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Abstract: The nonhomogeneous Poisson process is commonly utilized to model the
occurrence of events over time. The identification of nonhomogeneous Poisson process
relies on the intensity function, which can be difficult to determine. A straightforward
approach is to set the intensity function to a constant value, resulting in a homoge-
neous Poisson process. However, it is crucial to assess the homogeneity of the intensity
function through an appropriate test beforehand. Failure to confirm homogeneity leads
to an infinite-dimensional problem that cannot be comprehensively resolved. In this
study, we analyzed data on the number of passengers using the Tehran metro. Our
homogeneity test showed a nonhomogeneous arrival rate of passengers, prompting us
to explore different functions to estimate the intensity function. We considered four
functions and used a piecewise function to determine the best intensity function. Our
findings showed significant differences between the two models, highlighting the effec-
tiveness of the piecewise function model in predicting the number of metro passengers.
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Poisson process.
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1 Introduction
Counting processes are a type of random process that takes on values which are al-
ways correct, non-decreasing, and non-negative values. One of the most commonly
used counting processes is the Poisson process, which models the occurrence of random
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events over time. In a homogeneous Poisson process with a constant rate parameter λ
, the time intervals between events are independent and follow an exponential distri-
bution. However, this assumption of a constant rate may not hold true in real-world
scenarios where there are events that occur at varying rates over time. To address this
limitation, a nonhomogeneous Poisson process (NHPP) has been developed as a more
general version of the homogeneous Poisson process. NHPP is particularly useful for
analyzing events whose occurrence rate changes over time. It allows for a variable rate
parameter that can capture the changing nature of the process.

The NHPP is commonly used in a wide variety of events. Several examples include
seismographic event modeling (Hong and Guo, 1995; Sumiati et al., 2019), repairable
damages (Lindqvist, 2006), daily measurements of ozone gas (Vicini et al., 2012), am-
bient noise emissions (Guarnaccia and Quartieri, 2014), evaluating the buying behavior
of customers (Letham et al., 2016), software reliability and improvement (Wang et al.,
2016; Shinde and Kumar, 2017), and the number of accidents (Grabski, 2017, 2018)
can be listed.

Several methods have been proposed for estimating the parameters of the intensity
function in univariate NHPPs. These include parametric techniques (Zhao and Xie,
1996), Bayesian methods (Guida et al., 1989) and non-parametric approaches (Law and
Kelton, 1991).As the field of NHPPs has expanded, additional studies have been con-
ducted to develop and refine these methods. For example, Fathi and Khoshkar (2014)
devised an algorithm for simulating NHPPs with a multivariate intensity function and
evaluated its performance. Cifuentes-Amado and Cepeda-Cuervo (2015) proposed a
new class of NHPPs that consider seasonal factors and improve the estimation of pa-
tient admissions.

When modeling a NHPP, it is necessary to estimate both the unknown param-
eters and the functional form of the intensity function. The functional form of the
intensity function is usually determined based on the initial description of the data
under investigation, which may take various forms, such as periodic, ascending, or de-
scending. For data related to repairable systems, the Poisson process with a power
intensity function is often applied as a common approach (Karbasian and Ibrahim,
2010). In recognizing the functional form of intensity function, polynomial func-
tions (λ(t) = a0 + a1t + a2t

2 + ... + ant
n;λ(t) ≥ 0) and periodic functions (λ(t) =

[A sin(ωt+ ϕ) + c] ;λ(t) ≥ 0) are among the well-known and common families con-
sidered for intensity functions in this process. Moreover, the NHPP for modeling
the number of passengers in public transportation systems has been investigated.
Moreira-Matias et al. (2013) modeled the demand for taxi passengers using a NHPP. To
model the number of passengers entering the Valparaiso subway line in Chile, Allende-
Bustamante et al. (2016) used two types of counting processes, including the Hawkes-
Phan process and the NHPP, with the intensity function viewed as a sum of normal
functions. The results indicated that estimating the intensity function in the NHPP
was more straightforward and required fewer calculations than the Hawkes-Phan pro-
cess; however, the Hawkes-Phan process provided more accurate estimates of points
with high variability (including passenger peak hours). Menon and Lee (2017) em-
ployed the NHPP to model the passenger flow in short time intervals whose intensity
function was determined by a single-layer neural network and, in a case study, with
the data of bus passengers entering an area. A large city in Australia was used to
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investigate the model.
Apart from studies that have used NHPP as a modeling tool, several other stud-

