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Abstract: The main focus of this paper is to extend the analysis of some ruin related
problems to a class of state-space compound binomial risk models for a sequence of
independent and identically distributed random variables of interclaim times when the
claim occurrences are homogeneous. First, we obtain the mass function of a defective
renewal sequence of random {Fn}n≥0-stopping times, using the compound binomial
of aggregate claim amount together the net profit condition, and compute the infinite
time ruin probability with Markov property of risk process. Moreover, we derive the
distribution of the time to ruin among many random variables associated with ruin us-
ing the convolution of claim amount and Lagrange’s implicit function theorem. Lastly,
the theoretical results are illustrated with numerical computations.
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1 Introduction
Let us first start with the description of the compound binomial risk model. Assume
that the premium income for each period is one and the total claim amount up to time
n ∈ N = {0, 1, 2, . . . } is defined by a binomial process {N(n);n ∈ N} with

N(n) = I1 + I2 + · · ·+ In =

n∑
i=1

Ii, n ∈ N+ = {1, 2, 3, . . . },
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with N(0) = 0, where {Ii, i = 1, 2, . . . } are homogeneous, independent and identically
distributed (i.i.d.) Bernoulli random variables representing the claim occurrences with
mean p ∈ (0, 1). That is, in any time period there is at most one claim; the probability
of having a claim is p and the probability of no claim is 1 − p. The occurrence of the
claims in different time periods are assumed to be independent events and they are
homogeneous in the compound binomial risk model. Then {N(n);n ∈ N} is called a
binomial process with probability mass function (p.m.f.)

P
(
N(n) = k

)
=

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

The claim amounts X1, X2, . . . are mutually independent, identically distributed, pos-
itive, integer–valued, random variables with a finite expectation µX = E(X), com-
mon p.m.f. p(x) = P (X = x), x = 1, 2, . . . , cumulative distribution function (c.d.f.)
p(y) =

∑y
x=1 p(x), probability generating function G(z) =

∑∞
x=1 z

xp(x) and rth mo-
ment denoted by E(Xr) =

∑∞
x=1 x

rp(x).
Premiums are payable at the rate of one per period. Then, the surplus of an

insurance company at time n with a constant premium rate is described as

R(n) = u+ n−
N(n)∑
i=1

Xi, n = 1, 2, . . . , (1)

where R(0) = u ∈ N = {0, 1, . . . }, N(n) and
∑N(n)

i=1 Xi are the initial surplus, the
number of claims up to time n and the total claim amount over n periods, respectively.
We assume that {N(n);n ∈ N} and {Xi; i = 1, 2, . . . , N(n)} are independent. We
further assume that the net profit condition pµX < 1 holds. Under the net profit
condition the ruin is not certain to occur eventually. This model is so-called compound
binomial model and includes information about the premium income rate and the initial
capital necessary to meet the expected claims costs and the ruin probability function
depends on the some quantities. The risk process (1) is a stationary homogeneous
Markov chain, (to see the proof, one can refer to Bazyari (2023a), where the proof
is given for a perturbed renewal risk process). From (1), since {N(n)} and {Xi} are
independent, then

E
(
R(n)

)
= u+ n− E(X)E

(
N(n)

)
= u+ n− npµX

= u+ n
(
1− pµX

)
,

and under the net profit condition pµX < 1, we have limn→∞E
(
R(n)

)
= ∞.

The risk model in (1) can be written as

R(n) = u+ n−
n∑

i=1

Yi, n = 1, 2, . . . , (2)

where Yi = IiXi is the claim amount in period i, with probability function

k(x) =

{
1− p, if x = 0,

pp(x), if x = 1, 2, 3, . . . ,
(3)
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with probability generating function k̂(x) =
∑∞

x=0 z
xk(x) = 1 − p + pG(z) and c.d.f.

K(x) =
∑x

y=0 k(y). Let T be a random variable which represents the random time to
ruin. That is, T = {minn ≥ 1 : R(n) ≤ 0|R(0) = u}. In this case

ψ(u) = P
(
T <∞|R(0) = u

)
,

denotes the infinite time ruin probability. The survival time ruin probability given
by ϕ(u) = 1 − ψ(u). In this case, for n = 1, 2, . . . , the finite time ruin probability is
denoted by

ψ(u, n) = P
(
T ≤ n|R(0) = u

)
. (4)

As a complement of (4), the finite time survival probability is denoted by

ϕ(u, n) = 1− ψ(u, n) = P
(
T > n|R(0) = u

)
= Pu

(
T > n

)
.

Define the sequence of random variables {Vk}k≥1 by

T1 = T, V1 = inf{n > T1 : R(n) = 0},

and for k = 2, 3, . . . ,

Tk = inf{n > Vk−1 : R(n) < 0}, and Vk = inf{n > Tk : R(n) = 0}.

If the insurance company never stops its activities whenever it is in the red or not,
Tk can be viewed as the kth ruin time and {Vk} and kth recovery time. From the
definition {Vk}k≥1, it is clear that R(Vk) = 0 for each k, therefore, R(Vk − 1) = −1.
Let Fn = σ

(
R(k), k ≤ n

)
for n ≥ 0. Then for k ≥ 1, Tk and Vk are all {Fn}n≥0-stopping

times. For n = 0, 1, . . . , we define a counting process N∗(n) = sup{k > 0;Vk ≤ n}. It
is easy to see that N∗(n) is a renewal counting process, since the risk process R(n) is
a Markov process and R(Vk) = 0 for all k > 0.

