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Abstract: In this paper, we consider a k-component coherent system while the sys-
tem lifetimes are observed, the system structure is known and the component lifetime
follows the proportional hazard rate model. We discuss the prediction problem based
on Type-II censored coherent system lifetime data. For predicting the future system
failures, we obtain the maximum likelihood predictor, the best unbiased predictor, the
conditional median predictor and the Bayesian predictors. As it seems that the in-
tegrals of the Bayes prediction do not possess closed forms, the Metropolis-Hastings
method is applied to approximating these integrals. Different interval predictors based
on classical and Bayesian approaches are derived. A numerical example is presented to
illustrate the prediction methods used in this paper. A Monte Carlo simulation study
is performed to evaluate and compare the performances of different prediction methods.
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1 Introduction
Prediction of unobserved or censored observations is an interesting topic, especially in
the viewpoint of acturial, medical and engineering sciences. In reliability and system
lifetime data analysis, the study of coherent systems is one of the important topics.
Researchers and experimenters are interested in learning the lifetime characteristic of
the system as well as the lifetime characteristic of the components that make up the
system. There are numerous situations that the lifetimes of k-component coherent
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systems can be observed but not the lifetimes of the components and the prediction
of the future failures is of interest. Hence, in this paper, we consider the prediction of
future system failures based on Type-II censored system lifetime data.

Let T be the lifetime of a coherent system with independent and identically dis-
tributed (i.i.d.) component lifetimes X1, X2, . . . , Xk with common absolutely contin-
uous cumulative distribution function FX(·), probability density function fX(·), and
survival function F̄X(·) = 1 − FX(·). We denote the corresponding order statistics
of the lifetimes of the k components as X1:k < X2:k < . . . < Xk:k. Further, we de-
note the survival function of the i-th order statistic by F̄i:k(·). Suppose n independent
k-component systems with the same structure are placed on a life-test with the cor-
responding lifetimes T1, T2, . . . , Tn being identically distributed as T with cumulative
distribution function FT (·), probability density function fT (·) and survival function
F̄T (·) = 1−FT (·). Samaniego (1985) showed that the probability density function and
survival function of the system lifetime T can be written as

fT (t) =

k∑
i=1

pi

(
k

i

)
ifX(t)[FX(t)]i−1[F̄X(t)]k−i,

F̄T (t) =

k∑
i=1

pi

i−1∑
j=0

(
k

j

)
[FX(t)]j [F̄X(t)]k−j ,

respectively, where pi is the i-th component in the system signature vector for the
k-component system such that pi = Pr(T = Xi:k), and

∑k
i=1 pi = 1 (see, Kochar et al.

(1999) and Samaniego (2007)).
Navarro et al. (2007) showed that the survival function and probability density

function of a coherent system can be expressed as

F̄T (t) =

k∑
i=1

aiF̄1:i(t) =

k∑
i=1

ai[F̄X(t)]i, (1)

where F̄1:i(·) is the survival function of the series system lifetime with i components.
The vector a = (a1, a2, . . . , ak) is called the minimal signature of the system and
a1, a2, . . . , ak are some negative and nonnegative integers that do not depend on FX ,
and satisfy

∑k
i=1 ai = 1.

In this paper, we consider the popular proportional hazard rate (PHR) model for
the common distribution of the i.i.d lifetimes of the components, i.e., we assume that
the survival function of Xi is

F̄X(t) = [F̄0(t)]
θ, (2)

for i = 1, 2, . . . , k, where θ > 0 is the unknown parameter and F̄0(t) is the baseline sur-
vival function of a lifetime distribution with support [0,∞), whose form is completely
specified and it does not depend on θ. The PHR model covers some commonly used
statistical lifetime distributions which are applicable to modeling component lifetimes.
The following are some examples:
i) Exponential distribution: EXP (θ) with F̄0(t) = e−t, t > 0, and the survival function
is given by F̄X(t) = e−θt, t > 0, θ > 0.
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ii) Type-II standard Pareto distribution: Pa(θ) with F̄0(t) =
1

1+t , t > 0, and the sur-

vival function is given by F̄X(t) =
(

1
1+t

)θ
, t > 0, θ > 0.

iii) Weibull distribution with known shape parameter: We(θ) with F̄0(t) = e−tβ , t > 0,

and known shape parameter β. The survival function is given by F̄X(t) = e−θtβ , t > 0,
θ > 0.

