
Journal of Statistical Modelling: Theory and Applications
Vol. 3, No. 2, 2022, pp. 85-101
Yazd University Press 2022

Research Paper

Ruin probabilities in a discrete-time risk process with
homogeneous markov chain

Abouzar Bazyari∗
Department of Statistics, Faculty of Intelligent Systems Engineering and Data

Science, Persian Gulf University, Bushehr, Iran

Received: December 27, 2022/ Revised: August 02, 2023/ Accepted: August 05, 2023

Abstract: The present paper considers a discrete-time risk model with a homoge-
neous, irreducible, and aperiodic Markov chain. The general distribution of total claim
amounts is influenced by the environmental Markov chain and in the i-th period the
individual claim sizes are conditionally independent. We obtain the recursive formulae
for infinite time ruin probability using the technique of ordinary generating functions.
In addition, we give some restrictions which under those the ruin will not happen. In
the last part, we present some numerical illustrations for the results and give the prac-
tical problem through a fully developed case study in the domain of social insurance.

Keywords: Discrete-time risk model; Homogeneous Markov chain; Ruin probabil-
ity; Stationary distribution; Transition probability matrix.
Mathematics Subject Classification (2010): 62P05, 65C40.

1 Introduction
The theory of ruin has been the central interest for many researchers. The main
objective of ruin theory is to obtain exact formulas or approximations of ruin proba-
bilities in various kinds insurance risk models. The discrete-time risk process is a very
popular model to describe the surplus process of an insurance portfolio as it includes
the compound binomial risk and the compound Markov binomial model. Under the
discrete-time setting, Yang (1999) computed the upper bounds for ruin probabilities
by using martingale inequalities. Dufresne (1988) proposed the recursive algorithm to
compute the ruin probabilities by using the stationary distributions of the bonus-malus
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system. Cai (2002) computed the ruin probabilities in the discrete-time risk models
under rates of interest. Wagner (2002), derived recursive formulae for ruin probabilities
in a two-state Markov chain risk model.

Cossette et al. (2003) presented the properties of the Markov Bernoulli and Markov
binomial models and obtained the ruin probabilities. Cossette et al. (2004) pursued
the analysis of the compound Markov binomial model by showing that the conditional
infinite time ruin probability is a compound geometric tail and proposed an alternative
algorithm to compute the ruin probabilities. Chen and Su (2006) obtained a precise
asymptotic estimate for the finite time ruin probability in a discrete-time risk model,
when the risk model contains the heavy-tailed distribution. Trufin and Loisel (2013)
determined the behavior of the infinite time ruin probability for large initial capital in
the case of light-tailed claim amounts in a discrete-time ruin model. Wu et al. (2015)
derived the explicit formulae for infinite time ruin probabilities when there is a certain
type of correlation between premiums and claim amounts. Liu et al. (2018a) computed
the finite time ruin probability of a discrete-time risk model with GARCH discounted
factors and dependent risks when the common distribution of claim amounts is heavy-
tailed distribution. Liu et al. (2018b) derived a recursive formula for the Gerber-Shiu
function of a discrete-time Markov additive process. Alfa (2020) applied a discrete-
time Markov chain to modelled the Age of Information (AoI) and matrix-geometric
method is used to obtain the probability mass function of the AoI. Santana and Rincon
(2020) derived the approximations of ruin probability in a discrete-time risk model and
provided several examples along with the numerical evidence of the accuracy of the
approximations. Pachon et al. (2021) developed a discrete-time risk model and showed
the relationships and differences with respect to the continuous time case. Nakade and
Karim (2022) considered a discrete-time Markov process with a bounded continuous
state space and obtained the equilibrium equations on steady-state probability. Bazyari
(2022a) considered a generalized dual Binomial risk model where the periodic premium
is one and derived a recursive expression for the finite time ruin probability. Bazyari
(2023) computed the ruin probabilities in the discrete-time insurance risk process with
capital injections and reinsurance.

The present paper focuses on computing the infinite time ruin probability in a
discrete-time risk model for a general class of occurrence claim distributions with a
Markovian environment process, which includes many well-known models as special
cases. The obtained results for the infinite time ruin probability are based on the
conditional joint distribution of claim amounts and Markovian chain.

The rest of this paper is structured as follows. In Section 2, we give the models
and assumptions of our study and present the definition of the ordinary generating
function of the sequence. In Section 3, we derive the infinite time ruin probability in
the Markovian environment. For illustration purposes, only one-state and two-state
of discrete-time risk model are examined. In addition, we compute the ruin proba-
bilities for the compound binomial risk model and the compound Markov binomial
risk model. Section 4 presents some numerical examples with practical application of
results. Discussion and conclusions are given in Section 5.

