented.
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1 Introduction
The probability density function (pdf) and cumulative distribution function (cdf) of
one-parameter Rayleigh distribution are given as

gσ(y) =
y

σ2
exp

(
− y2

2σ2

)
; y > 0, σ > 0, (1)

Gσ(y) = 1− exp

(
− y2

2σ2

)
; y > 0, σ > 0, (2)

respectively. The parameter σ is known as the scale parameter. Also, Rayleigh distri-
bution is a special case of Weibull distribution. This model is useful in lifetime tests,
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where the failure rate has linearity with time. Rayleigh distribution was discussed by
some authors. See, for example, Asgharzadeh and Azizpour (2016), MirMostafaee et
al. (2017) and Wu et al. (2023).

Many times in reliability issues, lifetime tests, survival analysis, and other applied
fields, due to reasons such as limited time, lack of access to all units, or expensive units
under the test, the experimenter cannot observe the exact life time of units under the
test. Censored data occurs when complete information is not available on all units
under test. Censoring can be performed in different ways depending on how the data
is collected which the most famous are Type I and Type II censoring methods. If in a
test with n units all units start working at time t = 0 and the experiment ends at a
specified and pre-determined time T , then Type I censoring has occurred. Also, if in a
test with n units the goal is to accurately record the time of the mth failure, m ≤ n,
the experiment continues until observing the mth failure and then stops. In such a
case, the lifetime of the (n − m) remaining units is censored. In this case, Type II
censoring has happened.

A combination of Type I and II censoring schemes is known as hybrid censoring,
which is divided into two types. Suppose n items are tested. For the first time, Epstein
(1954) investigated a design in a survival experiment in which the experiment ends at
the time τ = min(Ym:n, Y0), where Y0 and m are pre-determined values. Childs et al.
(2003) called this censoring scheme as Type I hybrid censoring.

Optimal designing for different censoring methods is an issue usually done by us-
ing a suitable criterion function, and each of them may lead to a different optimal
scheme. Many researchers have studied this issue. For example, the goal of research
done by Ebrahimi (1988) was finding the optimal censoring scheme in Type I hybrid
censoring which minimizes the expected cost function. Burkschat et al. (2006) and
Burkschat et al. (2007) found optimal censoring schemes in the model of progressively
Type II censoring by minimizing the variance and the covariance matrix of the best
linear unbiased estimators for a location-scale family of distributions which includes
exponential, uniform and Pareto distributions. Burkschat (2008) considered the best
linear equivariant estimation in a particular location-scale family based on several pro-
gressively Type II censored samples and obtained the censoring schemes that minimize
the mean squared error matrix of the estimators. Volterman et al. (2012) obtained
the optimal progressive censoring scheme from the exponential distribution based on
Pitman closeness criterion. It was shown that the optimal progressive censoring scheme
is the usual Type II right censoring. Bhattacharya et al. (2014) proposed a cost func-
tion to determine the optimum life testing plans under hybrid censoring scheme. The
optimum scheme was obtained by minimizing the total cost associated with the ex-
periment. Basiri (2017) found the Bayesian point predictor for future order statistics
from the one-parameter Rayleigh distribution. Then, by considering two criteria as
mean squared prediction error and total cost of the test, the optimal number of fail-
ures was determined. Mishra (2020) obtained the optimal one-step censoring schemes
under the entropy criterion. The optimal Bayesian sampling plan for the two param-
eter exponential distribution under Type I hybrid censoring scheme was studied by
Prajapat et al. (2021). Sen et al. (2021) derived the explicit expressions of expected
number of failures, expected duration of testing and Fisher information matrix for the
unknown parameters of the underlying lifetime model. Then, using these quantities,
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the Bayesian optimal life testing plans under Type II unified hybrid censoring scheme
were computed.

All these mentioned works have been done under the assumption that the sample
size was fixed. In some cases, it is almost impossible to have a permanent fixed sample
size because some observations may be missing for various reasons. Consider a system
which consists of some machines. Assume that each day a certain number of items
are produced by this system depending on the number of available units which may
vary day by day. The variation in the number of units is caused by some factors
such as malfunctioning of a machine and insufficient number of operators. Also, let
each machine should have some conditions, which with probability θ is satisfied, to
be utilized by such a system. Thus, in a long term, we have a system with binomial
random number of units on hand. Some other discrete distributions such as Poisson,
geometric, negative binomial or more generally power series class of distributions can be
considered for the random sample size. Some examples in this area have been presented
in Srivastava (1973). The distribution of order statistics with random sample size was
studied in Epstein (1949), Raghunandanan and Patil (1972), Consul (1984), Gupta
and Gupta (1984) and Rohatgi (1987).

