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Abstract: In this paper, the problem of inferencing the stress-strength reliability un-
der the ranked set sampling and the simple random sampling from the levy distribu-
tion function is investigated. The maximum likelihood estimators, their asymptotic
distributions, and Bayes estimators are provided for the stress-strength reliability pa-
rameter. Furthermore, using a Monte Carlo simulation, for both sampling methods,
namely, simple random sampling and ranked set sampling, the Bayes risk estimators
and the efficiency of the obtained estimators are computed and compared.
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1 Introduction
The Levy distribution is a specific case of the inverted gamma distribution with the
shape parameter 1

2 and scale parameter 2
σx

; (O’Reilly and Rueda , 1998). The Levy
distribution is not always used, but it has been very effective in the analysis of stock
prices. Montroll and Shlesinger (1983) and Jurlewicz and Weron (1993) have applied
the Levy distribution in physics. Levy distribution has experienced applications in
many applied areas, containing dispersive transport in disordered semiconductors, stock
and stock-indexes returns, linear dynamical systems, income distribution, stochastic
artificial neural networks, many-particle quantum systems, and oil pricing time-series.
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A random variable X is said to have the Levy distribution with probability density
function (PDF)

f (x; σx) =

√
σx

2π
x− 3

2 exp
(
−σx

2x

)
, (1)

and the cumulative distribution function (CDF)

F (x; σx) = 2− 2Φ

(√
σx

x

)
,

where σx > 0 is a scale parameter and Φ(.) denoted the CDF of standard normal
distribution. Due to the heavy tail and stable family of Levy distribution, there is
no variance and the expected values associated with it. The stress-strength model
has collected large consideration in the reliability background and an extensive range
of research in the literature is existed about this model. The quantity R = P (X <
Y ), which is termed the stress-strength reliability, is a measure of assurance of the
component performance with the random strength Y when it is subjected to the random
stress X. In this model, whenever the applied stress is greater than its strength, the
system will be failed. A large number of existing studies in the broader literature are
devoted to the parametric and non-parametric inferences on R. A more comprehensive
description can be found in Kotz et al. (2003) and references mentioned therein that
contain an extensive review of the topic up to 2003. Further development of this model
has been driven by Kundu and Gupta (2005), Kundu and Gupta (2006), Eryilmaz
(2008), Kundu and Raqab (2009), Rezaei et al. (2010), Eryilmaz (2011), Pakdaman
and Ahmadi (2013), Pakdaman and Ahmadi (2018), Condino et al. (2018), Guo and Gui
(2018), Kumar and Siju (2019) and Xavier and Jose (2021). The statistical inference of
the stress-strength model is popularly investigated based on simple random sampling
(SRS). In some practical problems, obtaining observations for the variable of interest
is costly and time consuming. In such situations, considering appropriate sampling
schemes, in order to reduce the cost and increase efficiency, are worthwhile. These
properties motivated (McIntyre, 1952) to present a primary sampling method called
ranked set sampling (RSS). The concept of RSS is a particularized method managed
for conditions where the quantification of an item is costly and hard, but the items are
comfortably collected and the set of given numbers can be sorted justly successfully.

An RSS sampling scheme is planned according to the idea of ranking the sampling
units with regard to virtual comparisons, expert opinions, or auxiliary variables. To
obtain a ranked set sample of size n, select m random sets via SRS each of size m and
rank them from the smallest to the largest without doing any certain measurements.
Then, determine the observations which are used for certain measurements. To do
this, select the smallest observation in the first set. In the second set, select the second
smallest observation. Continue this process until the last set. In the last set, select
the largest observation for a certain measurement. This whole process is called a cycle.
By repeating this process r time, the sample size is obtained as n = mr. Here, m
and r refer to the set size and number of cycles, respectively. Over the last few years,
the RSS method is used for the construction of the statistical inference about the
stress-strength reliability parameter. For further studies on the statistical inference of
the stress-strength reliability based on RSS, one can refer to Muttlak et al. (2010),
Mahdizadeh (2018), Safariyan et al. (2019a), Safariyan et al. (2019b), Zamanzade et
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al. (2020), Sadeghpour et al. (2020), Basikhasteh et al. (2020), Esemen et al. (2021),
Abdallah et al. (2022), Hassan (2022) and Biradar (2022). In this paper, the point
estimations of the stress-strength reliability are given under the classical and Bayesian
estimation approaches with RSS.