2 Reviewing some insurance models and assumptions
Discrete-time risk models are of interest to us, because we can use them to approximate
risk models in continuous time. The underlying model for our study is the discrete-time
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risk model which we now describe. Let R(t) be the surplus process of an insurance
company at time t, t = 1, 2, 3, . . . . Then

R(t) = u+ t−
t∑

i=1

Xi, (1)

where u = R(0) ≥ 0 is the insurer’s initial capital and t is the total premium income up
to time t ssuming that the insurer’s premium income per unit time is 1. The insurer’s
aggregate claim size in the ith time interval is denoted by Xi and {Xi}∞i=1 is a sequence
of independent and identically distributed (i.i.d.) random variables with E(X1) < 1,
probability density function g(x) and distribution function G(x).

Let Mn, n ∈ N , be a homogeneous, irreducible and aperiodic Markov chain with
finite state space S = {1, 2, . . . , s}, 1 ≤ s < ∞. The matrix of one-step transition
probability is given by P = (pij)i,j∈Mn , where pij = P (Mn = j|Mn−1 = i), i.e.
the transition probability matrix P is the matrix consisting of the one-step transition
probabilities pij . Moreover, the unique stationary distribution of matrix P is given
by π = (π1, π2, . . . , πs). Suppose that the distribution of claim sizes is influenced by
the Markov chain Mn, n ∈ N . For any i, j ∈ S and z ∈ N define fij(z) = P (Xt =
z,Mt = j|Mt−1 = i) which describes the conditional joint distribution of claim amounts
and Markovian chain given the previous state of Markovian chain, where we assume
throughout the paper that for any j ∈ S and i ̸= 1, fij(0) = 0 and

∑
j∈S f1j(0) >

0. This notation plays an important role in computing the ruin probabilities in the
following Sections. Assume further that for all i, j ∈ S, θij =

∑∞
w=0 wfij(w) <∞ and

for any i ∈ S define θi =
∑s

j=1 θij .

Remark 2.1. It is well-known that the positive safety loading condition is a key role in
ruin theory. To make sure that ruin is not certain, we assume that the positive safety
loading condition holds, that is,

∑s
i=1 πiθi < 1.

Moreover, for the risk model (1), we denote the time to ruin for initial capital u by
Tu and define this quantity as Tu = min

{
t ≥ 1 : R(t) < 0 | R(0) = u

}
, with Tu = ∞ if

for t = 1, 2, 3, . . . , R(t) ≥ 0. For the initial capital u and and the initial environment
state i ∈ S, the infinite time ruin probability is

ψi(u) = P
(
Tu <∞ | R(0) = u,M0 = i

)
.

2.1 The compound binomial risk model
The compound binomial risk model, which is of special importance in actuarial studies,
was first presented by Gerber (1988). Afterwards, the model was investigated by Shiu
(1989), Willmot (1993) and Dickson (194). Some further extensions and properties
of the model have been studied by Zhang et al. (2008), Eryilmaz (2014) and Bazyari
(2022b). The compound binomial risk model is a discrete-time version of the classical
risk model. The corresponding surplus process of an insurance company can be defined
as

R(t) = u+ t−
t∑

i=1

IiYi, (2)
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where the claim amounts Yi, i = 1, 2, . . . , t, are i.i.d. random variables with common
probability function h(y) = P (Y = y), y = 1, 2, . . . , and Ii are i.i.d. Bernoulli random
variables representing the claim occurrences with mean p ∈ (0, 1). That is, in any
time period there is at most one claim; the probability of having a claim is p and the
probability of no claim is 1− p. The occurrence of the claims in different time periods
are assumed to be independent events and they are homogeneous in the compound
binomial risk model.

2.2 The compound Markov binomial risk model
The compound Markov binomial model, an extension to Gerber’s compound binomial
model, was first proposed by Cossette et al. (2003) as a discrete-time risk model which
introduces time dependence in the claim occurrence process. For convenience, a short
presentation of the compound Markov binomial model follows (see Cossette et al. (2003)
for more details). An extension of the compound binomial model is the compound
Markov binomial model, in which Ii, i = 1, 2, . . . , t, in (2) is a two-state Markovian
process with a transition probability matrix P = (pij)i,j∈{1,2}, where pij = P

(
Ik+1 =

j − 1|Ik = i− 1
)

for i, j ∈ {1, 2} and k = 1, 2, . . . .

2.3 Generating function of a sequence
In mathematics, a generating function is a way of encoding an infinite sequence of
numbers by treating them as the coefficients of a formal power series. This series is
called the generating function of the sequence. Unlike an ordinary series, the formal
power series is not required to converge. In fact, the generating function is not actually
regarded as a function, and the ”variable” remains an indeterminate (one can refer to
Knuth (1997) for more information on generating functions). The ordinary generating
function of the sequence

{
an, n = 0, 1, . . .

