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Abstract: In this paper, we consider a diagonal form for the variances of errors in
linear models. This form contains the homogeneous and heterogeneous for the errors.
First, an estimation for the variances is given, and then a method is introduced for the
hypothesis test of parameters in linear models. Some applications of this method are
presented.
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1 Introduction
In the linear model, one of the problems is finding an exact test when the variances of
errors are unequal. It is known as the Behrens-Fisher problem. Tsui and Weerahandi
(1989) introduced the concept of generalized p-value (GPV) and proposed a test for
the Behrens-Fisher problem to compare the means of two normal populations. Weer-
ahandi (1987) and Koschat and Weerahandi (1992) gave tests for comparing several
multiple linear regression models. Under unequal variances, an exact test for one-way
ANOVA was proposed by Weerahandi (1995a) and for two-way ANOVA by Ananda
and Weerahandi (1994) and Bao and Ananda (2001). A method to test the common
mean of several normal populations has been introduced by Lin and Lee (2005).

In this article, we consider a diagonal matrix form for variances of errors in linear
models. This form contains many forms for the variance of errors. First, we will obtain
an estimation of unknown parameters of the models and nuisance parameters with
some considerations. Then, we will introduce a GPV to test the linear models with
unequal variances.
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In Section 2, the theory of GPV will be introduced. Section 3 is devoted to intro-
ducing the model. Then, an estimation of the unknown parameters and a method to
test the hypothesis are given. The applications of our method are presented in Section
4.

2 Generalized p-value
The concept of GPV was first introduced by Tsui and Weerahandi (1989) to deal
with the statistical testing problem in which nuisance parameters are present and it is
difficult or impossible to obtain a nontrivial test with a fixed level of significance. The
setup is as follows. Let X be a random variable having a probability density function
f(x|ζ), where ζ = (θ,η) is a vector of unknown parameters, θ is the parameter of
interest, and η is a vector of nuisance parameters. Suppose that we are interested in
testing

H◦ : θ ≥ θ◦ vs H1 : θ > θ◦, (1)

where θ◦ is a specified value.
Let x denote the observed value of X. The random variable T (X;x, ζ) is called a

generalized test variable if it has the following requirements:
(i) For fixed x and ζ = (θ◦,η), the distribution of T (X;x, ζ) is free of the nuisance
parameters η.
(ii) tobs = T (x;x, ζ) does not depend on unknown parameters.
(iii) For fixed x and η, the random variable T (X;x, ζ) is either stochastically increasing
or decreasing in θ for any given t.

Under the above conditions, if T (X;x, ζ) is stochastically increasing in θ, then the
GPV to test the hypothesis in (1) can be defined as

p = sup
θ≥θ◦

P (T (X;x, θ,η) ≥ t∗) = P (T (X;x, θ◦,η) ≥ t∗),

where t∗ = T (x;x, θ◦,η).
For further details and several applications based on the GPV, we refer to the book

by Weerahandi (1995a). The GPV has been used for inference on ANOVA, regression
and quantiles for example see Weerahandi (1995b), Sadooghi-Alvandi et al. (2012, 2015)
and Malekzadeh and Jafari (2018).

3 Model and method
Consider the linear model

Y = Aβ + ε, ε∼MVN(0, D),

where Y is an n × 1 vector of observations such that Y = (Y ′
1 , . . . ,Y

′
t )

′ and Yi is an
ni × 1 vector (i = 1, . . . , t , ni ≥ 2 ,

∑t
i=1 ni = n) , A is an n× k matrix of rank r < k,

β is an k × 1 vector of parameters, ε is an n × 1 vector of errors and D is an n × n
unknown matrix

D = diag(D1, D2, . . . , Dt),
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where Di = σ2
i Ii (i = 1, . . . , t) and Ii is an ni × ni identity matrix. Therefore

Cov(Yi,Yj) = 0, V ar(Yi) = σ2
i Ii = Di, i ̸= j, i = 1, 2, .., t.

This model contains linear regression, one-way and two-way ANOVA, ANCOVA, com-
mon mean problem, Chow test, and other linear models with equal and unequal vari-
ances.

Consider the hypothesis test

H◦ : Hβ = C vs H1 : Hβ ̸= C, (2)

where H is an m × k matrix (m < k), C is an m × 1 vector, rank(H) = m < k, and
H◦ : Hβ = C is testable.

The general least square estimation for β is given as

β̂ = (A′D−1A)−A′D−1Y +
[
I − (A′D−1A)−(A′D−1A)

]
γ, γ ∈ R,

where I is an k × k identity matrix and B− is generalized inverse of B. Since Hβ is
estimable then the least square estimation of Hβ is unique for any choice of a least
square estimation for β (see Kshirsagar, 1983), that is

Ĥβ = H(A′D−1A)−A′D−1Y .