The problem of predicting the range in a future sample, based on ranges in the
earlier samples was discussed in Lingappaiah (1986), when the sample size was a ran-
dom variable. Soliman (2000) studied the problem of predicting the future ordered
observations in a sample from a Pareto distribution where the first r ordered observa-
tions have been observed and the sample size was a random variable having a Poisson
or binomial distribution. The problem of predicting future generalized order statis-
tics was discussed in Basiri and Ahmadi (2015), when the future sample size was a
random variable. Since k-records and progressively Type II censored order statistics
are contained in the model of generalized order statistics, the corresponding results
for them were deduced as special cases. Assuming the information sample size as a
random variable, Ahmadi et al. (2016) obtained the optimal parameter for the distri-
bution of the information sample size such that the point predictor of a future order
statistic had minimum mean squared prediction error and the total cost of experiment
was bounded. Similar problem for predicting future order statistics based on upper
and lower records was studied by Basiri and Pakzad (2018). Basiri and Asgharzadeh
(2021) considered the progressively Type II censoring and the proportional hazard rate
models. Then they introduced a cost function and the optimal sample size was found
by minimizing the cost function, when the sample size was a random variable. Some
known candidates for the random sample size, namely the degenerate, binomial, and
Poisson distributions were considered in that paper. Parameteric and nonparametric
prediction intervals based on generalized order statistics were respectively obtained by
Barakat et al. (2018) and Barakat et al. (2021), when informative sample size was
fixed as well as a random variable. Barakat and Newer (2022) constructed prediction
intervals for future observations from the exponential and Pareto distributions in the
context of ordered ranked set sampling. Two cases were assumed in their paper. The
first case, when the sample size was a fixed value and the second case when the sample
size was a positive integer-valued random variable. Basiri (2022) considered a parallel
system with a random number of units. The number of units followed a power series
distribution which includes several distributions such as geometric, logarithmic and
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zero-truncated Poisson distributions. Then by minimizing the expected cost and the
reliability of this system, the optimal parameter for the distribution of sample size was
obtained.

In the present article, the aim is to determine the optimal sample size in Type I
hybrid censoring so that the total cost of the experiment does not exceed a pre-fixed
value, C∗. Here, the sample size is assumed as a truncated binomial random variable.
So, the optimal success probability of the binomial distribution is the aim of this paper.

The structure of the article is as follows. First, a cost function is introduced in
Type I hybrid censoring model. Here, the sample size is a truncated binomial random
variable. So, the success probability of binomial distribution is determined in such a
way that the cost function is less than a pre-fixed value C∗. Numerical calculations
and a simulation study are also provided. Finally, the conclusion is expressed.

2 Main results
Suppose a random sample Ỹ = (Y1, . . . , YN ) consisting of N units from the Rayleigh dis-
tribution with pdf and cdf given in (1) and (2), has been tested. Also, let Y1:N , . . . , YN :N

be the corresponding order statistics. Assuming N = n, the pdf and cdf of Yi:N ,
1 ≤ i ≤ N , respectively are given by (David and Nagaraja, 2003)

gYi:N |N=n(y) =
n!

(i− 1)!(n− i)!
gσ(y) (Gσ(y))

i−1 (
Ḡσ(y)

)n−i
, (3)

GYi:N |N=n(y) =

n∑
j=i

(
n

j

)
(Gσ(y))

j (
Ḡσ(y)

)n−j
, (4)

where Ḡσ(y) = 1 − Gσ(y). Independently, let N be a non-negative integer-valued
random variable from the truncated binomial distribution at point m, say TB(M, θ;m),
i.e.,

P (N = n) = ρ(m,M, θ)

(
M

n

)
θn(1− θ)M−n, n = m,m+ 1, . . . ,M, (5)

where 0 ≤ θ ≤ 1 is the success probability and

ρ(m,M, θ) =
1∑M

n=m

(
M
n

)
θn(1− θ)M−n

. (6)

In this case, we have

EN (N) = ρ(m,M, θ)

M∑
n=m

n

(
M

n

)
θn(1− θ)M−n

= Mθρ(m,M, θ)

M−1∑
n=m−1

(
M − 1

n

)
θn(1− θ)M−1−n

= Mθ
ρ(m,M, θ)

ρ(m− 1,M − 1, θ)
.
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Figure 1: The values of EN (N) with respect to θ for different choices of M and m.