}
, is defined by

a∗n(x) =

∞∑
n=0

anx
n.

For the sequence {bn, n = 0, 1, . . . } with generating function b∗n(x), we have

a∗n(x)b
∗
n(x) =

∞∑
n=0

(a ∗ b)nxn =

∞∑
n=0

n∑
w=0

awbn−wx
n. (3)

Moreover, let ψ∗
i (x), ϕ∗i (x) and f∗ij(x) denote the generating functions of ψi(w), ϕi(w)

and fij(w), respectively.

3 Infinite time ruin probability
In studying the nature of the insurance risk associated with a portfolio of business,
it is often of interest to assess how the portfolio may be expected to perform over an
extended period of time. In addition, it is very important to know about the status of
parameters in an insurance company. In this Section, we assume that the environmental
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Markov chain has only two states and derive some recursive formulae for the infinite
time ruin probability using technique of ordinary generating functions in the risk model
(1). Conditioning on the occurrence of claims at the end of the first time period, clearly
we have the following recursive formula for the infinite time ruin probability

ψi(u) = 1−
2∑

j=1

u+1∑
w=0

fij(w)
(
1− ψj(u+ 1− w)

)
, i = 1, 2. (4)

The remaining of this Section aims to derive some expressions of infinite time ruin
probability for calculation purposes. By multiplying both sides of (4) by xu+1 and
summing over u from 0 to ∞, we obtain

x
(
1− ψ∗

i (x)
)
=

2∑
j=1

f∗ij(x)
(
1− ψ∗

j (x)
)
−

2∑
j=1

fij(0)
(
1− ψj(0)

)
, i = 1, 2.

Then we have the following equations:{
(f∗11(x)− x)

(
1− ψ∗

1(x)
)
+ f∗12(x)

(
1− ψ∗

2(x)
)
=

∑2
j=1 f1j(0)

(
1− ψj(0)

)
,

f∗21(x)
(
1− ψ∗

1(x)
)
+ (f∗22(x)− x)

(
1− ψ∗

2(x)
)
=

∑2
j=1 f2j(0)

(
1− ψj(0)

)
.

(5)

It follows from (5) that[
(f∗11(x)− x)(f∗22(x)−x)− f∗21(x)f

∗
12(x)

](
1− ψ∗

1(x)
)
= (f∗22(x)− x)

×
( 2∑
j=1

f1j(0)
(
1− ψj(0)

))
− f∗12(x)

( 2∑
j=1

f2j(0)
(
1− ψj(0)

))
.(6)

For notational convenience, we define f̂ii(1) = fii(1)−1 and f̂ii(w) = fii(w), for i = 1, 2
and k = 2, 3, . . . . Moreover, for any w = 1, 2, . . . , consider the following notations:

v(w) =

w∑
n=0

[
f̂11(n)f̂22(w − n)− f21(n)f12(w − n)

]
, (7)

f∗1w =

w∑
n=0

(
1− ψ1(n)

)
v(w − n),

r∗1w =
( 2∑
j=1

f1j(0)
(
1− ψj(0)

))
f∗22(w)−

( 2∑
j=1

f2j(0)
(
1− ψj(0)

))
f∗12(w),

r∗2w =
( 2∑
j=1

f2j(0)
(
1− ψj(0)

))
f∗11(w)−

( 2∑
j=1

f1j(0)
(
1− ψj(0)

))
f∗21(w).

Note that r∗1w can be rewritten as

r∗1w = ζ∗1w
(
1− ψ1(0)

)
+ γ∗1w

(
1− ψ2(0)

)
, (8)

where ζ∗1w = f11(0)f̂22(w) − f21(0)f12(w) and γ∗1w = f12(0)f̂22(w) − f22(0)f12(w). Let
f̃∗1(x), ṽ(x) and r̃∗1(x) denote the generating functions of f∗1w , v(w) and r∗1w , respec-
tively. Applying the generating function’s property (3) to (6) yields

f̃∗1(x) = ṽ(x)
(
1− ψ̃1(x)

)
= r̃∗1(x). (9)
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Then comparing the coefficients of xw, w = 1, 2, 3, . . . , in both sides of the equation
(9) gives f∗1w = r∗1w and f∗2w = r∗2w , these are

w∑
n=0

(
1− ψ1(n)

)
v(w − n) = r∗1w , (10)

w∑
n=0

(
1− ψ2(n)