ies have been conducted to predict the number of passengers in rail transportation
systems. These studies can be classified into two categories: parametric and non-
parametric methods. Parametric methods such as autoregressive integrated moving
average (ARIMA) models, multiple regression, exponential smoothing methods, gray
models, and Markov models are commonly used to predict the number of passengers.
Non-parametric methods such as neural network and nearest k-neighbor are also em-
ployed for this purpose. One such study by Sun and Mou (2018) proposed a composite
model for predicting the volume of passenger traffic in high-speed rail transportation
systems. The model combined partial least squares regression (PLS) and gray models,
and was evaluated based on the sum of squared errors.

In addition to analyzing rail passenger flow, Milenkovic et al. (2018) used the sea-
sonal ARIMA (SARIMA) model to predict the number of passengers in the Serbian
rail network using data from January 2004 to June 2014, and the results demonstrate
the model’s excellent performance. In the section on non-parametric methods, Wang
et al. (2019) predicted the number of passengers in the Qingdao rail transportation
system using the generalized regression neural network model. Borucka and Guzanek
(2022) have predicted the number of passengers in the rail transport system using data
from Polish railway lines and exponential smoothing and ARIMA models. According
to the findings of their study, the ARIMA model is superior at estimating the trend
and seasonal component.

As stated in the background, different methods, such as time series analysis meth-
ods, can be used to predict the number of passengers. However, these methods may
not be suitable for analyzing the data under consideration, which involves counting
processes that do not occur at a constant rate over time. Therefore, the approach
taken in this paper is to use the NHPP method to predict the number of passengers
entering the Tehran metro.

The structure of this paper is as follows: Section 2 provides an overview of the
fundamental theories of the NHPP, as well as a statistical hypothesis test to determine
whether the number of passengers is homogeneous or inhomogeneous. We also outline
a method for estimating the intensity function of the NHPP. In Section 3, we apply
the homogeneity test to the number of passengers and apply the univariate NHPP to
estimate that number on the Tajrish-Kahrizak metro line in Tehran using two different
methods and compare their accuracy in terms of RMSE and MAPE criteria. Finally,
Section 4 concludes the paper and summarizes the key findings and implications of the
study.

2 Poisson process
2.1 Counting process
The counting process {N(t), t ≥ 0} is a random process with the following conditions:
1. N(t) ≥ 0;
2. N(t) is integer valued;
3. If s < t then N(s) ≤ N(t) and
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4. For s < t, then N(t)−N(s) equals the number of occurrences in the interval (s, t].
(Ross, 2014)

If t1 > t0, in the counting process {N(t), t ≥ 0}, then, N(t1) − N(t0) is the incre-
ments of the process for in time ∆t, and if tn > ... > t1 > t0, the random variables
N(t1)−N(t0), N(t2)−N(t1), ..., N(tn)−N(tn−1) are independent of one another, the
process has N(t) independent increments.

The following subsection discusses the homogeneous Poisson process for counting
random events over time.

2.2 Homogeneous Poisson process
A counting process {N(t), t ≥ 0} is called a homogeneous Poisson process with the rate
λ (λ > 0) if the following conditions apply:
1. N(0) = 0;
2. N(t) has independent increments;
3. P (N(t+ h)−N(t) = 1) = λh+ o(h) and
4. P (N(t+ h)−N(t) ≥ 2) = o(h), where h > 0 and o(h) is a small amount applied in
the condition lim

h→0

o(h)
h = 0. (Ross, 2014)

Under the conditions stated above, the distribution of events in the time interval t
follows the Poisson distribution with the rate λt. In other words, if N(t) is a Poisson
process with the rate λ (λ > 0), then for every t, s > 0, N(t + s) −N(s) is a Poisson
random variable with a mean λt.