The remainder of this paper has been organized in the following manner. The
maximum likelihood estimation (MLE) and the Bayes estimation of R with SRS and
RSS methods are presented in Section 2. In Section 3, a simulation study is carried
out to evaluate the estimators of R in detail. Section 4 includes a brief summary.

2 Estimation of stress-strength reliability
Let X be a random variable that follow from the Levy distribution with parameter
σx and Let Y be a random variable from the Levy distribution with parameter σy.
Now, we consider a system with random strength Y subjected to a random stress
X. Furthermore, assume that the random variables X and Y are independent. From
Lemma 1 of Ali and Woo (2005), the stress-strength reliability of this system is obtained
by

R = P (X < Y )

=

∫ ∞

0

P (Y > X|X = x)f(x;σx)dx

= 2

∫ ∞

0

Φ

(√
σy

x

)
f(x;σx)dx− 1

= 1−
2
√
ρ

π(1 + ρ)
F

(
1, 1;

3

2
;

1

1 + ρ

)
, (2)

where ρ =
σy

σx
and F (a, b; c;x) is the hypergeometric function.

In this section, we provide two common estimators namely the ML and Bayes
estimators for the stress-strength reliability R in (2) with SRS and RSS methods.

2.1 ML estimation of R based on SRS
Here, we will find the ML estimator of R based on simple random sampling. Let
X1, . . . , Xnx

be a random sample of size nx from X with PDF in (1) and Y1, . . . , Yny

be a simple random sample of size ny from levy distribution with parameter σy. Then,
Ali and Woo (2005) computed R from (2) as follows:

RSRS = 1− 2

π
Arcsin

 1√
1 +

σy

σx

 . (3)

By the invariance property, maximum likelihood estimator of R is

R̂ML
SRS = 1− 2

π
Arcsin

 1√
1 +

σ̂y,SRS

σ̂x,SRS

 ,
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where σ̂x,SRS = nx/
nx∑
i=1

1
Xi

and σ̂y,SRS = ny/
ny∑
i=1

1
Yi

. We have not a closed form for

the MSE of R̂ML
SRS , so numerical computations are needed.

2.2 ML estimation of R based on RSS
Let X1, . . . , Xmx

be samples from RSS in one cycle from Levy distribution. The prob-
ability distribution function of i-th order statistics is given by (David and Nagaraja,
2003)

gi (xij ;σx) = i

(
mx

i

)
[F (xij ;σx)]

(i−1)
[F (xij ;σx)]

(mx−i)
f (xij ;σx) ,

where, i = 1, . . . ,mx and j = 1, . . . , rx. We recall that mx and rx are sample sizes in
one cycle and number of cycles, respectively. So, the sample size is nx = mx ∗ rx. Also,
in the case of random strength Y , we have

gt (yts;σy) = t

(
my

t

)
[F (yts;σy)]

(t−1)
[F (yts;σy)]

(my−i)
f (yts;σy) ,

where, t = 1, . . . ,my and s = 1, . . . , ry are sample size in one cycle and number of
cycles, respectively. Consequently, the sample size is ny = my ∗ ry. Therefore, the
likelihood function of the samples extracted by RSS method is as follows

LRSS(σx, σy|X,Y )=

rx∏
j=1

mx∏
i=1

gi (xij ;σx)

ry∏
s=1

my∏
t=1

gt (yts;σy)

=

[
i

(
mx

i

)]nx
[
t

(
my

t

)]ny (σx

2π

)nx
2
(σy

2π

)ny
2

rx∏
j=1

mx∏
i=1

x
− 3

2
ij

× exp

(
− σx

2xij

)[
2− 2Φ

(√
σx

xij

)]i−1 [
2Φ

(√
σx

xij

)
− 1

](mx−i)

×
ry∏
s=1

my∏
t=1

y
− 3

2
ts exp

(
− σy

2yts

)[
2− 2Φ

(√
σy

yts

)]t−1

×
[
2Φ

(√
σy

yts

)
− 1

](my−t)

,

by taking Logarithm, we have

ℓRSS (σx, σy|X,Y ) = logK +
nx

2
log
(σx

2π

)
+

ny

2
log
(σy

2π

)
−3

2

rx∑
j=1

mx∑
i=1

log (xij)−
3

2

ry∑
s=1

my∑
t=1

log (yts)