Suppose that {wk}k≥1 denotes the sequence of inter-occurrence times of the renewal
counting process N∗(n) with w1 = V1 and wk = Vk − Vk−1 for k = 2, 3, . . . . We can
verify that {wk}k≥1 is a sequence of independent variables and {wk}k≥2 is a sequence of
i.i.d. random variables. Denote the common distribution of wk, k ≥ 2 by W1 and that
of w1 by Wu

1 . Then both of them are defective with W1(0) = Wu
1 (0) = 0, W1(∞) < 1

and Wu
1 (∞) < 1 for u ≥ 0. For u < 0 distribution of Wu

1 is proper.
Among the different types of risk models, the classical binomial risk model, first

proposed by Gerber (1988), is a discrete time which assume that the premium income
is constant over time and the claim amounts form a sequence of i.i.d. random variables.

Shiu (1989) derived several formulas for the probability of eventual ruin in a dis-
crete time model when the total claim amount process is assumed to be binomial.
Willmot (1993) computed some explicit formulas for finite time ruin probabilities in
the discrete time and state-space compound binomial model using the technique of
generating functions. Dickson (1994) suggested that the compound binomial model is
useful in approximating the classical continuous-time compound Poisson mode. Cheng
et al. (2000) computed the discounted probability of ruin compound binomial risk
model. Cossette et al. (2003) and Cossette et al. (2004) extended the compound bino-
mial model to the so-called compound Markov binomial model which introduces time
dependence in the aggregate claim amount increments governed by a Markov process.
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Yuen and Guo (2006) gave results including the expected discounted penalty func-
tion, ruin probability and deficit at ruin in a compound Markov binomial model. Xiao
and Guo (2007) btained the recursive formula of the joint distribution of the surplus
immediately prior to ruin and deficit at ruin in the compound binomial risk model
with the time-correlated claims. Moreover, Lefèvre and Loisel (2008) investigated the
finite time ruin probabilities for some classical risk models, including the compound
binomial model.

Li et al. (2009) presented a review of results for discrete-time risk models, including
the compound binomial risk model and some of its extensions. Leipus and Šiaulys
(2011) found the asymptotics of finite horizon ruin probability in the compound discrete
time risk model for a subclass of heavy-tailed claim sizes and claim numbers. Bao and
Liu (2012) computed the recursive equations for both the infinite time ruin probability,
the joint distribution of the surplus one period prior to ruin and the deficit at ruin under
the compound binomial risk model with delayed claims and random income.

In addition to ruin-related problems, total dividends payable before ruin is another
focus point in risk theory. There are many papers in the literature studying risk
models with deterministic dividend strategies (constant, linear, etc.). Among them,
Wu and Li (2012) studied expected total dividends until ruin in a discrete time risk
model with delayed claims and a constant dividend barrier. Li (2008) analyzed the
moments of the present value of the dividends in the compound binomial model under
a constant dividend barrier and stochastic interest rates. Eryilmaz (2012) studied the
distribution of the total number of claims and its conditional Distributions. Tuncel and
Tank (2014) computed the distribution of total number of claims with nonhomogeneous
claim occurrences. Wat et al. (2018) obtained explicit results for the discount-free
Gerber–Shiu function for a compound binomial risk model in the presence of delayed
claims and a randomized dividend strategy.

The key difference between the discrete time risk model and compound binomial risk
model comes from their distributions of the inter-occurrence time. Yang et al. (2012)
computed the ruin probability in a dependent discrete time risk model with insurance
and financial risks. Sun and Wei (2014) studied an insurance risk model in which the
insurer makes both risk free, and risky investments. Yang and Konstantinides (2015)
derived the precise estimates for ruin probabilities in a discrete time insurance risk
model with dependent financial and insurance risks. Dickson and Qazvini (2017) stud-
ied the compound Markov binomial model and derived the numerical algorithms that
provide approximations to the infinite time ruin probability. Bazyari (2022) computed
the ruin probabilities in a generalized dual binomial risk model using Markov prop-
erty. Bazyari (2023b) obtained the ruin probabilities in the discrete time insurance
risk process with capital injections and analyzed the effect of capital injections when
claim amounts follow a heavy-tailed distribution.

The aim of the present paper is to derive the probability generating function of time
to ruin according to the joint probability function of a class of state-space compound
binomial risk model. Moreover, the ruin probabilities and the distribution of the time
to ruin are computed.

The remainder of this paper organized as follows. In Section 2, we give the ex-
pressions for some related problems of the ruin probabilities. In Section 3, for a class
of state-space compound binomial risk model with homogenous claim occurrences, we
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obtain the mass function of a defective renewal sequence of random {Fn}n≥0-stopping
times using the Markov property of risk process together the net profit condition. Then
the infinite time ruin probability is computed. Section 4 deals with the distribution of
the time to ruin among many random variables associated with ruin using the convo-
lution of claim amount. The numerical examples to illustrate the application of risk
model are presented in Section 5. Discussion and conclusions are given in Section 6.