)
v(w − n) = r∗2w ,

respectively. Therefore, for w = 1, 2, . . . , the infinite time ruin probabilities ψ1(w) and
ψ2(w) can be obtained from the equations

ψ1(w)=

{
1− 1

v(0)

[
r∗1w −

∑w−1
n=0

(
1− ψ1(n)

)
v(w − n)

]
, if v(0) ̸= 0,

1− 1
v(1)

[
r∗1w+1 −

∑w−1
n=0

(
1− ψ1(n)

)
v(w + 1− n)

]
, if v(0) = 0, v(1) ̸= 0,

(11)

ψ2(w)=

{
1− 1

v(0)

[
r∗2w −

∑w−1
n=0

(
1− ψ2(n)

)
v(w − n)

]
, if v(0) ̸= 0,

1− 1
v(1)

[
r∗2w+1 −

∑w−1
n=0

(
1− ψ2(n)

)
v(w + 1− n)

]
, if v(0) = 0, v(1) ̸= 0.

(12)

In the following Theorem, we give some restrictions which under those the ruin will
not be happened.

Theorem 3.1. If both v(0) = 0 and v(1) = 0, then π1θ1 + π2θ2 ≥ 1, that is, the
positive safety loading condition does not hold.

Proof. It is easy to see that the unique stationary of matrix P is given by

π = (π1, π2) =
( p21
p21 + p12

,
p12

p21 + p12

)
.

On the other hand, from equality (7), we have

v(1) = f11(0)
(
f22(1)− 1

)
+ f22(0)

(
f11(1)− 1

)
− f21(0)f12(1)− f21(1)f12(0) ≤ 0.

By the assumption of Theorem 3.1 if v(1) = 0, then

f11(0) = f22(0) = f21(0)f12(1) = f21(1)f12(0) = 0. (13)

Moreover, f21(0)f12(0) = 0, since v(0) = 0. Hence there are only two situations:
Situation (I): The equations f12(0) = 0 and f21(0) ̸= 0 hold. From (13) we see f12(1) =
0. Then

θ1 =

∞∑
w=0

w
(
f11(w) + f12(w)

)
=

∞∑
w=1

wf11(w) +

∞∑
w=2

wf12(w)

≥ p11 + 2p12 = 1 + p12,

θ2 =

∞∑
w=0

w
(
f21(w) + f22(w)

)
≥ p21 + p22 − f21(0) = 1− f21(0),
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since p11 + p12 = 1 and p21 + p22 = 1. Therefore

π1θ1 + π2θ2 =
p21θ1

p21 + p12
+

p12θ2
p21 + p12

≥
p21 + p12 + p12

(
p21 − f21(0)

)
p21 + p12

≥ 1.

Situation (II): The equations f21(0) = 0 and f12(0) ̸= 0 hold. By similar arguments,
we have

f21(1) = 0, θ1 ≥ 1− f12(0), θ2 ≥ 1 + p21,

π1θ1 + π2θ2 =
p21θ1

p21 + p12
+

p12θ2
p21 + p12

≥
p21 + p12 + p21

(
p12 − f12(0)

)
p21 + p12

≥ 1,

and this completes the proof.

3.1 Infinite time ruin probabilities for u = 0

For computing the whole infinite time ruin probability the remaining part is to deter-
mine the values of ruin probabilities ψ1(0) and ψ2(0). To compute these ruin proba-
bilities we present an equality which is associated with their relations. For notational
convenience, for i = 1, 2 and u ≥ 1, we define

ψi(0) = 1− Li(0), Li(u) = ψi(u− 1)− ψi(u),

Bi(0) = r∗i0 , Bi(u) = r∗iu − r∗iu−1.

It follows from (9) and (10) that

v(0)Li(u+ 1) = Bi(u+ 1)−
u∑

n=0

(
1− ψi(n)

)
v(u+ 1− n)−

u−1∑
n=0

(
1− ψi(n)

)
v(u− n)

= Bi(u+ 1)− Li(0)v(u+ 1)−
u∑

n=1

(
1− ψi(n)

)
v(u+ 1− n)

+

u−1∑
n=0

(
1− ψi(n)

)
v(u− n)

= Bi(u+ 1)− Li(0)v(u+ 1)−
u∑

n=1

(
1− ψi(n)

)
v(u+ 1− n), (14)

for u = 1, 2, . . . . The equation (14) can be written in the following general form:

u+1∑
q=0

v(q)Li(u+ 1− q) = Bi(u+ 1). (15)

Let ṽ(x), L̃i(x) and B̃i(x) denote the generating functions of v(u), Li(u) and Bi(u),
respectively. From equation (15) we have

ṽ(x)L̃i(x)− v(0)Li(0) = B̃i(x)−Bi(0),
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which implies that for i = 1, 2