−σx

2

rx∑
j=1

mx∑
i=1

1

xij
− σy

2

ry∑
s=1

my∑
t=1

1

yts

+

rx∑
j=1

mx∑
i=1

(i− 1) log

[
2− 2Φ

(√
σx

xij
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+

ry∑
s=1

my∑
t=1

(t− 1) log

[
2− 2Φ

(√
σy

yts

)]

+

rx∑
j=1

mx∑
i=1

(mx − i) log

[
2Φ

(√
σx

xij

)
− 1

]

+

ry∑
s=1

my∑
t=1

(my − i) log

[
2Φ

(√
σy

yts

)
− 1

]
, (4)

where K =
[
i
(
mx

i

)]nx
[
t
(
my

t

)]ny
. Taking the first order partial derivatives with respect

to σx and σy and setting them to zero, we get the following system of score equations{
∂ℓRSS(σx,σy|X,Y )

∂σx
= 0,

∂ℓRSS(σx,σy|X,Y )
∂σy

= 0.

So, 
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2σx
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2
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1
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−
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(5)

The MLEs of σx and σy based on RSS denoted by σ̂x,RSS and σ̂y,RSS . Also, φ (.)
is the PDF of normal distribution. The solutions of the (5) system of score equations
maximized the likelihood function (4). By solving the system of non-linear equations in
(5), σ̂x,SRS and σ̂y,SRS will be obtained. By the invariance property of ML estimators,
R̂ML

RSS can be obtained by

R̂ML
RSS = 1− 2

π
Arcsin

 1√
1 +

σ̂y,RSS

σ̂x,RSS

 .

2.3 Bayesian estimation of R based on SRS
For Bayes estimation of R, suppose the scale parameters, i.e., σx and σy satisfy the
following gamma priors

σx ∼ GAM
(αx

2
, λx

)
, σy ∼ GAM

(αy

2
, λy

)
.

The posterior distributions of σx and σy are

π (σx|xxx) ∼ GAM

(
nx + αx

2
, λx +

1

2

nx∑
i=1

1

Xi

)
,
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π (σy|yyy) ∼ GAM

(
ny + αy

2
, λy +

1

2

ny∑
i=1

1

Yi

)
.

Under the mean squared error loss function, the Bayes estimator of R is

R̂Bayes
SRS =

∫ 1

0

rf (r|x, y) dr,

where, f (r|x, y) is the posterior distribution of R. Najarzadegan et al. (2016) show that
analytical solutions for the above integral are not available. Lindley's approximation
is an approximate approach to calculate the ratio of two integrals. In the following,
the Lindley's approximation method is used for Bayes estimators.

We consider Lindley's approximation (Lindley, 1980) form expanding about the
posterior mode. For two parameters case θ = (θ1, θ2), Lindley's approximation leads
to

ÛLindley =

(
U(θ) +

1

2
[B +Q30B12 +Q21C12 +Q12C21 +Q03B21]

)
|(θ1,θ2)=(θ̃1,θ̃2)

,

(6)
where, B =

∑2
i=1

∑2
j=1 Uijτij , Qηξ = ∂η+ξ

∂ηθ1∂ξθ2
, η, ξ = 0, 1, 2, 3, η+ξ = 3, for i, j = 1, 2,

Ui = ∂U
∂θi

, and for i ̸= j, Uij = ∂2U
∂θi∂θj

, Cij = 3Uiτiiτij + Uj(τiiτij + 2τ2ij), Bij =

(Uiτii + Ujτij)τii � Cij = 3Uiτiiτij + Uj(τiiτij + 2τ2ij), where τij is the (i, j)th element
in the inverse of matrix Q∗ = (−Q∗

ij), i, j = 1, 2 such that Q∗
ij = ∂2Q

∂θi∂θj
. In fact,

Q is the logarithm of the posterior density function and (θ̃1, θ̃2) is the mode of the
posterior density function. In our case, (θ1, θ2) = (σ1, σ2). The elements of Lindley's
approximation in (6) can be given bellow,

U(θ) =
2

π
Arcsin

 1√
1 + σ1

σ2

 ,

U1 =

√
σ1

σ2

π(σ1 + σ2)
,

U2 =
1

πσ1

√
σ2

σ1+σ2
(σ1+σ2

σ1
)

3
2

,

Q30 =
∂3Q

∂3σ1
=

2(n1

2 + α1

2 − 1)

