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Abstract: In order to investigate a series of data scenarios and determine the model
governing the changes of a random variable over time, according to the variables affect-
ing it, efficient methods have been developed in recent decades. One of these methods
is the generalized additive model. By this modeling for data, it is possible to check
the behavior of the non-linear data and even predict the future. In this article, we
intend to express this method non-parametrically, in cases such as when the variable
is independent, time series, or has a lag and implement the estimation of model pa-
rameters. Moreover, we will demonstrate the power and effectiveness of this method
by presenting some examples.
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1 Introduction
Whereas examining the information in a dataset requires a statistical analysis process,
modeling is a proposal for the issue that a strategically understanding and interpreta-
tion can be made regarding the dataset. Statistical modeling is like a formal depiction
of a theory. It is typically described as the mathematical relationship between random
and non-random variables. In data analysis, when the relationships between variables
follow a non-linear process, different approaches can be tried to model them. One
approach that can be used to accommodate some non-linear effects into the model
is using polynomial trends or adding a transformation to the response variable such
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as a logarithms transformation. But the non-linear relationship may not be easily
recognizable and is avoided as this makes the model difficult for interpretation and
specification. Segmented linear regression (SLR) can be introduced as the first pro-
posed method to model this data. SLR, which is recognized as a piecewise regression
or break-point model also, is a statistical approach in regression analysis where the
independent variable is divided into some disjoint intervals and fits a distinct line seg-
ment for each interval so that each part of the time series can have different levels
and trends. However, these models suppose a linear trend that may not be suitable in
many positions.

Another proposed way for such models with non-linear relationship is generalized
additive model (GAM) that can fit a smooth relationships between the variables with-
out knowing the non-linear relationship in advance. GAMs were originally invented
by Hastie and Tibshirani (1986). GAMs may be utilized in a variety of situations and
exists in two modes, parametric and non-parametric. In parametric mode, it allows a
wide range of distributions to be adopted for the response variable. The most preva-
lent distributions in GAM modeling are Normal, Gamma and Poisson distributions.
However, due to the lack of a complete reference for the non-parametric case, in this
paper we are going to focus on the non-parametric case of GAM. Furthermore, GAM
can be useful when the variables are independent or the data are time series or even
time series with lags.

In a comparison study, Pinilla and Negrin (2021) shown that SLR has poorer perfor-
mance than GAM. Also, GAMs are widely utilized in various fields such as economics,
biology, climate variables, clinical research, etc. Many researchers have worked on this
topic to expand it and have published the results of their research on GAMs in the
form of various books and articles, including James et al. (2013), Yee (2015), Wood
(2017), etc.

As a look at other uses of GAM, the following can be mentioned, fisheries ap-
plications have been examined by Zhao et al. (2014), applications for air pollution
and climate variability have been discussed by people like Dehghan et al. (2018) and
Ravindra et al. (2019). In the context of investigation with high-capacity data such as
genetic data analysis, a high-dimensional GAM approach is required, as discussed by
Yang and Maiti (2020). Applications for economics discussed by Pinilla and Negrin
(2021). GAM is used in deep learning with changes made by Chang et al. (2022) and
etc.

Moreover, GAMs were introduced in time series epidemiology studies by Schwartz
(1993) and have since been used and developed by many as a standard approach to
solving the control variable problem (Schwartz, 1994b; Hoek et al., 1997; Kelsall et
al., 1997; Bremner et al., 1999; Dominici et al., 2000). Also, in some research, a
response variable may be measured repeatedly over time, and the values of a predictor
may be time-dependent and also lagged. To check such data, two methods of GAMs
and distributed lag models (DLM)s should be used. The DLM was first proposed by
Allmon (1965) and then Corradi (1977) developed this method for greater flexibility by
subjecting coefficients to non-parametric smoothing using spline functions. To utilize
other covariate variable information and enter them into a DLM in a flexible way, the
model is combined with the generalized additive model and Zanobetti et al. (2000)
called the result “generalized additive DLM”.
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The remaining of the paper is organized as follows. In Section 2, we explain the
range of application of non-parametric GAMs in independent, time series and dis-
tributed lagged data. Section 3 deals with estimation methods of model parameters.
In Section 4, we implement a simulation to compare the models and eventually in
Section 5, we provide some examples to show the efficiency of GAM method.