ṽ(x)L̃i(x) = B̃i(x). (16)

By derivation from equation (15), we have

B̃′
i(x) = ṽ′(x)L̃i(x) + ṽ(x)L̃′

i(x). (17)

On the other hand, since L̃i(1) =
∑∞

u=0 Li(u) = limn→∞
(
1− ψi(n)

)
= 1 and B̃i(1) =

limn→∞Bi(n) = 0, therefore, from (16) we result that ṽ(1) = 0 which gives the equality
B̃′

i(1) = ṽ′(1) due to (17). On the other hand, we have

B̃′
1(1) =

∞∑
w=1

w
(
r∗1w − r∗1w−1

)
=

∞∑
w=1

w∑
l=1

(
r∗1w − r∗1w−1

)
= −

∞∑
l=0

r∗1l ,

which from (8), we get

B̃′
1(1) = −

(
1− ψ1(0)

) ∞∑
l=0

ζ∗1l −
(
1− ψ2(0)

) ∞∑
l=0

γ∗1l

=
(
1− ψ1(0)

)(
f11(0)p21 + f21(0)p12

)
+
(
1− ψ2(0)

)(
f12(0)p21 + f22(0)p12

)
. (18)

ṽ′(1) =

∞∑
w=0

wv(w) =

∞∑
w=0

w∑
n=0

w
[
f̂11(n)f̂22(w − n)− f21(n)f12(w − n)

]
=

∞∑
n=0

[
f̂11(n)

∞∑
w=n

(w − n)f̂22(w − n) + nf̂11(n)

∞∑
w=n

f̂22(w − n)
]

−
∞∑

n=0

[
f21(n)

∞∑
w=n

(w − n)f12(w − n) + nf21(n)

∞∑
w=n

f12(w − n)
]

= p12(1− θ2) + p21(1− θ1). (19)

Since the expressions (18) and (19) are equal, then(
1− ψ1(0)

)(
f11(0)p21 + f21(0)p12

)
+
(
1− ψ2(0)

)(
f12(0)p21 + f22(0)p12

)
= p12(1− θ2) + p21(1− θ1), (20)

This equality is a relationship between ψ1(0) and ψ2(0) which is based on the
elements of transition probability matrix. To solve this equality, we need to determine
the value of v(0). To do it, we consider the following three cases of v(0).
Case I) If v(0) = 0, it follows from (9) that

v(1)
(
ψ1(0)

)
= r∗1(1) = ζ∗1w

(
1− ψ1(0)

)
+ γ∗1w

(
1− ψ2(0)

)
,

which we result that
D1ψ1(0) +D2ψ2(0) = 0,
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where D1 = ζ∗1w − v(1) = f12(0)f21(1) + f22(0)
(
1 − (f11(1)

)
and D2 = γ∗1w − v(1) =

f12(0)
(
f22(1)−1

)
+f22(0)f12(1). In addition, D1 = D2 if and only if f12(0) = f22(0) =

0. Then
2∑

j=1

f1j(0)
(
1− ψj(0)

)
= f11(0)

(
1− ψ1(0)

)
,

2∑
j=1

f2j(0)
(
1− ψj(0)

)
= f21(0)

(
1− ψ1(0)

)
,

v(1)
(
1− ψ2(0)

)
= r∗2(1) =

(
− f11(0)f21(1) + f21(0)

(
f11(1)− 1

))(
1− ψ1(0)

)
. (21)

Case II) Suppose that v(0) > 0. Let

N1(x) =
(
f̂11(x)− x

)(
f̂22(x)− x

)
f̂21(x)f̂12(x),

N2(x) =
(
f̂22(x)− x

) 2∑
j=1

f1j(0)
(
1− ψj(0)

)
− f̂12(x)

2∑
j=1

f2j(0)
(
1− ψj(0)

)
.

By (6), the equality N1(x)
(
1−ψ∗

1(x)
)
= N2(x) holds. On the other hand, since N2(0) =

v(0)
(
1 − ψ1(0)

)
and N2(1) = (p22 − 1)

∑2
j=1 f1j(0)

(
1 − ψj(0)

)
− p12

∑2
j=1 f2j(0)

(
1 −

ψj(0)
)
< 0, then there exists a δ, 0 < δ < 1, such that N2(δ) = 0, and therefore the

equality(
f11(0)

(
f̂22(δ)− δ

)
− f21(0)f̂12(δ)

)(
1− ψ1(0)

)
=
(
f22(0)f̂12(δ)− f12(0)

(
f̂22(δ)− δ

))
×
(
1− ψ2(0)

)
, (22)

holds. Noting that for any s ∈ (0, 1),
(
1 − ψ∗

1(x)
)
> 0 and we see that δ is a solution

to the equation N1(x) = 0.
Case III) If v(0) < 0, then N1(0) = v(0) < 0. On the other hand, consider that

N1(−1) =
(
1 + f̂11(−1)

)(
1 + f̂22(−1)

)
− f̂21(−1)f̂12(−1)

>
(
1− f̂11(1)

)(
1− f̂22(1)

)
− f̂21(1)f̂12(1)

= (1− p11)(1− p22)− p21p12 = 0,

and it shows that there exists a δ ∈ (−1, 0), such that N1(δ) = 0, which in turn implies
that N2(δ) = 0, and therefore (22) also holds in this case.