S3
1

− 2

rx∑
j=1

mx∑
i=1

e
− σ1

2xij (σ2
1 + 2σ1xij + 3x2

ij)

8
√
2π( σ1

xij
)

5
2x5

ij

+2

rx∑
j=1

mx∑
i=1

(m− i)
e
− σ1

2xij (σ2
1 + 2σ1xij + 3x2

ij)

8
√
2π( σ1

xij
)

5
2x5

ij

,

Q12 = Q21 = 0. By substituting the above values in (6), the Lindley's approximation
of Bayes estimator have been obtained.
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2.4 Bayesian estimation of R based on RSS
If the sampling scheme is RSS, we use the log-likelihood function in (4). The Bayes
estimate of R based on RSS is denoted by R̂Bayes

RSS . In the following section, R̂Bayes
SRS

and R̂Bayes
RSS are calculated and compared for the different parameters.

3 Simulation study
In this section, we accomplish a simulation study to compare the performances of
the estimators of R. Due to the estimators are not comparable analytically, we have
compared them via a Monte-Carlo simulation. For this mean, we have used some
criteria such as biased, mean square error (MSE), and relative efficiency (RE) that are

given by Bias
(
R̂
)

= 1
10000

10000∑
i=1

(
R̂i −R

)
, MSE

(
R̂
)

= 1
10000

10000∑
i=1

(
R̂i −R

)2
, and

RE =
MSE(R̂SRS)
MSE(R̂RSS)

.

In Tables 1-4, for some values of n, r, m, σx, and σy, the estimated values of the
parameter R, MSE and RE are reported. Tables 1-4 show that by increasing the values
of n, the values of MSE decrease in both SRS and RSS methods. It is better to consider
the number of cycles as little as possible to reduce the MSE. We also see that in all
cases the relative efficiency is more than one, which indicates the superiority of the
RSS method over the SRS method for estimating R. It is observed that if the number
of cycles is small, the relative efficiency is higher. It should be noted that in the case
of σx = σy, the value of stress-strength reliability is equal to 1

2 . As it can be seen
from Tables 1-4, ML estimates of R are biased. Also, it can be concluded from present
results that estimates of R based on RSS are closer to exact amount of R in a majority
of cases than the corresponding estimates using SRS for ML estimation.

Table 1: The values of estimations of R, ER, and MSE for σx = σy = 1, whereas the
exact amount of R = 0.5.

n r, m R̂ML
SRS R̂ML

RSS MSE(R̂ML
SRS) MSE(R̂ML

RSS) RE
20 5, 4 0.4997 0.4993 0.0051 .0024 2.0817

4, 5 0.4993 0.5005 0.0049 0.0020 2.4386
2, 10 0.4990 0.4998 0.0049 0.0012 4.0062

30 6, 5 0.5005 0.4996 0.0033 0.0013 2.3905
5, 6 0.4997 0.4999 0.0035 0.0012 2.9060
3, 10 0.5001 0.5001 0.0033 0.0008 4.1626

40 8, 5 0.5001 0.5002 0.0025 0.0010 2.4452
5, 8 0.5001 0.5001 0.0024 0.0007 3.5009
4, 10 0.5005 0.5004 0.0025 0.0006 4.0922

We study the effect of prior parameters on Bayes estimators with RSS and SRS
methods. First for a given vector of parameters (αx, λx, αy, λy) in Table 5, which
includes least informative, informative and most informative, for N = 103 replication,
we generate σx and σy from the prior distributions. For the given vector of parameters
(αx, λx, αy, λy), the Bayes estimations based on RSS and SRS methods are computed
and reported in Tables 6-13. Tables 6-13 show that by increasing informative (changes
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Table 2: The values of estimations of R, ER, and MSE for σx = 1 and σy = 5, whereas
the exact amount of R = 0.2685.

n r, m R̂ML
SRS R̂ML

RSS MSE(R̂ML
SRS) MSE(R̂ML

RSS) RE
20 5, 4 0.2714 0.2695 0.0029 0.0014 2.1042

4, 5 0.2720 0.2697 0.0030 0.0012 2.5466
2, 10 0.2717 0.2682 0.0029 0.0006 4.3806

30 6, 5 0.2702 0.2687 0.0019 0.0008 2.4031
5, 6 0.2699 0.2685 0.0019 0.0007 2.8467
3, 10 0.2702 0.2681 0.0019 0.0004 4.2324