The assumption underlying the homogeneous Poisson process is a constant rate of
occurrence. This assumption may not hold for the majority of natural phenomena.
Therefore, the homogeneous Poisson process cannot be utilized. One can model the
intensity function as a random variable and estimate it using Bayesian methods to
solve this issue. Another approach is considering the intensity function as a random
process and employing multiple random processes. However, both of these methods
require adding a complex probabilistic structure. A more straightforward solution is
to use the NHPP.

2.3 Non-Homogeneous Poisson process
The process {N(t), t ≥ 0} is a non-homogeneous Poisson process (NHPP) with intensity
function λ(t) if the following four conditions apply:
1. N(0) = 0;
2. N(t) has independent increments;
3. P (N(t+ h)−N(t) = 1) = λ(t)h+ o(h) and
4. P (N(t + h) − N(t) ≥ 2) = o(h), where h > 0 and o(h) is a small amount that
satisfied in condition lim

h→0

o(h)
h = 0.

The mean function of the NHPP {N(t), t ≥ 0} with the intensity function λ(t) is
defined as Equation 1:

m(t) =

∫ t

0

λ(x) dx. (1)
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In addition, according to Equation 1, the estimate of the average N(t) is equal to:

m̂(t) = E(N(t)) =

t∫
0

λ̂(x)dx, (2)

where E(.) is the expected value.
Given the conditions outline above, it can be shown that for each t, s > 0, N(t+s)−

N(s) has the Poisson random variable with mean given by Equation 3 (Ross, 2014):

m(t+ s)−m(s) =

∫ t+s

s

λ(x) dx. (3)

As a result, {N(t), t ≥ 0} generally has a nonhomogeneous Poisson distribution with
the distribution of Equation 4:

P (N(t) = k) =
(
∫ t

0
λ(x) dx)k

k!
e−

∫ t
0
λ(x) dx k = 0, 1, 2, . . . . (4)

Before addressing the estimation of the intensity function, we should formally examine
the assumption of homogeneity so that if the data are accepted as inhomogeneous,
the NHPP can be applied to the examined data. Consequently, a test to examine the
homogeneity of observations is presented in the subsequent section.

2.4 Poisson process homogeneity test
Brown and Zhao (2002) proposed a new homogeneity test based on Anscombe’s vari-
ance stability transformation (1948), which outperforms the likelihood ratio, condi-
tional chi-square, and Niemen-Scott tests. In this paper, we employ the test developed
by Brown and Zhao (2002) to examine the homogeneity of the metro passenger ar-
rival rate. If N1(t), N2(t), ..., Nn(t) are the independent random variables and are
non-negative and integers, the following test can be utilized:

H0 : Ni ∼ Poiss(λi), λ1 = λ2 = · · · = λn,

Versus the assumption

H1 : Ni ∼ Poiss(λi),

n∑
i=1

(λi − λ̄)
2
> 0.

Anscombe (1948) showed that if N ∼ Poiss(λ), then:

V arλ(

√
N +

3

8
) =

1

4
+ o(

1

λ
).

Using this information and by defining Yi =
√
Ni +

3
8 and considering the test statistic

as follows:
T = 4

∑
(Yi − Ȳ )2 ∼ χ(n−1)(4

∑
(ν(λi)− ν̄n)

2
). (5)
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H0 is tested against H1; wherein

ν̄n =
1

n

∑
ν(λi), ν(λi) = Eλi(Yi) = Eλi(

√
Ni +

3

8
).

and so H0 is rejected if T > χ2
n−1;1−α.