Based on the model in (2) and from (1), the probability density function and survival
function of the coherent system lifetime are given by

fT (t) = θf0(t)

k∑
j=1

jajF̄0
jθ−1

(t), (3)

F̄T (t) =

k∑
j=1

ajF̄0
jθ
(t), (4)

respectively, where f0(t) =
d
dtF0(t) is the baseline probability density function.

In a Type-II censored experiment, n independent k-components systems with the
same system structure are placed on a life-testing experiment and the experiment is
terminated when the m-th (where m ≤ n is pre-fixed) system fails. In other words, only
the first m failures out of the n systems in the life-test will be observed. The ordered
system data obtained from such a life-test, denoted as T1:n < T2:n < . . . < Tm:n, is
referred to as a Type-II censored system lifetime data. Based on the observed Type-II
censored coherent system lifetime data, we aim at predicting the future system failures
T ′ = Ts+m:n(s = 1, 2, . . . , n − m) when the system signature (or, equivalently, the
minimal signature) is available. Under the assumption that the component lifetime
is modeled by the proportional hazard rate (PHR) model, we derive the maximum
likelihood predictor, the best unbiased predictor, the conditional median predictor and
the Bayesian point predictors for future system failures T ′ = Ts+m:n(s = 1, 2, . . . , n −
m). Furthermore, we present the prediction intervals (PIs) for future failures T ′ =
Ts+m:n(s = 1, 2, . . . , n − m). To compare the performances of different point and
interval prediction methods, a Monte Carlo simulation study is used.

In recent years, many authors studied the statistical inference of the component life-
time distribution and prediction for the future system failures based on system lifetime
data when the system signature is known; for example, Bhattacharya and Samaniego
(2010) studied the nonparametric estimation of the component lifetime distribution
from system lifetime data under the assumption that the component lifetime are i.i.d.
Balakrishnan et al. (2011a) discussed the linear inference for Type-II censored system
lifetime data of reliability systems with known signature. Balakrishnan et al. (2011b)
considered signature-based nonparametric inferential methods for component lifetime
characteristics based on system lifetime data. Ng et al. (2012) discussed the statistical
inference for the component lifetime distribution from system lifetime data under a
proportional hazard rate model when the system signature is known. Chahkandi et al.
(2014) developed the non-parametric prediction intervals for the lifetime of coherent
systems. Zhang et al. (2015a) considered the maximum likelihood estimation method
and a regression-based method for statistical inference of the component lifetime distri-
bution based on Type-II censored system lifetime data. Zhang et al. (2015b) discussed
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the problem of testing the homogeneity of distributions of component lifetimes based
on system lifetime data when the system signatures are known. MirMostafaee et al.
(2016) studied the Bayesian prediction of minimal repair times of a series system based
on hybrid censored sample of components’ lifetimes under the Rayleigh distribution.
Yang et al. (2016) derived the expectation-maximization-type algorithms for param-
eter estimation of the component lifetime distribution based on system lifetime data
when the system structures are known and unknown. Tavangar and Asadi (2020) stud-
ied the component reliability estimation based on system failure-time data. Fallah et
al. (2021a) discussed the statistical inference for component lifetime distribution from
coherent system lifetimes under a proportional reversed hazard model. Fallah et al.
(2021b) discussed the prediction based on Type-II censored coherent system lifetime
data under a proportional reversed hazard rate model.

This paper is organized as follows. In Section 2, we obtain the maximum likelihood
estimator of the exponentiated parameter. In Section 3, we provide different point
predictors for the future system failures. Based on Type-II censored data, we obtain
the maximum likelihood predictor, the best unbiased predictor, the conditional median
predictor and Bayes predictors. Different prediction intervals for the system failures
are provided in Section 4. An illustrative example and a Monte Carlo simulation study
are presented in Section 5. Recommendations are provided based on the simulation
results in Section 6. Finally a conclusion is presented in Section 7.