40 8, 5 0.2696 0.2685 0.00014 0.0006 2.4742
5, 8 0.2694 0.2683 0.0014 0.0004 3.5563
4, 10 0.2699 0.2682 0.0015 0.0003 4.4420

Table 3: The values of estimations of R, ER, and MSE for σx = σy = 10, whereas the
exact amount of R = 0.5.

n r, m R̂ML
SRS R̂ML

RSS MSE(R̂ML
SRS) MSE(R̂ML

RSS) RE
20 5, 4 0.5002 0.4997 0.0052 0.0024 2.1480

4, 5 0.4994 0.4998 0.0050 0.0020 2.4657
2, 10 0.5005 0.5002 0.0049 0.0012 4.1266

30 6, 5 0.5002 0.4998 0.0033 0.0014 2.4134
5, 6 0.4997 0.5002 0.0033 0.0012 2.6955
3, 10 0.4998 0.5000 0.0034 0.0008 4.1592

40 8, 5 0.4996 0.4991 0.0025 0.0010 2.4410
5, 8 0.4999 0.4997 0.0025 0.0007 3.5064
4, 10 0.5003 0.4996 0.0025 0.0006 4.0387

Table 4: The values of estimations of R, ER, and MSE for σx = 10 and σy = 5, whereas
the exact amount of R = 0.6071.

n r, m R̂ML
SRS R̂ML

RSS MSE(R̂ML
SRS) MSE(R̂ML

RSS) RE
20 5, 4 0.6055 0.6057 0.0046 0.0022 2.0601

4, 5 0.6053 0.6067 0.0044 0.0018 2.4337
2, 10 0.6062 0.6080 0.0045 0.0011 4.1659

30 6, 5 0.6069 0.6077 0.0030 0.0012 2.4131
5, 6 0.6057 0.6073 0.0030 0.0011 2.7842
3, 10 0.6058 0.6082 0.0030 0.0007 4.1164

40 8, 5 0.6067 0.6074 0.0023 0.0009 2.4609
5, 8 0.6064 0.6080 0.0023 0.0007 3.4903
4, 10 0.6069 0.6077 0.0023 0.0006 4.0433

α and λ), the RE increased. Also, it is observed that the ER is sensitive with respect
to prior parameters, and also is decreased as the sample size increases. In addition,
Bayesian estimators based on RSS have much lower MSE than SRS.

Table 5: Information in the case of constant mean.
Information α λ E(σ) V ar(σ)
Least informative 2 0.5 0.5 0.25
Informative 10 0.1 0.5 0.05
Most informative 20 0.05 0.5 0.005



79 Z. Pakdaman, R. Alizadeh

Table 6: The values of estimations of R and ER for σx = σy = 1 and n = 20.
Information r, m R̂Bayes

SRS R̂Bayes
RSS RE

Least informative 5, 4 0.4995 0.5004 3.2863
4, 5 0.4987 0.4995 4.4428
2, 10 0.5007 0.4992 7.3259

Informative 5, 4 0.4982 0.5000 5.2147
4, 5 0.5010 0.4996 5.8489
2, 10 0.4996 0.4994 11.2314

Most informativ 5, 4 0.5005 0.4996 6.3837
4, 5 0.4999 0.5001 7.4843
2, 10 0.4993 0.5000 14.1972

Table 7: The values of estimations of R and ER for σx = 1, σy = 5, and n = 20.
Information r, m R̂Bayes

SRS R̂Bayes
RSS RE

Least informative 5, 4 0.2683 0.2680 3.6579
4, 5 0.2703 0.2671 4.5764
2, 10 0.2695 0.2680 8.0059

Informative 5, 4 0.2684 0.2674 4.8588
4, 5 0.2686 0.2681 6.0181
2, 10 0.2677 0.2676 11.6597

Most informativ 5, 4 0.2686 0.2677 5.8976
4, 5 0.2682 0.2676 7.7409
2, 10 0.2676 0.2678 13.9536

Table 8: The values of estimations of R and ER for σx = σy = 10 and n = 20.
Information r, m R̂Bayes

SRS R̂Bayes
RSS RE

Least informative 5, 4 0.4975 0.4995 3.1768
4, 5 0.5012 0.5002 4.1980
2, 10 0.4996 0.4995 7.7028

Informative 5, 4 0.4995 0.5002 5.1936
4, 5 0.5001 0.4997 5.0812
2, 10 0.5006 0.4996 11.8719