Figure 1 shows graphical representations of EN (N) with respect to θ for different
choices of M and m. From Figure 1, we see that EN (N) is increasing in θ, when m
and M are kept fixed.

In the context of Type I hybrid censoring, we denote ∆ and τ = min(Ym:N , Y0) as
the number of failures and the duration of the test, respectively, in which m and Y0

are pre-fixed values. Clearly, ∆ and τ are both random variables.
In order to determine the optimal number of units, N , in Type I hybrid censoring,

the following cost function is first considered.

Ψ(C) = C0 + CNEN (N) + CfEN (E(∆|N = n)) + CtEN (E(τ |N = n)) ,

where C = (N,m, Y0) is the censoring scheme and C0, CN , Cf and Ct are the sampling
set-up cost or any other related costs involved in sampling, the cost per unit, the cost
per failed item and the cost per unit of duration of life testing, respectively.

In this paper N is a random variable but EN (N) is always fixed which is an in-
creasing function of θ (see Figure 1). So, the optimal value for θ, say θopt, is the aim
of paper.

On the other hand, for Type I hybrid censoring since

min(Ym:N , Y0) =
{

Y0 Y0 < Ym:N ,
Ym:N Y0 ≥ Ym:N ,

the data are (Y1:N , Y2:N , . . . , Y∆:N ,∆) and we obtain (Bhattacharya et al., 2014)

P (∆ = j) =

(
N

j

)
(Gσ(Y0))

j (
Ḡσ(Y0)

)N−j
, j = 0, 1, . . . ,m− 1,

P (∆ = m) =

N∑
j=m

(
N

j

)
(Gσ(Y0))

j (
Ḡσ(Y0)

)N−j
.
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So, we can write (Bhattacharya et al., 2014)

E(∆|N = n) =

m−1∑
j=0

j

(
n

j

)
(Gσ(Y0))

j (
Ḡσ(Y0)

)n−j

+m

n∑
j=m

(
n

j

)
(Gσ(Y0))

j (
Ḡσ(Y0)

)n−j
. (7)

From (2) and (7), and using the binomial expansion for (Gσ(Y0))
j
=

(
1− Ḡσ(Y0)

)j ,
we find that

E(∆|N = n) =

m−1∑
j=0

j∑
k=0

j

(
n

j

)(
j

k

)
(−1)k

(
Ḡσ(Y0)

)n−j+k

+m

n∑
j=m

j∑
k=0

(
n

j

)(
j

k

)
(−1)k

(
Ḡσ(Y0)

)n−j+k

=

m−1∑
j=0

j∑
k=0

j

(
n

j

)(
j

k

)
(−1)k exp

(
− (n− j + k)Y 2

0

2σ2

)

+m

n∑
j=m

j∑
k=0

(
n

j

)(
j

k

)
(−1)k exp

(
− (n− j + k)Y 2

0

2σ2

)
. (8)

On the other hand, we can write

E(τ |N = n) = E(min(Ym:N , Y0)|N = n)

= Y0P (Ym:N > Y0|N = n) +

∫ Y0

0

ygYm:N |N=n(y)dy

= Y0ḠYm:N |N=n(Y0) +

∫ Y0

0

ygYm:N |N=n(y)dy, (9)

where gYm:N |N=n(y) and ḠYm:N |N=n(y) = 1−GYm:N |N=n(y) are defined in (3) and (4),
respectively. Integrating by parts leads to∫ Y0

0

ygYm:N |N=n(y)dy = Y0GYm:N |N=n(Y0)−
∫ Y0

0

GYm:N |N=n(y)dy. (10)

From (9) and (10), we conclude that

E(τ |N = n) = Y0ḠYm:N |N=n(Y0) + Y0GYm:N |N=n(Y0)−
∫ Y0

0

GYm:N |N=n(y)dy

= Y0 −
∫ Y0

0

GYm:N |N=n(y)dy. (11)