2 Some application of GAM
After the introduction of GAM method by Hastie and Tibshirani (1986), numerous
research has been conducted on the application of this model in various data scenarios
in successive years. In the following, we intend to examine the application of this model
when the variables are independent, for time series data and time series data with lag.

2.1 GAM with independent variables
One of the broadest and most widely used methods for modeling independent obser-
vations is generalized linear models (GLM)s. At First, Nelder and Wedderburn (1972)
introduced the GLM, which can be expressed as,

GLM : g(µi) = β1xi1 + ...+ βpxip,

where xi = (xi1, ..., xip)
′ and µi = E(Y |xi) is the mean function and g is a well-known

link function that has the property of strict uniformity and second-order derivability
in the range of µ. GLMs can be used as a guideline for modeling, whose specific cases
include linear model (LM), Poisson regression, logistic regression, and etc.

According to Hastie and Tibshirani (1986), in general, the GAM is a non-parametric
extension of the GLM that replaces the linear predictor

∑
βjxij with the additive pre-

dictor term
∑

fj(xij). The following model specify the structure of the non-parametric
GAM,

GAM : g(µi) = β0 +

p∑
j

fj(xij),

where the fj ’s are smooth functions of the independent variables.
Among the link functions that can be considered are, Log link function g(µi) =

log(µi), Identity link function g(µi) = µi, Inverse link function g(µi) = 1
µi

, Probit
link function g(µi) = Φ−1(µi), where Φ(.) is the cumulative distribution function of
the standard normal distribution, Logit link function g(µi) = log{µi/(1 − µi)}, that
corresponds to the inverse CDF of the standard logistic distribution, complementary
log–log (cloglog) link function g(µi) = log{− log(1 − µi)}, that is formed from the
inverse CDF of the Gumbel (or log-Weibull) distribution.

2.2 Time series by using GAM
The method of GAM is an effective and flexible technique for performing non-linear
regression analysis in time series studies. Time series analysis methods such as autore-
gressive integrated moving average (ARIMA) models are a common proposition, but
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are impossible to use in data samples with irregular intervals because the software usu-
ally requires the interval of observations in time. One suggestion for estimating trends
in such time series data, is to use locally estimated scatterplot smoothing (LOESS)
(Cleveland, 1979; Birks, 1998). However, GAMs have also shown good results as they
allow non-parametric adjustments for non-linear seasonal effects, trends and variables.
LOESS and GAMs estimate non-linear and smooth trends in time series data and can
implement irregular spacing of samples in time, but GAM does not have the problem
of LOESS as being considered a formal statistical inference method.

The GAM for a trend in a series of T observations yt at observation times xt

(t = 1, 2, ..., T ) is defined as follows,

g(µt) = β0 + f(xt),

where µt is the expected value of the response variable Yt (µ ≡ E(Yt)), g is the link
function, a monotonic and invertible function and f(xt) is a smooth function of time.

2.3 Generalized additive distributed lag model
In this part, we first examine a smooth DLM and then its extension to the GAM
is discussed. Let (xt, yt), t = 1, , T represent a data set sorted by time. Moreover,
additional covariates may be measured, but are ignored here. The distributed lag
model of order q is defined as follow,

yt = α+ β0xt + β1xt−1 + ...+ βqxt−q + ϵt, t = 1, ..., T,

where the ϵt are error terms. As respect to the outcome variable yt may depend on
xt at time t (Both today and in the previous days), it is necessary to put a restriction
on βl and turn it into a simple function of the lag number to solve the collinearity
problem. Also, this restriction can be extended to polynomial DLM of order (q, p)
(PDLM(q,p)) where βl is restricted to be the piecewise pth polynomial function of l,
βl =

∑p
j=0 τj l

j , l = 0, ..., q,. After bringing the PDLM(q,p) formula, since polynomial
models are not suitable for more localized structures, its extended form is written as
follow.