2 Expressions for some ruin related problems
In this section, for convenience of later use, we give the notations for the distribution
of time to ruin and the probability generating function of time to ruin and obtain an
expression for the probability generating function of time to ruin according to the joint
probability function of the surplus prior to ruin, the deficit at ruin and the time to
ruin.

For u ∈ N and n = 1, 2, . . . , the distribution of time to ruin and probability
generating function of time to ruin are defined by τ(u, n) = P

(
T = n|R(0) = n

)
and

GT (u) = E
{
γT I(T <∞)|R(0) = u

}
respectively, where 0 < γ ≤ 1. It is clear that

GT (0) =

∞∑
n=1

τ(0, n)γn. (5)

On the other hand, from Li and Garrido (2002) the function GT (u) can be expressed by
GT (u) =

∑∞
n=1

(
1−GT (0)

)(
1−D∗n(u)

)
, where D(u) =

∑u
y=1 d(y|0), is the defective

cumulative distribution function of the deficit at ruin with no initial reserve.
Suppose that fXY T (x, y, t|u), x, u ∈ N , y, t ∈ N+ be the joint probability function

of the surplus prior to ruin, x, the deficit at ruin y, and the time to ruin t, starting
with an initial surplus of u, then

GT (u) =

∞∑
x=0

∞∑
y=1

∞∑
t=1

γtfXY T (x, y, t|u). (6)

Furthermore, for u ∈ N , ψ(u) =
∑∞

n=1 τ(u, n), and

ψ(u, n) = P
(
T ≤ n|R(0) = u

)
=

n∑
j=1

τ(u, j).

Therefore, with computing the probability generating function of time to ruin we can
obtain the ruin probabilities.

3 Mass function of the defective renewal
In this section, we derive the mass function of the defective renewal of the counting
process when the claim occurrences are homogeneous, using the compound binomial of
aggregate claim amount, and compute the infinite time ruin probability of risk process
in (2) with Markov property.
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Let Wu is the renewal function of the renewal process N∗(n) with the initial value
u, i.e.

Wu(n) =

∞∑
k=1

P
(
Vk ≤ n|R(0) = u

)
=

n∑
k=1

P
(
Vk ≤ n|R(0) = u

)
=

n∑
k=1

Wu
1 ∗W ∗(k−1)

1 ,

with the mass function

Wu(n) =

∞∑
k=1

P
(
Vk = n|R(0) = u

)
=

n∑
k=1

P
(
Vk = n|R(0) = u

)
, (7)

for n = 1, 2, . . . . It is well known that the distribution law of the aggregate claim
amount S(n) =

∑N(n)
i=1 Xi is compound binomial, i.e.,

fS(n)(j) = P (S(n) = j) =

n∧j∑
k=1

(
n

k

)
pk(1− p)n−kH∗k

j , (8)

where H∗k
j = P

(∑k
b=1Xb = j

)
and n ∧ j = min{n, j}.

Lemma 3.1. For the mass function Wu(n), we have Wu(0) = 0 and for n = 1, 2, . . . ,

Wu(n) =


0, if u+ n < 0,

(1− p)n, if u+ n = 0,∑(n−1)∧(u+n)
k=1

(
n−1
k

)
pk(1− p)n−kH∗k

u+n, if u+ n > 0,

Proof. Clearly, for n = 0, the mass function Wu(0) is equal to zero and for u+ n < 0,
Wu(n) = 0. Also, if u + n = 0, there is no claim until the time n − 1. From (7), we
have

Wu(n) =

n∑
k=1

P
(
Vk = n|R(0) = u

)
= P

(
R(n− 1) = −1, N(n)−N(n− 1) = 0|R(0) = u

)
= (1− p)P

(
u+ n− 1− S(n− 1) = −1|R(0) = u

)
= (1− p)fS(n−1)(u+ n), (9)

obviously, for u+ n = 0, wu(n) = (1− p)n and for u+ n > 0, from (8) and (9) we get

Wu(n) = (1− p)

(n−1)∧(u+n)∑
k=1

(
n− 1

k

)
pk(1− p)n−k−1H∗k

u+n

=

(n−1)∧(u+n)∑
k=1

(
n− 1

k

)
pk(1− p)n−kH∗k

u+n.

Thus, the proof is completed.
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3.1 Infinite time ruin probability
One central problem in the theory of ruin is to find ψ(u). Now, we are ready to
obtain the infinite time ruin probability according to the mass function of the defective
renewal.

Theorem 3.2. Suppose that the net profit condition pE(X) < 1 holds. Then for u ≥ 0
the infinite time ruin probability given by

ψ(u) =
1− pE(X)

1− p
Wu(∞),

where Wu(∞) =
∑∞

n=1 w
u(n) =

∑∞
n=1

∑n−1
k=1

(
n−1
k

)
pk(1− p)n−kH∗k

u+n.

Proof. With the Markov property of the risk process, we have

ψ(u) =

∞∑
k=1

P
(
Vk ≤ ∞,Vk+1 = ∞|R(0) = u

)
=

∞∑
k=1

P
(
Vk ≤ ∞|R(0) = u

)
P
(
V1 = ∞|R(0) = 0

)
= ϕ(0)Wu(∞),

where from Shiu (1989), ϕ(0) = 1−pE(X)
1−p , and this completes the proof.