2 Maximum likelihood estimation

Suppose T1:n, T2:n, · · · , Tm:n are ordered Type-II censored system lifetime data from
a population with probability density function fT (t) and survival function F̄T (t). To
simplify the notation, we will use (T1, T2, · · · , Tm) in place of T1:n, T2:n, · · · , Tm:n. Un-
der the Type-II censored sample T = (T1, T2, · · · , Tm), the likelihood function for θ is
given by

L(t; θ) =
n!

(n−m)!

m∏
i=1

f(ti; θ) {1− F (tm; θ)}n−m
. (5)

where t = (t1, t2, . . . , tm) is the vector of observations. From (3), (4) and (5), the
likelihood function can be expressed as

L(t; θ) =
n!

(n−m)!
θm

m∏
i=1

f0(ti)

F̄0(ti)

m∏
i=1


k∑

j=1

jajF̄
jθ
0 (ti)




k∑
j=1

ajF̄
jθ
0 (tm)


n−m

. (6)

The log-likelihood function is obtained as

logL(t; θ) = C1 +m log θ+

m∑
i=1

log


k∑

j=1

jajF̄
jθ
0 (ti)

+ (n−m) log


k∑

j=1

ajF̄
jθ
0 (tm)

 ,
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where C1 = log{ n!
(n−m)!

∏m
i=1

f0(ti)
F̄0(ti)

} is a constant independent of the parameter θ.
Then, we can obtain the log-likelihood equation as

d logL(t; θ)

dθ
=

m

θ
+

m∑
i=1

[∑k
j=1 j

2ajF̄0
jθ
(ti) log F̄0(ti)∑k

j=1 jajF̄0
jθ
(ti)

]

+(n−m)

[∑k
j=1 jajF̄0

jθ
(tm) log F̄0(tm)∑k

j=1 ajF̄0
jθ
(tm)

]
= 0. (7)

Therefore, the maximum likelihood estimator (MLE) of θ, say θ̂MLE can be obtained
by maximizing (7) with respect to θ. Since the likelihood equation is a non-linear
equation, therefore, the MLE of θ needs to be obtained by using numerical methods.

3 Point predictors
In this section, we address prediction of future system failures T ′ = Ts+m:n(s =
1, 2, . . . , n − m) under classical and Bayesian approaches. Because of the Markov
property of the conditional order statistics, the conditional distribution of T ′ given
t = (t1, t2, . . . , tm) is equal to the conditional distribution of T ′ given Tm:n = tm. This
implies the density of T ′ given Tm:n = tm is the same as the density of the s-th order
statistic from a sample of size n − m from the population with the right truncated
density f(t′; θ)/[1 − F (tm; θ)], t′ ≥ tm. Therefore, the conditional probability density
function of T ′ given Tm:n = tm is

h(t′|tm; θ)= s

(
n−m

s

)
f(t′; θ) [F (t′; θ)− F (tm; θ)]

s−1

× [1− F (t′; θ)]
n−m−s

[1− F (tm; θ)]
−(n−m)

, t′ ≥ tm. (8)

Substituting (3) and (4), in (8), the conditional probability density function for t′ ≥ tm,
is

h(t′|tm; θ) = s

(
n−m

s

)
θ
f0(t

′)

F̄0(t′)


k∑

j=1

jajF̄0
jθ
(t′)




k∑
j=1

ajF̄0
jθ
(t′)


n−m−s

×

 k∑
j=1

ajF̄0
jθ
(tm)−

k∑
j=1

ajF̄0
jθ
(t′)

s−1
k∑

j=1

ajF̄0
jθ
(tm)


−(n−m)

.(9)

Using (9) and the binomial expansion, we have[ k∑
j=1

ajF̄0
jθ
(tm)−

k∑
j=1

ajF̄0
jθ
(t′)