βl =

p∑
j=0

τj l
j +

K∑
k=1

νk(l − κk)
p
+,

where κ1, ..., κK is a set of K discrete numbers between 0 and q, which are called knots.
The above equation is usually referred to as the spline regression function of l, which
can be estimated using P-spline smoothing. According to what was said, a generalized
additive DLM is implemented as follows

GADLM : g(µi) = α+ γT zt +

d∑
j=1

fj(stj) +

q∑
l=0

βlxt−l,

where zt is a vector of linearly modeled variables (often dummy variables), stj is the
jth variable modeled as a smooth function, and g is a link function.
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3 Parameter estimation
Various methods have been proposed to estimate the parameters of the GAM. One
of the parameter estimation methods is to use the backfitting algorithm, which was
first introduced by Friedman and Stotzel (1981). Another approach, the local scoring
method introduced by Hastie and Tibshirani (1986), is to update the Fisher score using
a local estimate of the score. Moreover, Hastie and Tibshirani (1990) and Wood (2004)
showed that the parameters can be estimated using the splines. In the following, we will
introduce the estimation using the backfitting algorithm, the local scoring algorithm
and the splines.

3.1 Backfitting algorithm
As mentioned, one of the parameter estimation methods is the use of the backfitting
algorithm that was introduced by Friedman and Stotzel (1981). This approach is an
iterative method where, at each step, one component is estimated while keeping the
other components fixed, and then the algorithm moves component by component to
reach convergence. This algorithm was proposed by Breiman and Fried (1985) for
GAMs and its convergence was reviewed by Boja et al. (1989). In this part, the
algorithm has been avoided, for more information about the backfitting algorithm, you
can read the above articles.

3.2 Local scoring procedure algorithm
The proposed method Hastie and Tibshirani (1986) is a local scoring algorithm, which
is an update of Fisher’s score using local score estimation. Since smoothing generalizes
the linear model, in the smoothed model η = f(x), f(.) can be estimated by iteratively
smoothing the dependent variable set to X.

The local scoring algorithm includes the following 3 steps,
Step 1. Initialization: Set all smoothing functions to 0, for example,

f̂0 = g(E(Y )), f̂1
j ≡ 0,m = 1.

Step 2. Construct the adjusted dependent variable as follows, (m = m+ 1)

Zi = ηi(yi − µi)(
∂ηi
∂µi

),

so that,

ηm−1 = f0 +

p∑
j=1

fm−1
j (xij),

ηm−1 = g(µm−1) ⇒ µm−1 = g−1(ηi).

Also make wi weights as below,

wi = (
∂ηm−1

i

∂µm−1
i

)2v−1
i , vi = V ar(Yi),
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and then fit a weighted additive model to Zi to obtain the estimate of the function fm
j ,

based on the additive covariate ηm and the fitted value µm
i = pi.

Step 3. Repeat step 2 until the change in deviation is small enough,

D = 2{log(L(Y, µ))− log(L(Y, µ̂LM ))}.

For this, we can also consider the following expression,

∆(ηm, ηm−1) =

∑p
j=1 ∥fm

j − fm−1
j ∥∑p

j=1 ∥f
m−1
j ∥

.

However, after considering this algorithm, you will realize that its estimation has prob-
lems such as convergence and lack of validity, and the use of this algorithm for esti-
mation is ignored. Therefore, many authors have proposed more direct approaches to
solve these problems, which can be referred to as the use of penalized likelihood.

3.3 Splines
The smoothing issue is one of the most powerful tools for data analysis in mathematics
and statistics, also is used as the basis for many modern techniques. Due to the
complexity of many statistical modeling, it is not possible to use a regular regression,
also, in modeling, sometimes it is necessary to estimate a smoothing function so that
it can cover and fit the data well. A commonly used suggestion for estimating the
smoothing functions fi in the GAM is splines, which should consider the space where
fi functions are located or are almost close to it, in order to convert the model into a
linear model. Splines are used in order to mathematically make over flexible shapes,
therefore the functions fi which is a spline function with constant knote sequence
(τ1, ..., τK) and degree d are written as follows using basis functions,

f(x) =

p∑
i=1

K+d+1∑
r=1

βirBir(x),

where f(x) = (f1(x), ..., fp(x))
′, Bir’s are the collection of basis functions defined on

a vector space V and βir’s are the associated spline coefficients. By placing the fi(x)’s
function in the model, it becomes a linear model that can be estimated using least
squares.

In fact, the issue here is the selection of the degree of smoothing and basis functions,
which is an approach to control the smoother. According to Yee (2015), four general
categories of smoothers have been proposed, which are regression smoothers (polyno-
mial regression, P-splines, regression splines, etc), smoothing splines (cubic smoothing
splines, P-splines, O-splines), local regression (Lowess, Loess, it generalizes to local
likelihood, etc) and nearest neighbor smoothers (running means, running medians,
etc).