4 Distribution of time to ruin with homogenous claim
occurrences

In this section, we present two separately formulas for the distribution of time to ruin
with homogenous claim occurrences given the discrete nature of the insurance risk
model.

Theorem 4.1. (Lagrange’s implicit function theorem). If t is determined by the
following implicit function

t = c+ zg(t), (10)

where t, c and z are scalars, and g(y) is a scalar function developable as a power series
in t = c for |t − c| sufficiently small. Suppose that L(t) is any function of t, then the
Lagrange’s formula is given by

L(t) = L(c) +

∞∑
n=1

zn

n!

dn−1

dcn−1

(
gn(c)

d

dc
L(c)

)
.

In particular, if L(t) = t, one obtains the equality t = c+
∑∞

n=1
zn

n!
dn−1

dcn−1

(
gn(c)

)
, which

inverts (10) giving as a power series in z.

Proof. See p. 15 of Goulden and Jackson (1983).
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Using Lemma 1 in Li and Garrido (2002), there exists the scalar ν ∈ (0, 1), such
that ν = γk̂(ν). Therefore, using Theorem 4.1, we have

L(ν) = L(0) +

∞∑
n=1

zn

n!

dn−1

dcn−1

( d
dc
L(c)

∞∑
z=0

czk∗n(z)
)
c=0

,

where k∗n is the nth fold convolution of claim amount Y1 with itself, and is computed
by

k∗n(z) =
1

k(0)

z∑
j=1

[
(n+ 1)

j

z
− 1

]
k(j)k∗n(z − j),

where k∗n(0) =
[
k(0)

]n (To proof the equation k∗n(z) see Dickson and Willmot (2005)).
In particular, ν may be computed explicitly by

ν =

∞∑
n=1

zn

n!

dn−1

dcn−1

(
czk∗n(z)

)
c=0

=

∞∑
n=1

zn

n!

∞∑
z=n−1

z(n−1)cz−(n−1)k∗n(z)|c=0

=

∞∑
n=1

zn

n!
k∗n(n− 1),

where z(n) = z(z − 1)(z − 2) . . . (z − n+ 1) is the nth factorial power of z.

Lemma 4.2. For any function h(t), t ∈ N+, such that

ĥ(ν) =

∞∑
t=1

νth(t) =

∞∑
n=1

γng(n) = ĝ(γ),

with ν = ν(γ) as defined by Lemma 1 in Li and Garrido (2002), then for n, n = 1, 2, . . . ,
we have

g(n) =
1

n

∞∑
t=1

th(t)k∗n(n− t).

Proof. See Li and Sendova (2013) to prove this Lemma.

Lemma 4.3. For any n = 1, 2, . . . , in the case of no initial surplus, the distribution
of time to ruin τ(0, n) is derived by

τ(0, n) =
1

1− p

( 1
n

n∑
t=1

tk∗n(n− t)− 1

n+ 1

n+1∑
t=1

tk∗(n+1)(n+ 1− t)
)
.

Proof. See Li and Sendova (2013) to prove this Lemma.

Lemma 4.4. For any n = 1, 2, . . . , in the case of u > 0, the distribution of time to
ruin τ(u, n) is derived by

τ(u, n) = P
(
T = n|R(0) = u

)
=

1

n

n∑
z=1

zM(u, z)k∗(n−z), (11)
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where

M(u, z) =
pE(Z)

1− p
b1(z) +

u∑
n=1

(pE(Z)

1− p

n∑
z=1

b1(z − t)θn(u, t)− θn(u, z)
)
,

θn(u, t) =
( p

1− p

)n n−1∑
k=0

(−1)k
(
n

k

) u−n∑
z=0

(
z + n− 1

n− 1

)
×P ∗k(u− n+ k − z)P ∗(n−k)(t+ n− k + z),

for u ≥ n and t = 1, 2, . . . , where P ∗k(u− n+ k − z) =
∑u

y=x+n p
∗l(y − n+ k − z).

Proof. Using the implementation of the last equation on page 6 given in Li and Garrido
(2002). With the penalty function being identically equal to 1,

GT (0) = E
{
γT I(T <∞)|R(0) = u

}
=

ν

k(0)

∞∑
x=0

∞∑
t=1

νxk(x+ t+ 1)

=
ν

1− p

∞∑
t=2

t−2∑
x=0

νxk(t). (12)

The relation (12) implies that the probability function of the deficit at ruin with no
initial reserve is

d(y|0) =
∞∑
x=0

∞∑
t=1

γtfXY T (x, y, t|0) =
1

k(0)

∞∑
x=0

νx+1k(x+ y + 1).

Moreover, the identity (6) can be written as

GT (u) = GT (0) +

∞∑
n=1

GT (0)D
∗n(u)−

∞∑
n=1

D∗n(u)

= GT (0) +

u∑
n=1

GT (0)D
∗n(u)−

u∑
n=1

D∗n(u), (13)

whereD∗n(u) = 0 for n > u andGT (0) obtains from (12). To computeD∗n(u), consider
D∗n(u) =

∑u
y=n d

∗n(y|0) and we note that d∗n(r) =
∑u

y=n r
yd∗n(y|0) = d̂n(r) with

d̂(r) = p
1−p

(r/ν)p̂(ν)−p̂(r)
1−r/ν . Then

d∗n(r) =
( p

(1− p)(1− r/ν)

)n
=

n∑
l=0

(−1)l
(
n

l

)
p̂l(r)

( r
ν

)n−1
p̂n−l(r).