2.5 Estimation of the intensity function
The intensity function, plays a crucial role in characterizing the probabilistic behavior
of the NHPP. Maximum likelihood (ML) is a well-established technique for estimating
the parameters of the model. To estimate the intensity function, we must consider the
nature, limitations, periodicity, and non-periodicity of the data. Commonly used func-
tions for intensity function estimation include trigonometric, polynomial, exponential,
trigonometric exponential, and spline functions. However, when dealing with non-
negative counting data, the exponential function is often preferred due to its ability to
ensure non-negativity. In this paper, we evaluate both single and piecewise functions,
which are represented by Equations 6 and 7, respectively:

λ(t) = exp(β0 +

p∑
i=1

βit
i), (6)

λ(t) =


exp(β01t

2 + β11t), t = spring,
exp(β02t

2 + β12t), t = summer,
exp(β03t

2 + β13t), t = fall,
exp(β04t

2 + β14t), t = winter.
(7)

To estimate the intensity function, we utilized the maximum likelihood (ML) method.
We considered various forms of the intensity function, including trigonometric, poly-
nomial, exponential, trigonometric exponential, and spline functions, but the details of
these functions are not discussed in this paper. However, we found that applying these
functions produced either constant or negative estimates, which is not in line with the
characteristics of the data we studied.

3 Application
The impact of passenger’s volume on subway planning, costs, optimization, and ser-
vice improvement highlights the need for modeling and forecasting. The number of
passengers entering the Tehran metro is registered hourly in an online system for each
station between 5 am and midnight. This study considered the data set from March
20th, 2016, to March 19th, 2020, before the COVID-19 pandemic in Iran.

Figure 1 shows the monthly number of passengers who entered the Tehran metro
between 7 and 8 am. The intensity of passenger arrivals exhibits periodic behavior.
For instance, the number of passengers decreases during the Nowruz holiday in April.
In contrast, the number of passengers increases in October and November at the start
of the academic year.

In addition, Figure 2 illustrates the intensity of passenger arrivals from March 2016
to March 2020. As shown in the Figure 2, the exponential functions given in Equations
6 and 7 appear to be well suited for the data at hand.
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Figure 1: The number of passengers entered Tehran metro between 7 and 8am from March 2016 to
March 2020.

Figure 2: The intensity of the arrival of passengers from March 2016 to March 2020.

This section begins by testing the homogeneity of passenger arrival rates. Next, we
apply the NHPP to model and predict the number of passengers in the Tehran metro,
using the monthly passenger data from the Tajrish-Kahrizak line between March 2016
and March 2020 as a case study. We employ two methods for this purpose and compare
their outcomes.

3.1 Comparison criteria
For a practical comparison of the two fitted models, the data is divided into two parts:

The first part consists of the data used for data modeling from March 2016 to March
2020. The second one consists of the data from March 2019 to March 2020 used to
validate and compare the models.

Using the root mean square error (RMSE) and the mean absolute percentage error
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(MAPE), a more suitable model is then suggested. The following relationships illustrate
these criteria.
• The Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(
N(ti)− N̂(ti)

)2

. (8)

• The Mean Absolute Percentage Error (MAPE):

MAPE =
1

n

n∑
i=1

∣∣∣(N(ti)− N̂(ti)
)∣∣∣

N(ti)
× 100. (9)

In Equations 8 and 9, N(ti) is the total number of passengers in time ti, N̂(ti) is its
estimate, and also n is the number of observations.

3.2 Homogeneity test of passenger arrival rate
To test the homogeneity of passenger arrival rate, we consider the monthly total num-
ber of passengers from March 2016 to March 2020 and calculate the test statistic of
Equation 5 by converting the data into Yi =

√
Ni +

3
8 :

T = 4

n∑
i=1

(Yi − Ȳ )
2
= 131990.5.

Considering α = 0.05 that

T = 131990.5 > χ2
35;0.95 = 22.465.

Therefore, at a significance level of 0.05, the homogeneity hypothesis of the total num-
ber of metro passengers is rejected, and the NHPP can be used to model the data in
Subsections 3.3 and 3.4.