Nevertheless, due to the flexibility and easier calculation, some of these approaches
are used more. In smoothing splines, knots are considered at all points x1, ..., xn and
a regular regression is performed based on the natural spline. Natural splines are
cubic splines that require the spline function f to satisfy the condition f ′′ = f ′′′ = 0,
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which leads to additional constraints. Since smoothing splines use only the inputs as
knots, they overrule the knot selection problem and simultaneously control overfitting
by minimizing the coefficients of the estimated function. It should be noted that a
special case of the more general class of thin plate splines defined by Wood (2003), are
smoothing splines. The approach for these types of smoothers is to start with many
basis functions (for example, n of them) and penalized for some properties of these
basis functions in order to control the flexibility of the fit.

Another common approach to facilitate knot location selection in spline modeling
is to use penalized splines. Instead of using smoothing splines, it is more convenient to
smooth using Eilers and Marx (1996) ”Penalized B-splines”, also known as ”P-splines”.
Their solution can be easily computed because it involves direct linear algebra calcula-
tions, so estimation can be done in a similar way to generalized linear models (GLMs).
There is no need for backward fitting and all functions are estimated simultaneously.
Consider the sample data (x1, y1), , (xn, yn), a penalized spline is defined as follows,

β̂ = argmaxβ{lβ(x1, y1, , xn, yn)− λ.Jβ}, (1)

where lβ represents the logarithm of the likelihood and Jβ is a roughness penalty
that shrinks if the spline function is ”smooth”. Nevertheless, maximizing this function
means a trade-off between model fit and smoothness, which is controlled by the tuning
parameter λ ≥ 0. Therefore, if λ is too large, the data will be over-smoothed, and if
λ is too small, the data will be under-smoothed. A suitable criterion for choosing λ is
the use of cross-validation.

4 Simulation
After presenting the issues related to the fitting of GAMs, now we intend to measure
and evaluate the models in order to compare the fitted models by criteria such as
mean squared error (MSE), Akaike information criterion (AIC), etc. As you have
seen, in order to fit fi functions, different methods can be used, such as the method
presented by Hastie and Tibshirani (1986) under the title of local scoring algorithm,
or the method presented by Wood (2004) using the penalized likelihood approach, etc.
In this simulation we use splines to fit the model. Since GLM is not utilized in time
series data, we only use independent variables for simulation. In this regard, we will
benefit from various simulations by creating and designing different scenarios of data
with linear and non-linear trends.

First, we explain how to generate data and the equation designed for each of them,
and after fitting the model to the data, we compare the models. Note that all results
presented below are based on 10, 000 iterations. To begin with, we have created two
datasets manually with different numbers of samples 50, 100, 250 and 1000 with linear
equations and quadratic form. Consider the following equation,

y = f(x) + ϵ,

by generating the random variable x from a uniform distribution (arbitrarily any dis-
tribution) and by defining error sentences that are randomly made from the family of
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Table 1: The results related to fitting the GAM to the data with the linear equation.
Methods n 50 100 250 1000

GLM MSE 3.82 3.91 3.97 4.00
AIC 213.86 425.19 1059.09 4227.97
BIC 219.60 433.00 1069.66 4242.69

Deviance 191.00 391.33 992.27 3995.21
GAMS MSE 3.66 3.84 3.94 3.99

AIC 213.02 424.50 1058.46 4227.36
BIC 220.20 434.13 1071.47 4245.41

Deviance 182.93 383.55 984.40 3987.42

exponential distributions and defining a function for each fi, we create the response
variable y.

After generating the data, we fit two models, the generalized linear model (GLM)
and the generalized additive model using smoothing splines (GAMS), and in order to
compare them, we evaluated the MSE, AIC, Bayesian Information Criterion (BIC) and
deviation value (Deviance). The first equation which is linear, is defined as follows,

f(x) = 0.5x.

The lower the value of the defined criteria, it indicates that the model fitted on the
data is better and covers them well. According to the information in the Table 1,
it seems that the value of the criteria defined in the GAMS model is lower than the
other model and it can be said that this model performed better. As you can see, with
the increase in the number of samples, the MSE value for both models increases very
slightly, but the other three criteria (i.e. AIC, BIC, Deviance) have increased a lot, so
it can be said that the results are almost dependent on the number of samples. Also,
while n increases, the change in the criteria becomes less meaningful and there is no
considerable difference between the GLM and GAM. The second equation which has a
quadratic form, is designed as follows,

f(x) = (1 + x)2 − 0.2x.