Now, let the function wn(y,m), y ≥ n, exists such that d∗n(y|0) =
∑∞

m=0 ν
mwn(y,m).

Then d∗n(r) =
∑∞

m=0 ν
m
∑∞

y=n r
ywn(y,m).

Note that, if ν = 0, then d∗n(r) = 0. Moreover, we haveD∗n(u) =
∑∞

m=0 ν
mθn(u,m),

where θn(u,m) =
∑∞

y=n wn(y,m). Therefore,

D∗n(u) =
( p

1− p

)n n∑
k=0

(−1)k
(
n

l

)( p̂(ν)
ν

)n−l
u−n∑
x=0

(
x+ n− 1

n− 1

)
P ∗l(u− n+ l − x)ν−x
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+
( p

1− p

)n( p̂(ν)
ν

)n u−n∑
x=0

(
x+ n− 1

n− 1

)
ν−x

=
( p

1− p

)n n∑
k=0

(−1)k
(
n

l

)( p̂(ν)
ν

)n−l
u−n∑
x=0

(
x+ n− 1

n− 1

)
P ∗l(u− n+ l − x)ν−x,

since for y ≥ 0, p∗0(y) = 1. Also, after a change of variables we observe that for
0 ≤ l ≤ n,

p̂n−l(ν)νu−n+l−x =

∞∑
m=u−x

p̂∗(n−l)(m)(m− u+ n− l + x)νm.

Thus

D∗n(u) =
( p

1− p

)n n∑
l=0

(−1)k
(
n

l

) u∑
m=n

[ u−n∑
x=u−m

(
x+ n− 1

n− 1

)
P ∗l(u− n+ l − x)p∗(n−l)

×(m− u+ n− x)νm
]
+
( p

1− p

)n n∑
l=0

(−1)k
(
n

l

)

×
∞∑

m=u+1

[ u−n∑
x=0

(
x+ n− 1

n− 1

)
P ∗n(u− n+ l − x)ν−x

×p∗(n−l)(m− u+ n− x)νm
]
νm

+
( −p
1− p

)n u∑
m=n

(
x−m+ n− 1

n− 1

)
P ∗n(m)νm. (14)

Using identity (14), we get

θn(u, y) =
( p

1− p

)n n−1∑
k=0

(−1)k
(
n

k

) u−n∑
z=0

(
z + n− 1

n− 1

)
×P ∗n(u− n+ k − z)p∗(n−k)(y + n− k + z).

Finally, combining the equations (12) and (13), we have

GT (0) =
∞∑
y=1

νyM(u, z) =
∞∑

n=1

γnτ(u, n),

where M(u, z) defined in Lemma 4.4. Finally, using Lemma 4.2 the equation (11) will
be proved.

5 Numerical illustrations
In the following, we will proceed to numerically illustrate the usefulness of the related
problems on the obtained ruin probability in this manuscript. For that reason, we con-
sider three different p.m.f. for claim amounts and different values of the initial reserve
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u and the time n. Furthermore, the finite time ruin probability and the distribution for
time to ruin have been computed for the fixed values of u and n. Then, to assess the
performance of the ruin probabilities and the distributions for time to ruin computed
in this paper, these values have been calculated using Monte Carlo simulation.

Example 5.1. Assume that the claim amounts are distributed with common p.m.f.
p(x) = (1− θ)x−1θI(x ≥ 1), θ ∈ (0, 1), so that by (3), k(0) = 1− p and k(x) = pp(x),
x = 1, 2, . . . . Then for x ≥ n, we have

p∗n(x) =

(
x− 1

x− n

)
(1− θ)nθx−n,

and for n = 1, 2, . . . , we have

k∗n(x) =

(1− p)n, if x = 0,∑x
n=1

(
n

k

)(
x− 1

x− k

)
px(1− p)n−k(1− θ)kθx−k, if x ∈ N+.

Let p = 0.3 and θ = 0.5, so that pE(X) = 0.6 < 1. We compute the mass function
wu(n) for u = 0, 5, 10, 15, 20, 25 and n = 1, 2, . . . , 10. We display the numerical results
in Table 1.

Table 1: The mass function wu(n).
u

n 0 5 10 15 20 25
1 0.03518 0.06702 0.09627 0.34150 0.53022 0.64710
2 0.05272 0.08215 0.15253 0.37802 0.55131 0.68302
3 0.07045 0.09843 0.18038 0.39224 0.57602 0.71155
4 0.08913 0.13029 0.21545 0.41055 0.59325 0.74224
5 0.16506 0.17648 0.24700 0.42061 0.60873 0.75046
6 0.19850 0.18551 0.28183 0.45412 0.63113 0.78287
7 0.22603 0.21080 0.31934 0.48306 0.65002 0.80338
8 0.25048 0.24320 0.33408 0.50072 0.68351 0.83019
9 0.29072 0.27592 0.36241 0.52921 0.71616 0.86553
10 0.33081 0.30315 0.39605 0.54800 0.73454 0.88245

The infinite time ruin probabilities are obtained and the results are reported in Table
2. From this Table, it can be seen that, the infinite time ruin probability decrease as
the initial reserve increases.