3.2 Infinite time ruin probability for two risk models
Here we compute the infinite time ruin probability for the compound binomial risk
model and compound Markov binomial risk model given in Subsections 2.1 and 2.2.
For i = 1, 2, assume that

fi1(w) =

{
p, if w = 0,

0, if w > 0,
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fi2(w) =

{
0, if w = 0,

(1− p)v(w), if w > 0.

Then the risk model reduces to the first model, i.e., the compound binomial risk model.
We suppose that the equality ψ(u) = ψ1(u) = ψ2(u) holds. Then v(0) = 0, and from
(11) or (12), we have

ψ(u) =

(
1− ψ(u− 1)− (1− p)

∑u−1
n=0

(
1− ψ(u)

)
v(u− n)

)
p

,

where u = 1, 2, . . . . Using (20), we obtain ψ(0) = 1 − 1−(1−p)
∑∞

w=1 wv(w)

p , and this
result is also given in Shiu (1989) and Willmot (1993).
For i = 1, 2, in the compound Markov binomial risk model assume that

fi1(w) =

{
pi1, if w = 0,

0, if w > 0,

fi2(w) =

{
0, if w = 0,

pi2v(w), if w > 0.

In this case, the risk model reduces to the second model, i.e., the compound Markov
binomial risk model and v(0) = 0. From (11) or (12), we have

ψ2(u) = 1− 1

v(1)

[(
1− ψ2(u− 1)

)
+

u−1∑
n=0

(
1− ψ2(n)

)[
(p11 − p21)v(u+ 1− n)− p22v(u− n)

]]
,

for u = 1, 2, . . . . By relation (21), we obtain

ψ2(0) =
(p11 − p21)

(
1− v(1)

)
+ p21ψ1(0)

p11 − (p11 − p21)v(1)
,

and this result is the same as relation (7) given in Cossette et al. (2004).

4 Numerical illustrations
In this Section, to better illustrate the above points, we shall study several examples
in details. These examples contain different types of conditional joint distribution of
claim amounts and Markovian chain. In examples 4.1 and 4.2, we give the discrete
distribution of claim amounts for w = 0, 1, 2, . . . and compute the values of matrix
of one-step transition probability and infinite time ruin probabilities. In example 4.3,
we give the marginal distribution of each claim amounts and the conditional joint
distribution of claim amounts is defined as the coefficients of marginal distribution and
compute the infinite time ruin probabilities. In examples 4.4 and 4.5, we present the
practical problem by a fully developed case study in the domain of social insurance.
Example 4.1. The conditional joint distribution of claim amounts and Markovian
chain for w = 0, 1, 2, . . . is given in Table 1.
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Table 1: The distribution of claim amounts.
w f11(w) f12(w) f21(w) f22(w)
0 5

8 0 0 0
1 1

8
1
8 0 1

6
2 1

8 0 1
2

1
6

3 0 0 1
6 0

≥ 4 0 0 0 0

With some calculations, we get

p12 =
1

8
, p21 =

2

3
, θ1 =

1

2
, θ2 = 2,

v(0) = 0, v(1) = −25

48
, v(2) =

5

6
, v(3) = − 5

16
,

and v(w) = 0 for w ≥ 4. From (20) and (21), we have ψ1(0) = 1
2 and ψ2(0) = 1.

Moreover,
r∗12 = ζ∗12

(
1− ψ1(0)

)
=

5

48
× 1

2
=

5

96
,

and r∗1w = 0, for w ≥ 3. Therefore, ψ(1) = 1− 1
v(1)

(
r∗12 − v(2)

(
1− ψ(0)

))
= 7

10 . Using
(10), for w ≥ 2 we get

v(1)ψ1(w) =
(
v(1) + v(3)

)
ψ1(w − 1)− v(3)ψ1(w − 2).