The information in Table 2 shows that the GAMS has clearly performed better than
the GLM.

Table 2: The results related to fitting the GAM to the data with the quadratic equation.
Methods n 50 100 250 1000

GLM MSE 59.51 59.54 59.53 59.51
AIC 34625.65 34627.62 34627.38 34625.33
BIC 34645.20 34647.17 34646.93 34644.88

Deviance 297560.21 297677.59 297662.42 297541.10
GAMS MSE 3.99 3.99 3.99 3.99

AIC 21133.64 21131.43 21133.38 21132.69
BIC 21199.34 21197.13 21199.07 21198.38

Deviance 19974.50 19965.73 19973.57 19970.78

Increasing the sample from 50 to 1000 has not had much effect on all four criteria in
the models and we have encountered both an increase and a little decrease. The next
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generated dataset is from the ”mgcv” statistical package in R software, which uses the
gamsim() function to generate a suitable dataset for GAMs. The approach used in
the gamsim function is to use examples related to Gu and Wahba (1991), where we
have used the first example to generate data. Table 3 shows the fact that according

Table 3: The results related to fitting the GAM to the data with gamsim() function.
Methods n 50 100 250 1000

GLM MSE 3.82 3.91 3.97 4.00
AIC 213.86 425.19 1059.09 4227.97
BIC 219.60 433.00 1069.66 4242.69

Deviance 191.00 391.33 992.27 3995.21
GAMS MSE 3.66 3.84 3.94 3.99

AIC 213.02 424.50 1058.46 4227.36
BIC 220.20 434.13 1071.47 4245.41

Deviance 182.93 383.55 984.40 3987.42

to the measured values of MSE, AIC and deviation, GAMS performed better than the
other model, but the point here is that the BIC value is slightly lower in the GLM
model. Paying close attention to the available values for both models, we can see that
the sample size had an effect on the models and with the increase in the number of
samples, the measured values also increased.

Based on the results obtained in each part of the simulation, it can be concluded
that the GAM that is fitted with smoothing splines has a relatively better performance
in different data situations, which can be used without the need to detect the non-linear
relationship in advance. In the end, it can be mentioned again that GAMs perform
very well for non-linear data scenarios and can be easily used.

5 Examples
Here we intend to point out the effectiveness of the GAM method in data modeling by
providing some examples. As mentioned, GAM is used in different data situations, and
since it was shown in the simulation section which the splines method works better for
parameter estimation, we use this method for all the examples defined below.

5.1 GAM with independent variables
The example related to this part uses ”Auto” data from the ”ISLR” package in R
software. These data include 392 independent observations on 9 variables, available
in James et al. (2013). Here the intention is to investigate the effect of the vari-
ables ”weight”, ”mpg”, ”horsepower” and ”displacement” on ”acceleration”.Therefore,
a GAM was fitted to the data using the ”mgcv” package in R. To estimate the unknown
smoothing functions f in R, the s function was used, which by default is the thin plate
regression splines. We see the result of the model in Table 4.

By checking Table 4 for the significance of the variables, we find that all the ex-
planatory variables are significant and the value of R2 indicates the good performance
of the model. It is also possible to show a visual representation in Figure 1 of the GAM
on the data, based on which the performance of the model can be understood.
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Table 4: A summary of the GAM fit to the Auto data is provided.
Parametric coefficients:

Estimate Std. Error t value p-value Bootstrap
(intercept) 15.54133 0.07205 215.7 0.0000
Approximate significant of smooth terms:

edf Ref.df F p-value Bootstrap
s(mpg) 6.382 7.515 3.479 0.0010
s(displacement) 1.000 1.000 46.055 0.0000
s(horsepower) 4.883 6.006 70.187 0.0000
s(weight) 3.785 4.800 41.135 0.0000
R-sq.(adj)=0.733 Deviance explained=74.4% n=391

Figure 1: Plot related to data smoothing for Auto dataset.