Table 2: The infinite time ruin probabilities.
u

0 5 10 15 20 25 30
0.52852 0.47401 0.35226 0.30719 0.24630 0.21083 0.18914

Using Lemma 4.3 and formula (11) the distribution of time to ruin is computed for
u = 0, 5, 10, 15, 20, 25 and n = 1, 2, . . . , 10. We display the numerical results in Table
3.

The finite time ruin probabilities are computed and numerical results are presented
in Table 4. From this Table, it can be seen that the finite time ruin decreases as the
initial reserve increases.
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Table 3: The distribution of time to ruin τ(u, n).
u

n 0 5 10 15 20 25
1 0.20316 0.17250 0.14724 0.07132 0.01165 0.00752
2 0.17980 0.13925 0.10370 0.05542 0.00831 0.00351
3 0.12351 0.09542 0.07650 0.05106 0.00723 0.00085
4 0.08392 0.06181 0.05023 0.04685 0.00484 0.00026
5 0.05514 0.04870 0.04215 0.04175 0.00217 0.00008
6 0.04920 0.04312 0.03902 0.03702 0.000951 0.00006
7 0.04361 0.03706 0.03264 0.03114 0.000528 0.00005
8 0.03783 0.03127 0.02756 0.02651 0.000400 0.00004
9 0.02972 0.02552 0.01937 0.02260 0.000242 0.00003
10 0.02439 0.01842 0.01403 0.01992 0.000113 0.00002

Table 4: The finite time ruin probability ψ(u, n).
u

n 0 5 10 15 20 25
1 0.20316 0.17250 0.14724 0.07132 0.01165 0.00752
2 0.38296 0.31175 0.25094 0.12674 0.01996 0.01103
3 0.50647 0.40717 0.32744 0.17780 0.02719 0.01188
4 0.59039 0.46898 0.37767 0.22465 0.03203 0.01214
5 0.64553 0.51768 0.41982 0.26640 0.03420 0.01222
6 0.69473 0.56080 0.45884 0.30342 0.035151 0.01228
7 0.73834 0.59786 0.49148 0.33456 0.035679 0.01233
8 0.77617 0.62913 0.51904 0.36107 0.036079 0.01237
9 0.80589 0.65465 0.53841 0.38367 0.036321 0.01240
10 0.83028 0.67307 0.55244 0.40359 0.036434 0.01242

We now describe the Monte Carlo simulation process employed to generate estimates
of finite time ruin probabilities and the distributions for time to ruin resulting from
those that experienced ruin. We simulated a large number of trajectories or sample
paths of the surplus process by first initializing a surplus at time 0 of u, and then
generating claims and receiving premiums. It was possible that some of these sample
paths will never lead to ruin and therefore necessary to terminate the process at some
finite time.

In any process that has started, if T < n then we say that process has led to ruin,
otherwise ruin has not occurred in that process. We assume that the total number
of simulated routes for each individual risk model is equal to M and for each of the
individual risk model with initial capital u, Im(.) is an indicator function of the ruin
probability for the mth path and T is the time to ruin. In this case, the estimated finite
time ruin probability is given by ψ̂(u, n) = 1

M

∑M
m=1 Im(T < n).

It is clear that ψ̂(u, n) is an unbiased estimator for the finite time ruin probability.
Moreover, we assume a total of 1000 static policies, that is, there will always be this
much exposure in the insurance portfolio for each time period. We simulate 104 trajec-
tories of the risk process and we calculate how many times on average they fall below
zero in order to get values of ψ̂(u, n). We present the numerical results in Table 5.

From the Tables 4 and 5, it can be seen that, the exact and simulated estimate for
the finite time ruin probability decrease as the initial reserve increases. In addition,
comparison of the exact values and simulated estimates for the finite time ruin proba-
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Table 5: The simulation of finite time ruin probability ψ̂(u, n).
u

n 0 5 10 15 20 25
1 0.20857 0.16941 0.15301 0.06605 0.01726 0.00718
2 0.37340 0.30829 0.24157 0.11902 0.02261 0.01154
3 0.51227 0.41603 0.31025 0.18286 0.02960 0.01186
4 0.58344 0.47900 0.36017 0.25870 0.03355 0.01230
5 0.62907 0.52263 0.40036 0.27385 0.03512 0.01297
6 0.69855 0.54470 0.46718 0.28337 0.03680 0.01299
7 0.74522 0.59230 0.50388 0.30477 0.03824 0.01305
8 0.78260 0.64800 0.53746 0.35951 0.03918 0.01340
9 0.82133 0.67991 0.55844 0.37760 0.03974 0.01389
10 0.83470 0.68251 0.57261 0.40115 0.04031 0.01395

bilities for n = 1, 5, 10 are depicted in Figures 1, 2 and 3. From these Figures, it can
be seen that the exact value and simulated estimate for the finite time ruin probability
are close and almost coincide.