Let the matrix A be partitioned as

A = [aij ]
n
i,j=1 = (A∗′

1 , A∗′

2 , . . . , A∗′

t )′,

where A∗
i = (A′

i1, A
′
i2, . . . , A

′
ini

)′, Aij = (av1, av2, . . . , avk) and v = j +
∑i−1

l=1 nl, i =
1, 2, . . . , t. It is clear that the MLE for σ2

i , i = 1, 2, . . . , t is

S2
i = σ̂2

i =
1

ni
Y

′

i (Ii −A∗′

i (A∗′

i A∗
i )

−A∗
i )Yi,

and Ui =
niσ̂

2
i

σ2
i
∼χ2

(ni−pi)
, with pi = rank(A∗

i ). We remark that σ̂2
i is not necessarily

independent from the estimation of β̂.
Suppose that

Q = (Ĥβ −Hβ)′V −1(Ĥβ −Hβ),

where V = H(A′D−1A)−H ′. Threfore, Q has a chi-square distribution with m degrees
of freedom, since Ĥβ∼MVNm(Hβ, V ).

Theorem 3.1. Let Ṽ = H(A′D̃−1A)−H ′, where D̃ = diag(D̃1, D̃2, . . . , D̃t), D̃i =

σ2
i
s2i
S2
i
Ii =

nis
2
i

Ui
Ii, and s2i is the observed value of S2

i , i = 1, 2, . . . , t. Let

T =
(Ĥβ −Hβ)′V −1(Ĥβ −Hβ)

(Ĥβobs −Hβ)′V̂ −1(Ĥβobs −Hβ)
, (3)

where Ĥβobs = H(A′D̃−1A)−A′D̃−1y and y is the observed value of Y . Then T is a
generalized test variable for Hβ.
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Proof. It is simple to show that the observed value of T, is equal to 1 and the distribu-
tion of T is free from nuisance parameters, σ2

i , i = 1, .., t. Therefore T is a generalized
test variable for Hβ.

The GPV for (2) using the generalized test variable in (3) is

p = PH◦(T ≥ tobs) = 1− E

[
Hm

(
Ĥβobs − C)′

[
H(A′D̃−1A)−H ′

]−1

(Ĥβobs − C)

)]
,

(4)
where Hm(·) is the cumulative distribution function (cdf) of a chi-square distribution
with m degrees of freedom, and expectation is taken with respect to independent chi-
square random variables with ni − pi, i = 1, . . . , t degrees of freedom. The test rejects
the null hypothesis if the GPV is smaller than the significance level.

This GPV can be computed by numerical integration but can also be well approxi-
mated by a Monte Carlo simulation method. In this method, a large and equal number
of a random number from each chi-square random variable with ni−pi, i = 1, . . . , t de-
grees of freedom is generated. The cdf Hm is evaluated at each set, and the expectation
is estimated by their sample mean (see Weerahandi, 1995b).

4 Applications
In this section, we show some applications of the given GPV in Section 3.

4.1 One Way ANOVA
Consider the one-way ANOVA model

Yij = µi + εij , i = 1, . . . , k, j = 1, . . . , ni.

Testing the equality of means

H◦ : µ1 = · · · = µk. (5)

is equivalent to H◦ : Hµ = 0, where H = [1 : H∗] , 1 = (1, . . . , 1)′, H∗ = diag(−1, . . . ,−1)
and µ = (µ1, . . . , µk)

′. We can show that rank(H)= k − 1.
If σ2

1 = · · · = σ2
k = σ2, then by notations given in Section 3, we have t = 1 and

A = A∗
1. We obtain µ̂i = β̂i = Ȳi. =

1
ni

∑ni

j=1 Yij and σ̂2 = 1
n

∑k
i=1

∑ni

j=1(Yij − Ȳi.)
2 =

1
nSSE. Therefore, the GPV in (4) is the regular p-value for one-way ANOVA based on
F test.

If σ2
i ’s are not equal then t = k and the generalized test variable in (3) for the

hypothesis test (5) is

T =
(HȲ −Hµ)′ [HVH ′]

−1
(HȲ −Hµ)

(Hȳ −Hµ)′
[
HV̂ H ′

]−1

(Hȳ −Hµ)
, (6)

where Ȳ = (Ȳ1, . . . ., Ȳk), V = diag(
σ2
1

n1
, . . . ,

σ2
k

nk
), V̂ = diag(

σ2
1s

2
1

n1S2
1
, . . . ,

σ2
ks

2
k

nkS2
k
), S2

i =

1
n

∑k
i=1

∑ni

j=1(Yij−Ȳi.)
2 and ȳ and s2i are the observed values of Ȳ and S2

i , respectively.
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Therefore, the GPV for (5) is

p = P (T ≥ 1) = 1− E

[
Fχ2

(k−1)

(
(Hȳ)′

[
HV̂ H ′

]−1

(Hȳ)

)]
,

where Fχ2
(k−1)

(.) is the cdf of chi-square distribution with k − 1 degrees of freedom.
This GPV is given by Witkovsky (2002). We can show that this GPV is equal to the
GPV given by Weerahandi (1995a) using the following theorem.

Theorem 4.1. For given T in (6), we have

(HȲ )′ [HVH ′]
−1

(HȲ ) =

k∑
i=1

niȲ
2
i

σ2
i

−
(
∑k

i=1
ni

¯lY i

σ2
i

)2∑k
i=1

ni

σ2
i

.