From (4), we have∫ Y0

0

GYm:N |N=n(y)dy =

n∑
j=m

(
n

j

)∫ Y0

0

(Gσ(y))
j (

Ḡσ(y)
)n−j

dy
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=

n∑
j=m

j∑
k=0

(
n

j

)(
j

k

)
(−1)k

∫ Y0

0

(
Ḡσ(y)

)n−j+k
dy, (12)

where the last equality is obtained by using the binomial expansion for (Gσ(y))
j
=(

1− Ḡσ(y)
)j . From (2) we get∫ Y0

0

(
Ḡσ(y)

)n−j+k
dy =

∫ Y0

0

exp

(
− (n− j + k)y2

2σ2

)
dy

=

√
2πσ√

n− j + k

∫ √
n−j+k

σ Y0

0

1√
2π

exp

(
−z2

2

)
dz

=

√
2πσ√

n− j + k

{
Φ

(√
n− j + k

σ
Y0

)
− 1

2

}
, (13)

where Φ(·) represents the cdf of the standard normal distribution, N(0, 1).
Now, from (11), (12) and (13), we find

E(τ |N = n) = Y0 − φσ(m,n, Y0), (14)

in which

φσ(m,n, Y0) =

n∑
j=m

j∑
k=0

(
n

j

)(
j

k

)
(−1)k

√
2πσ√

n− j + k

{
Φ

(√
n− j + k

σ
Y0

)
− 1

2

}
.

Finally, (5) leads to

EN (E(∆|N = n)) = ρ(m,M, θ)

M∑
n=m

E(∆|N = n)

(
M

n

)
θn(1− θ)M−n,

EN (E(τ |N = n)) = ρ(m,M, θ)

M∑
n=m

E(τ |N = n)

(
M

n

)
θn(1− θ)M−n,

where ρ(m,M, θ), E(∆|N = n) and E(τ |N = n) are defined in (6), (8) and (14),
respectively.

In Table 1, the values of the cost function Ψ(C) with different choices for Y0, m,
M and θ are reported, when σ = 1, C0 = 10, CN = 15, Cf = 10, Ct = 20. Figure 2
represents the values of Ψ(C) with respect to m for different choices of M and θ, when
Y0 = 0.5, σ = 1, C0 = 10, CN = 15, Cf = 10, Ct = 20. From Table 1 and Figure 2 we
observe that Ψ(C) is increasing in Y0, m, M and θ.

In the following, it is tried to find the optimal value for the parameter θ in TB(M, θ;m)
in such a way that Ψ(C) ≤ C∗, where C∗ is a pre-fixed value. In Table 2 the values
of θopt with different choices for m, M , C∗ and Y0 are reported which the condition
Ψ(C) ≤ C∗ is satisfied, when σ = 1, C0 = 10, CN = 15, Cf = 10, Ct = 20. The results
in Table 2 show that, θopt may not be available based on the condition Ψ(C) ≤ C∗.
These situations are indicated by a dash (−) in this table. Also, for some cases for all
θ in [0, 1] the condition Ψ(C) ≤ C∗ is satisfied. Figures 3 and 4 represent the values of
Ψ(C) with respect to θ for different choices of Y0, m and M , when C∗ = 400, σ = 1,
C0 = 10, CN = 15, Cf = 10, Ct = 20.
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Table 1: The values of Ψ(C) for different choices for Y0, m, M and θ, when σ = 1,
C0 = 10, CN = 15, Cf = 10 and Ct = 20.

Y0 M m/ θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.5 10 5 103.95 107.60 112.00 117.49 124.50 133.62 145.40 159.78 176.31

10 181.75 181.75 181.75 181.75 181.75 181.75 181.75 181.75 181.75
20 5 110.11 122.03 139.03 162.85 192.28 224.10 256.38 288.66 320.96

10 183.91 187.15 192.09 199.78 211.95 230.88 257.50 288.83 321.21
15 263.74 265.11 266.86 269.17 272.35 277.05 284.59 297.94 321.82
20 343.50 343.50 343.50 343.50 343.50 343.50 343.50 343.50 343.50