Figure 1: The values of ruin probabilities ψ(x, n) and ψ̂(x, n) for n = 1.

Figure 2: The values of ruin probabilities ψ(x, n) and ψ̂(x, n) for n = 5.



Ruin related quantities in the compound binomial models 64

Figure 3: The values of ruin probabilities ψ(x, n) and ψ̂(x, n) for n = 10.

Example 5.2. In this example, we assume that the claim amounts have a negative
binomial B(2, θ) with common p.m.f. p(x) = x(1 − θ)2θx−1I(x ≥ 1), θ ∈ (0, 1), so
that k(0) = 1 − p and k(x) = pp(x), x = 1, 2, . . . . Let p = 0.15 and θ = 0.6, and
pE(X) = 0.06 < 1. As similar to example 1, we compute the mass function wu(n) for
u = 0, 5, 10, 15, 20, 25 and n = 1, 2, . . . , 10 and display the numerical results in Table 6.

Table 6: The mass function wu(n).
u

n 0 5 10 15 20 25
1 0.12659 0.15034 0.22075 0.29041 0.36366 0.44518
2 0.18074 0.20652 0.25330 0.31225 0.39001 0.46202
3 0.22855 0.23811 0.27810 0.34801 0.41722 0.47819
4 0.24421 0.26400 0.28923 0.36720 0.43600 0.49746
5 0.25005 0.29112 0.31275 0.37344 0.45802 0.53015
6 0.27711 0.31298 0.34811 0.39201 0.47313 0.55248
7 0.28630 0.33760 0.36654 0.41945 0.49107 0.57811
8 0.29102 0.35144 0.37992 0.43330 0.51259 0.59003
9 0.32709 0.36901 0.39015 0.44715 0.52763 0.62255
10 0.34581 0.39045 0.41307 0.45902 0.54112 0.64120

Moreover, we compute the infinite time ruin probabilities and the results are reported
in Table 7. The numerical results for the distribution of time to ruin are derived and
we display the results in Table 8.

Table 7: The infinite time ruin probabilities.
u

0 5 10 15 20 25 30
0.68712 0.59745 0.51093 0.44860 0.40835 0.34801 0.28123

Moreover, the finite time ruin probabilities are computed and the numerical results
are presented in Table 9. From this Table, it can be seen that the finite time ruin
decreases as the initial reserve increases.
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Table 8: The distribution of time to ruin τ(u, n).
u

n 0 5 10 15 20 25
1 0.12894 0.10294 0.07581 0.03140 0.00551 0.00083
2 0.10679 0.07323 0.06925 0.01588 0.00169 0.00064
3 0.09011 0.06180 0.06290 0.00924 0.00087 0.00051
4 0.07455 0.05929 0.05724 0.00781 0.00046 0.00014
5 0.07152 0.05302 0.04970 0.00616 0.00032 0.00007
6 0.06880 0.04861 0.04253 0.00527 0.00021 0.00006
7 0.06272 0.04075 0.03765 0.00435 0.00015 0.00005
8 0.05863 0.03582 0.03109 0.00308 0.00008 0.00003
9 0.05375 0.03310 0.02833 0.00216 0.00005 0.00002
10 0.05072 0.02994 0.02521 0.00184 0.00002 0.00001

Table 9: The finite time ruin probability ψ(u, n).
u

n 0 5 10 15 20 25
1 0.12894 0.10294 0.07581 0.03140 0.00551 0.00083
2 0.23573 0.17617 0.14506 0.04728 0.00720 0.00147
3 0.32584 0.23797 0.20796 0.05652 0.00807 0.00198
4 0.40039 0.29726 0.26520 0.06433 0.00853 0.00212
5 0.47191 0.35028 0.31490 0.07049 0.00885 0.00219
6 0.54071 0.39889 0.35743 0.07576 0.00906 0.00225
7 0.60343 0.43964 0.39508 0.08011 0.00921 0.00230
8 0.66206 0.47546 0.42617 0.08319 0.00929 0.00233
9 0.71581 0.50856 0.45450 0.08535 0.00934 0.00238
10 0.76653 0.55928 0.47971 0.08819 0.00936 0.00276

As similar to example 1, we assume a total of 1000 static policies, that is, there
will always be this much exposure in the insurance portfolio for each time period. We
simulate 104 trajectories of the risk process and we calculate how many times on average
they fall below zero in order to get values of ψ̂(u, n). We present the numerical results
in Table 10. In addition, comparison of the exact values and simulated estimates for
the finite time ruin probabilities for n = 1, 5, 10 are depicted in Figures 4, 5 and 6.
From these Figures, it can be seen that the exact value and simulated estimate for the
finite time ruin probability are close and almost coincide.

Table 10: The simulation of finite time ruin probability ψ̂(u, n).
u

n 0 5 10 15 20 25
1 0.13051 0.10847 0.07165 0.03568 0.00607 0.00077
2 0.22805 0.16210 0.14005 0.05133 0.00679 0.00150
3 0.33406 0.24289 0.19670 0.05935 0.00764 0.00203
4 0.39772 0.28130 0.25811 0.06633 0.00791 0.00228
5 0.45709 0.34863 0.32404 0.06362 0.00830 0.00247
6 0.55300 0.37925 0.35047 0.07369 0.00885 0.00266
7 0.59138 0.42550 0.38701 0.07882 0.00904 0.00285
8 0.65871 0.46902 0.43770 0.08204 0.00935 0.00299
9 0.72355 0.51222 0.44031 0.08611 0.00965 0.00314
10 0.76802 0.54240 0.48887 0.09655 0.00982 0.00378
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Figure 4: Exact and simulated values of ruin probabilities for n = 1.