Proof. We can show that HVH ′ = B + CC ′, where C = σ1√
n1

(1, 1, . . . , 1)′ and B =

diag(
σ2
2

n2
, . . . ,

σ2
k

nk
). Therefore, (B + CC ′)−1 = B−1 − B−1CC′B−1

1+C′B−1C , (see Rencher, 2000)
and (HVH ′)−1 = diag(n2

σ2
2
, . . . , nk

σ2
k
)− 1∑k

i=1
ni
σ2
i

(n2

σ2
2
, . . . , nk

σ2
k
)′(n2

σ2
2
, . . . , nk

σ2
k
). Then, we have

(HȲ )′[HVH ′]−1(HȲ ) =

k∑
i=1

(Ȳ1 − Ȳk)
2 ni

σ2
i

−

[∑k
i=1(Ȳ1 − Ȳk)

ni

σ2
i

]2
∑k

i=1
ni

σ2
i

=

k∑
i=1

niȲk
2

σ2
i

−

[∑k
i=1

niȲi

σ2
i

]2
∑k

i=1
ni

σ2
i

Remark 4.2. For two-way ANOVA, the GPV in (4) is equivalent the GPVs introduced
by Bao and Ananda (2001).

4.2 Common mean
Consider k different normal populations with a common mean µ but possibility different
variances σ2

i , i = 1, .., k , that is

Yij = µ+ εij , εij∼N(0, σ2
i ), i = 1, . . . , k, j = 1, . . . , ni.

Suppose that we are interested in the hypothesis test

H◦ : µ = µ◦ vs H1 : µ ̸= µ◦.

Then by using (3), the generalized test variable for this hypothesis test is

T =
Z2

∑k
i=1

Ui

s2i

(∑k
i=1

Uiȳi
s2
i∑k

i=1
Ui
s2
i

− µ

)2 ,
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where Z2 =
∑k

i=1
ni

σ2
i

(∑k
i=1

niȲi
σ2
i∑k

i=1
ni
σ2
i

− µ

)
and Ui =

niS
2
i

σ2
i

, and S2
i = 1

ni

∑k
i=1(Yij − Ȳi.)

2.

Therefore, the GPV is

p = 1− E

Fχ2
(1)


(∑k

i=1
Uiȳi

s2i
− µ◦

∑k
i=1

Ui

s2i

)2
(
∑k

i=1
Ui

s2i
)


 .

This GPV is equivalent to the GPV introduced by Lin and Lee (2005).

4.3 Chow-Test
Consider the test of equality of sets of coefficient in t linear regressions, that is

Yij = x′
ijβi + εij , εij ∼ N(0, σ2

i ), i = 1, 2, . . . , t, j = 1, 2, . . . , ni,

where Yij is jth observation in ith regression, xij is an (k × 1) vector, and βi is an
(k × 1) vector of coefficient. Our problem of interest is the hypothesis test

H◦ : β1 = β2 = · · · = βt.

This hypothesis test can be written as

H◦ : Hβ = 0,

where β = (β′
1,β

′
2, . . . ,β

′
t)

′ and H is an k(t− 1)× kt matrix with rank k(t− 1),

H =


I −I 0 · · · 0
I 0 −I 0
...

... . . .
I 0 0 · · · −I

 ,

where I is k × k identity matrix.
We can show that σ̂2

i = 1
ni
Y ′
i (Ii − Xi(X

′
iXi)

−1X ′
i)Yi = 1

ni
SSEi, where Yi =

(Yi1, . . . , Yini
)′ and Xi = (xi1,xi2, . . . ,xini

)′, i = 1, 2, . . . , t. Therefore, the GPV for
hypothesis test in (3) is

p = 1− E

[
Hk(t−1)

{
(Ĥβobs)

′
[
H(X ′D̂−1X)−1H ′

]−1

(Ĥβobs)

}]
(7)

where X = diag(X1, X2, . . . , Xt).
If t = 2 then the GPV in (7) is equivalent to the GPV given by Koschat and

Weerahandi (1992).

5 Discussion and conclusions
The linear model Y = Aβ + ε, contains linear regression, one-way and two-way
ANOVA, ANCOVA, common mean, and Chow test. Here, we consider diagonal form
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D = diag(D1, D2, . . . , Dt) for the variances of errors, where Di = σ2
i Ii (i = 1, . . . , t).

When σ2
i are equal, the classical F test is an exact test for inference on the parameters.

When σ2
i are unequal, inference on the linear model becomes to Behrens-Fisher prob-

lem which is one of the old problems in statistics. There is no exact method for this
problem. Here, we proposed a GPV for inference on this model. In special case, for
one-way ANOVA, this GPV becomes the GPV proposed by Weerahandi (1995a). For
two-way ANOVA, common mean, and Chow-test this GPV becomes the GPVs pro-
posed by Bao and Ananda (2001), Lin and Lee (2005), and Koschat and Weerahandi
(1992). However, this GPV can be applied to other models such as ANCOVA and
three-way ANOVA
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