5.2 GAM in time series
The example data is related to the total electricity consumption, which is collected as
a time series with 672 observations. The data measurement procedure is every half
hour once a day where we have 48 measurements per day and the average is considered
for each day of the week. If we look at Figure 2 for visual observation, which shows
electricity consumption in two weeks, we find that there are daily and seasonal effects
that should be included in the model. The data and code for this example are available
on the https://petolau.github.io/Analyzing-double-seasonal-time-series-with-GAM-in-
R/github site.

After setting the daily and weekly variables, we fit a GAM to the data and use spline
for the daily variable and P-spline for the weekly variable. You can see a summary of
fitting model in the form of the following table (Table 5). According to the values in
the table, it seems that the model is well fitted and the amount of R2 indicates the
convenient performance of the model.

By looking at Figure 3, you can see the effect of the variables on the amount of
electricity consumption. As it is known, electricity consumption has clearly decreased
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Figure 2: Time series data from two weeks of electricity consumption.

Table 5: The results of GAM fitting on time series data of electricity consumption.
Parametric coefficients:

Estimate Std. Error t value p-value Bootstrap
(intercept) 2731.67 18.88 144.7 0.0000
Approximate significant of smooth terms:

edf Ref.df F p-value Bootstrap
s(Daily) 10.159 12.688 119.8 0.0000
s(Weekly) 5.311 5.758 130.3 0.0000
R-sq.(adj)=0.772 Deviance explained=77.7% n=672

Figure 3: In the left and right panels of the figure, there are daily and weekly measurements,
respectively.

on the weekend and the peak consumption is measured on the 30th.

5.3 GAM in time series with lag
Example data provided for GADLM are from daily time series of mortality, air pollution
and meteorological variables in a study in Italy, measured for the ten-year period
1980-1989. In this example, two variables of daily mortality data (counting natural
death certificates of Milan residents) and total suspended particulate matter (TSP) as
pollution measures are used. Here, fitted a Poisson additive distributed model with
mortality as the response variable. A traditional model that includes the TSP effect
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on the same day and a DLM that includes the TSP effect distributed on the same day
and the previous 45 days are fitted to the data. In DLM, penalized splines are used
for smooth expressions. In this model, variables of relative humidity, temperature and
number of days are considered as covariates to measure their effect on mortality rate.
Since other unmeasured covariates such as diet and smoking have seasonal patterns,
they have no effect in the short term and can be ignored. Further details on this
example and data are provided in Zanobetti et al. (2000).

Figure 4: The smooth curve components for Milan mortality data after generalized additive DLM
fitting.

Figure 4 illustrates a visual representation of the smooth functions that showed
almost a U-shaped relationship between the mean temperature and relative humidity
with mortality. In fact, people are more vulnerable to extreme amounts of these factors.
Note that, the dashed lines or dots around the fitting region correspond to ± twice the
estimated standard deviation of each estimate.

Figure 5: Lag structure related to the displacement effect of mortality.

Figure 5 shows how the effect of TSP is decomposed and divided into three parts
A,B and C. As it is clear in the figure, the vertical axis shows the coefficients β (the
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effect of pollution a few days ago on today’s mortality rate) and the horizontal axis
shows the delay. A shows that for low lag, the sum of the coefficients is positive, in
fact, we see the positive effect of pollution on mortality in a few days. As shown in
Figure 5, some coefficients in B are negative, which indicates that the level of pollution
has a negative effect in a longer period, and then there is a period C in which the
regression coefficients are once again positive. The components defined above, as well
as the cumulative effect of A+B+C have been investigated and the results are shown
in Table 6.

Table 6: Coefficient amount of β, the standard errors, the relative risks and a confidence
interval for the decomposition of effect TSP are shown.

β̂ SE RR CI5% CI95%
A 0.000424 0.000106 1.037 1.019 1.056
B 0.000018 0.000027 1.002 0.997 1.006
C 0.000307 0.000165 1.027 0.998 1.056
A+B + C 0.000749 0.000161 1.067 1.038 1.096

6 Discussion and conclusions
Many analysts need knowledge of powerful statistical tools to work with data. GAM
provides a good method for modeling non-linear process data that can predetermine
the shape of the non-linear relationship without the need for an analyst. GAM has
many applications in different data situations such as when the variable is independent,
time series, or has a lag. In addition, it is utilized in various academic and research
fields like climate variables, economics, clinical research, biology, etc. In this article,
we tried to review explanations about non-parametric GAM and its application and
show the power and efficiency of this statistical method by providing examples and
simulations.
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