3.3 The first model
The first model considered the total number of passengers from March 2016 to March
2019, and the intensity function was estimated using Equation 6. The best model was
obtained as follows:

λ̂(t) = exp(−0.026t2 + 1.12t).

In Table 1, RMSE value is 1186486.48, which is a large value. Additionally, MAPE
equals 176%, representing the deviation from the total number of incoming passengers.

Using Equations 2 and 4, the mean function and the distribution of the NHPP
using the estimated model are obtained as follows:

m̂(t) =

∫ t

0

λ̂(t)dx =

∫ t

0

exp(−0.024t2 + 1.09t)dt.
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Table 1: Comparative Criteria of the First Model
criteria Amount
RMSE 1186486.48
MAPE 176.89

P (N̂(t) = k) =
m̂(t)

k!
e−m̂(t)

=
1

k!
(

∫ t

0

exp(−0.024t2 + 1.09t)dt)ke
∫ t
0
exp(−0.024t2+1.09t)dt.

Considering that the time t from March 2016 to March 2019 is numbered from 1
respectively, for instance, to predict the average number of passengers entering the
Tehran metro line 1 between 7 and 8 am on March 21st, 2021, to April 20th, 2021 for
t = 61 and using Equation 2, yields:

m̂(61) = E(N̂(61)) =

∫ 61

0

exp(−0.024t2 + 1.09t)dt = 2712163.

This estimate is far from its actual value (281, 463).

3.4 The second model
In the second model, the intensity function is estimated by dividing the number of
passengers from March 2016 to March 2019 into spring, summer, fall, and winter
seasons using Equation 7, the best estimate of the intensity function as a piecewise
function for each season. The following is obtained:

λ̂(ti) =


exp(−0.3725t2 + 4.2339t), t = spring,
exp(−0.035t2 + 1.208t), t = summer,
exp(−0.0133t2 + 0.741t), t = fall,
exp(−0.0064t2 + 0.515t), t = winter.

Considering that each season consists of three months and that the test data range
from March 2016 to March 2019, the time t contains the values for each season.

Table 2: Comparative criteria of the second model
criteria spring summer fall winter
RMSE 244878.62 422532.08 451098.22 218625.27
MAPE 36.59 50.65 60.02 21.50

In Table 2, the spring model’s RMSE and MAPE are less than other seasons.
If the objective is to predict the mean number of passengers entering Tehran metro

line 1 between 7 and 8 am between March 21st, 2021, and April 20th, 2021, for example,
t = 16 and then:

m̂(16) = E(N̂(16)) =

∫ t

0

λ̂(x)dx
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=

∫ 16

0

exp(−0.3725t2 + 4.2339t)dt = 487446.2 ∼= 487446.

This prediction is significantly more accurate than the forecast obtained from the first
model compared to the actual outcome (281463).

Comparing Tables 1 and 2 reveals that the second model has smaller RMSE and
MAPE values. In addition, the calculation of the percentage improvement in the mean
estimate of the number of passengers from March 21st to April 20th, 2021, reveals an
improvement of 82% over the first model. By considering the intensity function in a
multi-rule manner and by separating the seasons of the year, the estimation of the
intensity function has become more precise. The actual value and prediction of the
number of passengers in the first and second models for the data from March 2019
to March 2020, which form the basis of the validity check, are plotted in Figure 3 to
facilitate a comparison of the outcomes.

Figure 3: Comparison of the mean prediction of the number of incoming passengers in the two
models presented with the actual value

4 Discussion and conclusions
In this paper, we propose a NHPP-based model for estimating the number of pas-
sengers entering the Tehran metro. The monthly number of metro passengers can be
modeled as a NHPP because it fluctuates and is independent of the previous month.
We demonstrated that the data set is not homogenous using Anscombe’s homogeneity
test. In a case study, the intensity function was estimated using two models based
on the number of passengers entering line 1 of the Tehran metro between 7 and 8 am
from March 2016 to March 2019. The results demonstrate that the piecewise function
intensity function is more accurate and has the lowest RMSE and MAPE.
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