Figure 5: Exact and simulated values of ruin probabilities for n = 5.

Figure 6: Exact and simulated values of ruin probabilities for n = 10.
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Example 5.3. (England and Wales data). This example concerns the number of
drinking days in a reference week reported by respondents in a retrospective interview
in England and Wales in 1989. The data have been compiled from Tables 6.1 and 6.9 of
Goddard (1991), which gives figures for a survey in 1989 and the survey combined, and
from Tables 3.3 and 2.13 of Goddard and Ikin (1988), which gives data for the earlier
survey. Self-reported abstainers have been excluded. They showed that the transformed
Inverse Gaussian-binomial distribution is

p(x) =

(
N

x

) x∑
j=0

(
x

j

)
(−1)x−j exp

(γ
µ

[
1−

{
1 +

2µ2(N − j)

γ

} 1
2
])
,

for x = 0, 1, . . . , N , where N = 1323, and the maximum likelihood estimators of
parameters are given by µ̂ = 0.79 and γ̂ = 0.38, which provide the only acceptable fit to
the data. As similar to the previous examples, we compute the mass function Wu(n)
and the numerical results display in Table 11.

Table 11: The mass function wu(n).
u

n 0 5 10 15 20 25
1 0.32180 0.44338 0.50452 0.56615 0.67120 0.71026
2 0.42162 0.50297 0.56310 0.61258 0.68041 0.71318
3 0.48708 0.54904 0.59302 0.67360 0.72053 0.74002
4 0.52330 0.59609 0.64811 0.70210 0.75415 0.78190
5 0.53774 0.63002 0.69560 0.74312 0.78914 0.82305
6 0.57605 0.67330 0.71941 0.77065 0.80233 0.83170
7 0.60219 0.69235 0.75330 0.78911 0.82053 0.86122
8 0.62251 0.71622 0.78100 0.79044 0.83177 0.86873
9 0.65309 0.73507 0.80095 0.81663 0.83062 0.87551
10 0.67402 0.74913 0.81544 0.83170 0.84650 0.89114

The numerical results for the distribution of time to ruin is derived and the results
are reported in Table 12. Moreover, the finite time ruin probabilities are computed and
the results are presented in Table 13. From this Table, it can be seen that the finite
time ruin decreases as the initial reserve increases.

Table 12: The distribution of time to ruin τ(u, n).
u

n 0 5 10 15 20 25
1 0.25118 0.23564 0.21500 0.18162 0.12394 0.08841
2 0.20320 0.20017 0.19361 0.17255 0.11505 0.07235
3 0.18741 0.17315 0.16664 0.14824 0.11480 0.07322
4 0.16057 0.14180 0.12802 0.11307 0.07032 0.02904
5 0.08305 0.05215 0.04010 0.01251 0.02884 0.00050
6 0.05120 0.01367 0.00722 0.00233 0.00109 0.00032
7 0.02748 0.01126 0.00814 0.00457 0.00102 0.00015

6 Discussion and conclusions
Ruin theory has always been a vital part of actuarial mathematics. In this work, we
computed and investigated some related problems on the ruin probabilities in a class of
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Table 13: The finite time ruin probability ψ(u, n).
u

n 0 5 10 15 20 25
1 0.25118 0.23564 0.21500 0.18162 0.12394 0.08841
2 0.47438 0.43581 0.40861 0.35417 0.23899 0.16076
3 0.66179 0.60896 0.57525 0.50241 0.35379 0.23398
4 0.82236 0.75076 0.70327 0.61548 0.42411 0.26302
5 0.90541 0.80291 0.74337 0.62799 0.45295 0.26352
6 0.95661 0.81658 0.75059 0.63032 0.45404 0.26384
7 0.98409 0.82784 0.75873 0.63489 0.45506 0.26399
8 0.99279 0.83414 0.76081 0.63581 0.45539 0.26412
9 0.99704 0.83669 0.76178 0.63645 0.45554 0.26422
10 0.99835 0.83753 0.76220 0.63660 0.45554 0.26422

state-space compound binomial risk model for homogeneous claim occurrences. Lemma
3.1 gives the mass function of a defective renewal sequence of random {Fn}n≥0-stopping
times. Theorem 1 derives the infinite time ruin probability with Markov property of
risk process. Lemmas 4.3 and 4.4 compute the distribution of the time to ruin using
the convolution of claim amount in the case of no initial surplus and the case u > 0,
respectively. Finally, to show the application of results, three examples presented and
the implementation of Monte Carlo simulation method performed to obtain the ruin
probabilities and the distribution of the time to ruin. The results show that the exact
value and simulated estimate for the finite time ruin probability are close and almost
coincide. This paper will serve as a detailed reference for the study of compound
binomial risk models with homogeneous claim occurrences.
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