30 5 116.68 140.71 178.06 224.24 272.51 320.86 369.10 417.17 465.05
10 186.58 195.09 210.03 235.72 274.52 321.25 369.68 418.20 466.73
15 265.99 270.34 276.40 285.71 301.49 329.02 370.39 418.21 466.73
20 344.66 346.26 348.55 352.02 357.62 367.41 385.98 420.06 466.74
25 425.04 425.86 426.92 428.33 430.30 433.24 438.13 447.68 470.46
30 505.26 505.26 505.26 505.26 505.26 505.26 505.26 505.26 505.26

40 5 124.05 164.92 224.37 288.63 353.01 417.11 480.86 543.95 600.06
10 189.76 206.08 238.04 290.45 353.55 418.20 482.90 547.20 603.44
15 268.32 276.30 289.35 313.76 357.89 418.39 482.87 546.62 610.61
20 345.95 349.73 355.85 366.50 386.71 425.15 483.24 547.06 597.90
25 426.38 428.95 432.43 437.51 445.77 461.19 492.98 549.28 631.10
30 506.06 507.13 508.61 510.79 514.20 520.12 531.98 560.53 643.98
35 589.40 590.01 590.85 592.06 593.89 596.84 602.17 614.38 677.54
40 684.02 684.02 684.02 684.02 684.02 684.02 684.02 684.02 684.02

1 10 5 129.07 134.24 140.41 147.94 157.30 169.05 183.55 200.46 219.11
10 219.35 219.35 219.35 219.35 219.35 219.35 219.35 219.35 219.35

20 5 137.73 153.77 175.11 203.02 235.56 269.06 301.62 333.06 363.71
10 222.74 227.53 234.49 244.84 260.55 284.02 315.90 352.52 389.77
15 315.58 317.52 319.97 323.20 327.65 334.12 344.33 361.77 391.32
20 408.69 408.69 408.69 408.69 408.69 408.69 408.69 408.69 408.69

30 5 146.67 176.99 219.75 268.79 317.03 363.32 408.39 452.92 497.29
10 226.68 238.52 257.94 289.59 335.55 389.33 443.45 495.65 545.59
15 318.75 324.82 333.13 345.51 365.62 399.27 448.33 504.25 560.59
20 410.52 412.97 416.36 421.30 428.96 441.84 465.19 506.32 561.24
25 504.30 505.47 506.96 508.95 511.71 515.83 522.58 535.45 564.63
30 598.04 598.04 598.04 598.04 598.04 598.04 598.04 598.04 598.04

40 5 156.31 205.00 268.72 332.45 393.34 452.89 512.11 571.51 634.77
10 231.20 252.85 292.27 353.86 425.26 495.04 561.10 624.04 686.83
15 322.01 332.97 350.15 380.61 433.45 504.34 578.91 652.00 725.45
20 412.50 418.03 426.50 440.51 465.81 512.10 580.52 655.73 731.08
25 506.20 509.82 514.67 521.63 532.62 552.33 591.11 656.19 728.09
30 599.30 600.95 603.18 606.35 611.16 619.19 634.40 667.51 731.36
35 693.38 694.21 695.28 696.70 698.68 701.66 706.60 716.33 741.77
40 787.59 787.59 787.59 787.59 787.59 787.59 787.59 787.59 787.59

2 10 5 173.76 180.14 187.58 196.30 206.53 218.38 231.61 245.42 259.66
10 286.47 286.47 286.47 286.47 286.47 286.47 286.47 286.47 286.47

20 5 184.28 202.18 222.86 246.66 272.77 300.11 328.16 356.68 385.59
10 291.77 298.77 308.19 321.03 338.57 361.64 388.88 416.95 444.78
15 407.03 409.91 413.55 418.28 424.70 433.83 447.56 469.14 500.32
20 522.93 522.93 522.93 522.93 522.93 522.93 522.93 522.93 522.93

30 5 194.46 224.32 260.13 300.35 342.55 385.67 429.29 473.23 517.38
10 297.53 313.13 335.19 365.60 403.59 444.97 487.32 530.34 573.82
15 411.73 420.56 432.13 448.08 471.12 504.03 544.93 587.41 629.98
20 526.01 529.99 535.33 542.78 553.72 570.81 598.60 640.35 686.27
25 642.62 644.42 646.73 649.79 654.03 660.27 670.34 688.76 726.72
30 759.40 759.40 759.40 759.40 759.40 759.40 759.40 759.40 759.40