With some calculations, we obtain the recursive formula

ψ1(w)− ψ1(w − 1) =
v(3)

v(1)

(
ψ1(w − 1)− ψ1(w − 2)

)
. (23)

Using formula (23) , we get

ψ1(w)− ψ1(w − 1) =
(v(3)
v(1)

)2(
ψ1(w − 2)− ψ1(w − 3)

)
,

and therefore, for w ≥ 1,

ψ1(w)− ψ1(w − 1) =
(v(3)
v(1)

)w−1(
ψ1(1)− ψ1(0)

)
=

1

5

(3
5

)w−1
,

which yields the infinite time ruin probability for w ≥ 1 and i = 1, is given by ψ1(w) =
1− 1

2

(
3
5

)w. By similar method, the infinite time ruin probability for w ≥ 1 and i = 2,
is given by ψ2(w) = 1− 7

10

(
3
5

)w−1.

Example 4.2. The conditional joint distribution of claim amounts and Markovian
chain for w = 0, 1, 2, . . . is given in Table 2.
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Table 2: The distribution of claim amounts.
w f11(w) f12(w) f21(w) f22(w)
0 3

8
1
8 0 1

2
1 1

8
1
8

1
4 0

2 0 1
8 0 1

6
3 1

8 0 1
12 0

≥ 4 0 0 0 0

With some calculations, we obtain

p11 =
5

8
, p12 =

3

8
, p21 =

1

3
, p22 =

2

3
,

θ1 = θ11 + θ12 =
1

2
+

3

8
=

7

8
, θ2 = θ21 + θ22 =

1

2
+

1

3
=

5

6
.

Using (20), we derive the equation

1

2
ψ1(0) +

11

12
ψ2(0) = 1. (24)

Since v(0) = 3
16 > 0, therefore we have the Case (II). On the other hand,

f̂11(x) =
1

8
(x3 + x+ 3), f̂12(x) =

1

8
(x2 + x+ 3),

f̂21(x) =
1

12
(x3 + 3x), f̂22(x) =

1

6
(x2 + 3),

and N1(x) =
1−x
96

(
− x4 + 12x3 + 24x2 − 63x+ 18

)
.

Using R program, δ = 0.3356, which is the solution to the equation N1(x) = 0 on
the interval (0, 1). Using (22) and (24), we obtain ψ1(0) = 0.7088 and ψ2(0) = 0.7043.
We use (11) and (12), to compute the infinite time ruin probabilities ψ1(u) and ψ2(u)
for some initial capitals. These values are presented in Table 3. The graph of the ruin
probabilities ψ1(u) and ψ2(u) are shown in Figure 1.

Table 3: Infinite time ruin probabilities ψ1(u) and ψ2(u).
u ψ1(u) ψ2(u)
0 0.7088 0.7043
1 0.5689 0.5541
2 0.4311 0.4229
3 0.3346 0.3275
4 0.2573 0.2521
5 0.1987 0.1946
6 0.1531 0.1502
7 0.1181 0.1157
8 0.0911 0.0892
9 0.0702 0.0688
10 0.0542 0.0531
15 0.0147 0.0145
20 0.0040 0.0039
25 0.0014 0.0009
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Figure 1: Infinite time ruin probabilities ψ1(u) and ψ2(u).

Example 4.3. Let the function fij(w) is given by fij(w) = pijfj(w) with the matrix

of one-step transition probability P =

(
1
3

2
3

3
4

1
4

)
and for w ∈ {1, 2, . . . } we have

f1(w) =
(1
2

)w+1
and f2(w) =

2

3

(1
2

)w
.

With some calculations, we get v(0) = − 5
36 < 0, therefore we have the Case (III). Also,

θ1 = θ11 + θ12 = 1
3 +

1
3 = 2

3 and θ2 = θ21 + θ22 = 3
4 +

1
8 = 7

8 . Using (20), we derive the
equation

3

8
ψ1(0) +

4

9
ψ2(0) =

35

72
. (25)

On the other hand

f̂11(x) =
1

3(2− x)
, f̂12(x) =

4

3(3− x)
,

f̂21(x) =
3

4(2− x)
, f̂22(x) =

1

2(3− x)
,

and N1(x) =

(
6x3−24x2+17x+5

)
(x−1)

6(2−x)(3−x) .
Again, using R program, δ = −0.2212, which is the solution to the equation N1(x) =

0 on the interval (−1, 0). Using (22) and (25), we obtain ψ1(0) = 0.5797 and ψ2(0) =
0.6046. We use (11) and (12), to compute the infinite time ruin probabilities ψ1(u)
and ψ2(u) for some initial capitals. These values are presented in Table 4. The graph
of the infinite time ruin probabilities ψ1(u) and ψ2(u) are shown in Figure 2.

Markov chains appear in many practical problems in such fields as operations re-
search, business, social sciences and etc. To give an idea of this potential, we will
present two more examples follow by a fully developed case study in the domain of
social insurance.