Most informativ 5, 4 0.5003 0.5000 5.8489
4, 5 0.4992 0.4998 7.7083
2, 10 0.4997 0.5001 15.8817

4 Conclusion and summary
In this study, the stress-strength reliability with independent stress and strength ran-
dom variables from the levy distribution function is investigated. This is estimated
using the ML and the Bayesian approaches under both SRS and RSS methods. The
Bayesian estimates o are achieved by using Lindley’s approximation method. The
simulation results indicate that the estimate of stress-strength reliability using RSS is
closer to actual value than the corresponding estimate based on SRS for both estima-
tion methods in the majority of the cases. Both estimates are biased. Furthermore, as
specified by the RE values, it can be seen that RSS gives more efficient results than
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Table 9: The values of estimations of R and ER for σx = 10, and σy = 5, and n = 20.
Information r, m R̂Bayes

SRS R̂Bayes
RSS RE

Least informative 5, 4 0.6069 0.6077 3.4211
4, 5 0.6078 0.6081 4.1679
2, 10 0.6073 0.6084 7.1177

Informative 5, 4 0.6069 0.6079 4.6815
4, 5 0.6079 0.6081 6.5089
2, 10 0.6094 0.6081 11.7775

Most informativ 5, 4 0.6075 0.6083 6.1685
4, 5 0.6079 0.6080 7.2933
2, 10 0.6085 0.6084 14.4869

Table 10: The values of estimations of R and ER for σx = σy = 1 and n = 40.
Information r, m R̂Bayes

SRS R̂Bayes
RSS RE

Least informative 8, 5 0.4992 0.4994 3.8820
5, 8 0.4993 0.4999 6.4046
4, 10 0.5004 0.5002 6.8994

Informative 8, 5 0.4996 0.4997 5.4652
5, 8 0.5004 0.5000 9.6104
4, 10 0.5008 0.4999 11.8274

Most informativ 8, 5 0.4992 0.4998 7.3319
5, 8 0.4997 0.5000 9.8745
4, 10 0.5002 0.4998 15.1474

Table 11: The values of estimations of R and ER for σx = 1, σy = 5, and n = 40.
Information r, m R̂Bayes

SRS R̂Bayes
RSS RE

Least informative 8, 5 0.2683 0.2676 4.1670
5, 8 0.2683 0.2680 6.0566
4, 10 0.2693 0.2675 8.6132

Informative 8, 5 0.2679 0.2677 5.9798
5, 8 0.2674 0.2677 9.1003
4, 10 0.2676 0.2676 10.5399

Most informativ 8, 5 0.2680 0.2677 8.4534
5, 8 0.2678 0.2679 10.8632
4, 10 0.2681 0.2677 15.3346

Table 12: The values of estimations of R and ER for σx = σy = 10 and n = 40.
Information r, m R̂Bayes

SRS R̂Bayes
RSS RE

Least informative 8, 5 0.4994 0.4997 4.7329
5, 8 0.5002 0.4998 6.1252
4, 10 0.4995 0.5005 6.8205

Informative 8, 5 0.4998 0.5000 5.7612
5, 8 0.4997 0.5002 8.5206
4, 10 0.4999 0.5002 11.4454

Most informativ 8, 5 0.4997 0.5001 7.5568
5, 8 0.4998 0.5001 11.5534
4, 10 0.4994 0.5000 14.6397
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Table 13: The values of estimations of R and ER for σx = 10, σy = 5, and n = 40.
Information r, m R̂Bayes

SRS R̂Bayes
RSS RE

Least informative 8, 5 0.6077 0.6084 4.6946
5, 8 0.6076 0.6082 6.0137
4, 10 0.6084 0.6082 7.4957

Informative 8, 5 0.6087 0.6083 5.5094
5, 8 0.6082 0.6081 9.2611
4, 10 0.6095 0.6079 11.1944

Most informativ 8, 5 0.6077 0.6083 7.0069
5, 8 0.6083 0.6082 11.5227
4, 10 0.6088 0.6081 13.8289

SRS for both ML and Bayesian methods. In the continuation of the work done, the
obtained estimators can be checked in the case that there is an error in the ranking of
sample units or in the case that the sampling plane of the ranked set is unbalanced.
On the other hand, considering the various generalizations that exist for the ranked set
sampling plan, it is possible to examine the estimators in the new plans and compare
the efficiency of these methods with other existing sampling methods.
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