40 5 204.61 248.05 300.50 356.93 414.77 473.28 532.17 591.01 634.66
10 303.71 329.57 367.58 417.68 473.27 530.46 588.47 646.70 689.64
15 416.50 431.84 453.39 485.71 532.28 587.51 644.46 701.95 745.38
20 529.23 537.84 550.11 568.61 598.01 643.49 700.23 757.43 800.17
25 645.55 651.11 658.45 668.68 684.02 709.15 751.96 810.73 849.97
30 761.54 764.28 767.92 772.96 780.38 792.20 813.20 854.21 913.23
35 878.68 879.98 881.65 883.87 886.97 891.58 899.17 913.77 949.69
40 995.87 995.87 995.87 995.87 995.87 995.87 995.87 995.87 995.87
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Figure 2: The values of Ψ(C) with respect to m for different choices of M and θ, when Y0 = 0.5,
σ = 1, C0 = 10, CN = 15, Cf = 10, Ct = 20.

Table 2: The values of θopt for different choices of Y0, m, M , when σ = 1, C0 = 10,
CN = 15, Cf = 10, Ct = 20 and C∗ = 400, 500.

C∗ 500 400
M m Y0 = 0.5 Y0 = 1 Y0 = 2 Y0 = 0.5 Y0 = 1 Y0 = 2
10 5 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

10 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 1]

20 5 [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [0, 0.9417]
10 [0, 1] [0, 1] [0, 1] [0, 1] [0, 0.9243] [0, 0.7396]
15 [0, 1] [0, 1] [0, 0.899] [0, 1] [0, 0.9209] –
20 [0, 1] [0, 1] – [0, 1] – –

30 5 [0, 0.9670] [0, 0.9055] [0, 0.8606] [0, 0.7643] [0, 0.6814] [0, 0.6329]
10 [0, 0.9627] [0, 0.8087] [0, 0.7295] [0, 0.7625] [0, 0.6197] [0, 0.4906]
15 [0, 0.9626] [0, 0.7924] [0, 0.5878] [0, 0.7619] [0, 0.6015] –
20 [0, 0.9621] [0, 0.7846] – [0, 0.7411] – –
25 [0, 0.9599] – – – – –
30 – – – – – –

40 5 [0, 0.7303] [0, 0.6796] [0, 0.6454] [0, 0.5733] [0, 0.5112] [0, 0.4745]
10 [0, 0.7266] [0, 0.6075] [0, 0.5467] [0, 0.5718] [0, 0.4646] [0, 0.3647]
15 [0, 0.7263] [0, 0.5939] [0, 0.4307] [0, 0.5696] [0, 0.4367] –
20 [0, 0.7261] [0, 0.5739] – [0, 0.5346] – –
25 [0, 0.7125] – – – – –
30 – – – – – –
35 – – – – – –
40 – – – – – –
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Figure 3: The values of Ψ(C) with respect to θ for different choices of Y0 and m, when C∗ = 400,
M = 20, σ = 1, C0 = 10, CN = 15, Cf = 10, Ct = 20.

Figure 4: The values of Ψ(C) with respect to θ for different choices of m and M , when C∗ = 400,
Y0 = 1, σ = 1, C0 = 10, CN = 15, Cf = 10, Ct = 20.

3 Monte Carlo Simulation Study
In this section, we run a Monte Carlo simulation to assess the performances of the
results in Sections 2. The following algorithm has been applied for this purpose:
Algorithm 1: Suppose m, M , Y0, σ, C∗, C0, CN , Cf and Ct are all given. Then:
1. Choose θopt such that the condition Ψ(C) ≤ C∗ is satisfied.
2. Generate N from the distribution TB(M, θopt;m), say Nopt.
3. Generate Nopt iid random variables Y1, . . . , YNopt

from the one-parameter Rayleigh
distribution with parameter σ. Then sort them as Y(1) ≤ . . . ≤ Y(Nopt).
4. Set T = Y0 and D =

∑m
j=1 I(Y(j) ≤ Y0) if Y0 < Y(m), else set T = Y(m) and D = m,

where I(·) denotes the indicator function.
5. Repeat the Steps 2-4 for B = 10000 number of times and let Nopt(i), D(i) and T (i)
be the obtained results from Steps 2 and 4 in the i-th iteration, i = 1, . . . , B.
6. Then, calculate the expected cost function (EΨ(C)) by using