Example 4.4. (A transportation problem, Anton and Kolman (1978) ). Let us consider
a taxicab company of a city V , subdivided into two sectors V1 and V2. A taxicab picks
up a passenger in any sector and drops her or him off in any sector. We can view
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Table 4: Infinite time ruin probabilities ψ1(u) and ψ2(u).
u ψ1(u) ψ2(u)
0 0.5797 0.6046
1 0.4493 0.4714
2 0.3496 0.3677
3 0.2725 0.2869
4 0.2125 0.2238
5 0.1658 0.1747
6 0.1294 0.1363
7 0.1009 0.1064
8 0.0788 0.0830
9 0.0615 0.0648
10 0.0479 0.0506
15 0.0139 0.0146

Figure 2: Infinite time ruin probabilities ψ1(u) and ψ2(u).

a taxicab as a physical system S which can be in one of three states: the sectors V1
or V2. The observation of taxicabs leads to the construction of a Markov chain with
three states. This Markov chain has the transition probability matrix P =

(
3
7

4
7

4
5

1
5

)
.

This matrix is regular, hence irreducible and aperiodic since all its elements are strictly
positive. Let the function fij(w) is given by fij(w) = pijfj(w) and for w ∈ {1, 2, . . . }
we have

f1(w) =
(1
3

)w
and f2(w) =

1

2

(1
4

)w+1
.

With some calculations, we get v(0) = − 6
17 < 0, therefore we have the Case (III). Also,

θ1 = 1
2 and θ2 = 3

5 . Using (20), we get

2

9
ψ1(0) +

3

5
ψ2(0) =

42

67
.

From (22) and (25), we obtain ψ1(0) = 0.6994 and ψ2(0) = 0.7028. We use (11) and
(12), to compute the infinite time ruin probabilities ψ1(u), ψ2(u) and ψ3(u) for some
initial capitals. These values are presented in Table 5.
Example 4.5. (A management problem in an insurance company, Anton and Kolman
(1978) ). A car insurance company classifies its customers in two groups:

G0: Those having no accidents during the year,
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Table 5: Infinite time ruin probabilities ψ1(u) and ψ2(u).
u ψ1(u) ψ2(u)
1 0.6839 0.6846
2 0.6504 0.6410
3 0.6200 0.6105
4 0.6027 0.5922
5 0.5740 0.5608
10 0.4331 0.4291
20 0.1981 0.2006
30 0.0579 0.0541
50 0.0096 0.0085
80 0.0025 0.0030
100 0.0007 0.0008

G1: Those having one or more than one accident during the year.
The statistics department of the company observes that the annual transition between

the two groups can be represented by a Markov chain with state space
{
G0, G1

}
and

transition matrix P =
(
0.85 0.15
0 1

)
. Let the function fij(w) is given by fij(w) =

pijfj(w) and for w ∈
{
1, 2, . . .

}
we have

f1(w) =
(1
2

)w−1
and f2(w) =

1

3

(1
2

)w
.

With some calculations, we get v(0) = 3
17 > 0, therefore we have the Case (II). Also,

θ1 = 2
7 and θ2 = 1

4 . Using (20), we derive

3

4
ψ1(0) +

5

6
ψ2(0) =

75

93
.

From (22) and (25), we obtain ψ1(0) = 0.7542 and ψ2(0) = 0.8015. We use (11) and
(12), to compute the ruin probabilities ψ1(u) and ψ2(u) for some initial capitals. These
values are presented in Table 6.

Table 6: Infinite time ruin probabilities ψ1(u) and ψ2(u).
u ψ1(u) ψ2(u)
1 0.7306 0.7816
2 0.7254 0.7722
3 0.7106 0.7529
4 0.7011 0.7536
5 0.6903 0.7485
10 0.5761 0.6335
20 0.3550 0.4072
30 0.2489 0.2956
50 0.0512 0.0944
80 0.0095 0.0070
100 0.0022 0.0074

5 Discussion and conclusions
We have provided a general formula for the infinite time ruin probability in the discrete-
time risk model when general distribution of the total claim amounts is influenced by
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the environmental Markov chain. The ruin probability is expressed as the conditional
joint distribution of claim amounts and Markovian chain. Furthermore, we proved
that when v(0) = v(1) = 0, the inequality π1θ1 + π2θ2 ≥ 1 holds and presented some
numerical illustrations. As the practical results, we considered the examples 4.4 and
4.5 associated with “A transportation problem” and “A management problem in an
insurance company”, respectively, and computed the infinite time ruin probabilities.
The obtained results in this discrete-time risk model can be a useful policy for the
managers of insurance company.
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