]s−1

=

s−1∑
l=0

(s− 1

l

)
(−1)l


k∑

j=1

ajF̄0
jθ
(t′)


l

k∑
j=1

ajF̄0
jθ
(tm)


s−l−1

 .
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The conditional density of T ′ given Tm = tm is given by

h(t′|tm; θ)= s

(
n−m

s

)
θ
f0(t

′)

F̄0(t′)


k∑

j=1

jajF̄0
jθ
(t′)


s−1∑
l=0

[(
s− 1

l

)
(−1)l

×


k∑

j=1

ajF̄0
jθ
(t′)


n−m−s+l

k∑
j=1

ajF̄0
jθ
(tm)


s−l−1−n+m ]

. (10)

Several different point predictors for T ′ = Ts+m:n (s = 1, 2, . . . , n − m) are discussed
in the following subsection.

3.1 Maximum likelihood approach
In this subsection, the likelihood approach is used to obtain the maximum likelihood
predictor (MLP) for T ′ = Ts+m:n (s = 1, 2, . . . , n − m). The likelihood approach,
introduced by Kaminsky and Rhodin (1985), has become a very useful tool to predict
the future order statistics and estimate the parameters involved in the model. Given
the informative sample t = (t1, . . . , tm), the predictive likelihood function (PLF) of T ′

and θ is considered and maximized simultaneously with regard to the future observation
T ′ and the parameter θ. The PLF of T ′ and θ, is given by

L(T ′, θ|t) = h(T ′|t; θ)L(t; θ) = h(T ′|tm; θ)L(t; θ). (11)

Suppose T̂ ′ = u(T ) and θ̂ = ν(T ) are statistics for which

L(u(t), ν(t)|t) = sup
(t′,θ)

L(t′, θ|t).

Then, we call u(T ) the MLP of T ′ and ν(T ) the predictive maximum likelihood esti-
mator (PMLE) of θ. By substituting (6) and (9) into (11), the PLF of T ′ and θ can
be obtained as:

L(t′, θ|t) =
n!

(s− 1)!(n−m− s)!

m∏
i=1

f0(ti)

F̄0(ti)
θm+1 f0(t

′)

F̄0(t′)


k∑

j=1

jajF̄0
jθ
(t′)


×

 k∑
j=1

ajF̄0
jθ
(tm)−

k∑
j=1

ajF̄0
jθ
(t′)

s−1
m∏
i=1


k∑

j=1

jajF̄
jθ
0 (ti)


×


k∑

j=1

ajF̄0
jθ
(t′)


n−m−s

.

The predictive log-likelihood function is given by

logL(t′, θ|t) = C2 + (m+ 1) log θ + log f0(t
′)− log F̄0(t

′) +

m∑
i=1

log


k∑

j=1

jajF̄
jθ
0 (ti)
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+ log


k∑

j=1

jajF̄0
jθ
(t′)

+ (n−m− s) log


k∑

j=1

ajF̄0
jθ
(t′)


+(s− 1) log

 k∑
j=1

ajF̄0
jθ
(tm)−

k∑
j=1

ajF̄0
jθ
(t′)

 . (12)

where C2 = log{ n!
(s−1)!(n−m−s)!

∏m
i=1

f0(ti)
F̄0(ti)

} is a constant independent of the parameter
θ and t′. Using (12), the predictive likelihood equations (PLEs) for T ′ = Ts+m:n 1 ≤
s ≤ n−m and θ are given by

∂ logL(t′, θ|t)
∂t′

=
f ′
0(t

′)

f0(t′)
+

f0(t
′)

F̄0(t′)
− f0(t

′)

F̄0(t′)

(∑k
j=1 θj

2ajF̄0
jθ
(t′)∑k

j=1 jajF̄
jθ
0 (t′)

)

−(n−m− s)
f0(t

′)

F̄0(t′)

(∑k
j=1 θjajF̄0

jθ
(t′)∑k

j=1 ajF̄
jθ
0 (t′)

)

+(s− 1)
f0(t

′)

F̄0(t′)

( ∑k
j=1 θjajF̄0

jθ
(t′)∑k

j=1 ajF̄0
jθ
(tm)−

∑k
j=1 ajF̄0

jθ
(t′)