EΨ(C) = C0 +
CN

B

B∑
i=1

Nopt(i) +
Cf

B

B∑
i=1

D(i) +
Ct

B

B∑
i=1

T (i).
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Table 3: The values of
(
θopt, EΨ(C)

)
with different choices for Y0, m, M , when σ = 1,

C0 = 10, CN = 15, Cf = 10, Ct = 20 and C∗ = 500.
M m Y0 = 0.5 Y0 = 1 Y0 = 2
10 5 (0.5, 110.8075) (0.5, 136.6488) (0.5, 173.4826)

(1, 181.6954) (1, 216.0941) (1, 232.0981)

10 (0.5, 181.8130) (0.5, 219.3019) (0.5, 285.444)
(1, 181.8430) (1, 219.3950) (1, 285.5316)

20 5 (0.5, 181.2999) (0.5, 214.7497) (0.5, 232.7446)
(1, 342.8296) (1, 373.6571) (1, 374.5493)

10 (0.5, 196.112) (0.5, 236.2446) (0.5, 301.1152)
(1, 343.5900) (1, 406.1803) (1, 432.8814)

15 (0.5, 262.6975) (0.5, 314.1810) (0.4495, 404.3159)
(1, 343.3200) (1, 408.5508) (0.899, 460.1978)

20 (0.5, 343.4920) (0.5, 408.6100) –
(1, 343.6240) (1, 408.6630) –

30 5 (0.4835, 254.4559) (0.4527, 274.3704) (0.4303, 273.3157)
(0.967, 486.7389) (0.9055, 479.7269) (0.8606, 460.2932)

10 (0.4813, 254.5250) (0.4043, 264.6405) (0.3647, 311.2633)
(0.9627, 486.9158) (0.8087, 480.1950) (0.7295, 460.0494)

15 (0.4813, 275.494) (0.3962, 316.8379) (0.2939, 404.4795)
(0.9626, 487.4865) (0.7924, 479.8193) (0.5878, 455.4812)

20 (0.4810, 343.6705) (0.3923, 408.8500) –
(0.9621, 486.776) (0.7846, 477.228) –

25 (0.4799, 424.4530) – –
(0.9599, 485.6565) – –

40 5 (0.3651, 256.9612) (0.3398, 274.6762) (0.3227, 273.3488)
(0.7303, 489.8751) (0.6796, 480.3597) (0.6454, 460.5287)

10 (0.3633, 256.2685) (0.3037, 266.9545) (0.2733, 312.5757)
(0.7266, 490.1829) (0.6075, 479.607) (0.5467, 459.5492)

15 (0.3631, 278.2255) (0.2969, 318.0100) (0.2153, 404.3038)
(0.7263, 489.5140) (0.5939, 478.5786) (0.4307, 451.3447)

20 (0.3630, 344.0930) (0.2869, 408.9100) –
(0.7261, 489.0280) (0.5739, 470.0419) –

25 (0.3562, 424.3140) – –
(0.7125, 483.3320) – –

Based on Algorithm 1 and the results in Table 2, we have computed the values
of EΨ(C) with different choices for Y0, m, M , when σ = 1, C0 = 10, CN = 15,
Cf = 10, Ct = 20 and C∗ = 500. All the obtained results are reported in Table 3. For
the first step of Algorithm 1, we have selected the values of θopt from Table 2. Two
points as the middle and the upper limit of the presented intervals are considered for
computing the results. We mention that the results reported in Table 3 are based on
10000 Monte Carlo simulations. As expected, from Table 3, it is observed that in all
cases EΨ(C) ≤ C∗ = 500. It is further observed that as expected, as θopt increases the
values of EΨ(C) increase.
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4 Conclusion
Combining Type I and Type II censoring methods results in hybrid censoring scheme.
Determining the best number of units in a hybrid censoring scheme is an interesting
issue. Practically, it is preferable for the experimenter to acquire the sample size that
reduces the cost. In this article, the sample size is considered as a random variable
of a truncated binomial distribution, and the optimal parameter of this distribution
is determined in such a way that the cost function does not exceed a pre-determined
value.
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