)
= 0, (13)

∂ logL(t′, θ|t)
∂θ

=
m+ 1

θ
+ (n−m− s)

(∑k
j=1 jajF̄0

jθ
(t′) log F̄0(t

′)∑k
j=1 ajF̄0

jθ
(t′)

)

+

m∑
i=1

(∑k
j=1 j

2ajF̄0
jθ
(ti) log F̄0(ti)∑k

j=1 jajF̄0
jθ
(ti)

)
+

(∑k
j=1 j

2ajF̄0
jθ
(t′) log F̄0(t

′)∑k
j=1 jajF̄0

jθ
(t′)

)

+(s− 1)

(∑k
j=1 jajF̄0

jθ
(tm) log F̄0(tm)−

∑k
j=1 jajF̄0

jθ
(t′) log F̄0(t

′)∑k
j=1 ajF̄0

jθ
(tm)−

∑k
j=1 ajF̄0

jθ
(t′)

)
=0. (14)

By solving (13) and (14) with respect to t′ and θ simultaneously, the MLP of T ′,
T̂ ′

MLP , and PMLE of θ can be obtained. Numerical methods can be used to solve
these PLEs and obtain the MLP T̂ ′

MLP and PMLE of θ.

Example 3.1. For k-component systems with exponential distributed components and
baseline survival function F̄0(t) = e−t, the MLP for T ′ = Ts+m:n(s = 1, 2, . . . , n −m)
and the PMLE of θ can be computed by solving the (13) and (14) which can be expressed
as

∂ logL(t′, θ|t)
∂t′

= −

(∑k
j=1 θj

2aje
−jθt′∑k

j=1 jaje
−jθt′

)
− (n−m− s)

(∑k
j=1 θjaje

−jθt′∑k
j=1 aje

−jθt′

)

+(s− 1)

( ∑k
j=1 θjaje

−jθt′∑k
j=1 aje

−jθtm −
∑k

j=1 aje
−jθt′

)
= 0,

∂ logL(t′, θ|t)
∂θ

=
m+ 1

θ
− (n−m− s)t′

(∑k
j=1 jaje

−jθt′∑k
j=1 aje

−jθt′

)
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−
m∑
i=1

ti

(∑k
j=1 j

2aje
−jθti∑k

j=1 jaje
−jθti

)
− t′

(∑k
j=1 j

2aje
−jθt′∑k

j=1 jaje
−jθt′

)

−(s− 1)

(
tm
∑k

j=1 jaje
−jθtm − t′

∑k
j=1 jaje

−jθt′∑k
j=1 aje

−jθtm −
∑k

j=1 aje
−jθt′

)
= 0.

3.2 Best unbiased predictor
A statistic T̂ ′ which is used to predict T ′ = Ts+m:n is called a best unbiased predictor
(BUP) of T ′ if the predictor error T̂ ′ − T ′ has a mean zero, and its prediction error
variance, Var(T̂ ′ − T ′) is less than or equal to that of any other unbiased predictor
of T ′. Now observe that here the conditional density of T ′ given the observed data
t = (t1, t2, . . . , tm) is just the density of T ′ given the observed lifetime tm. Therefore
the BUP of T ′ is T̂ ′

BUP = E[T ′|t]. For known parameter, the BUP of T ′ is obtained
as

T̂ ′
BUP = E[T ′|t] = E[T ′|tm] =

∫ ∞

tm

t′h(t′|tm; θ)dt′. (15)

Using (10) and (15), the BUP of T ′ can be obtained as

T̂ ′
BUP = s

(
n−m

s

)
θ

s−1∑
l=0

(
s− 1

l

)
(−1)l

 k∑
j=1

ajF̄0
jθ
(tm)

s−l−1−n+m

×
∫ ∞

tm

t′
f0(t

′)

F̄0(t′)

 k∑
j=1

jajF̄0
jθ
(t′)

 k∑
j=1

ajF̄0
jθ
(t′)

n−m−s+l

dt′. (16)

If the parameter θ is unknown, the BUP of T ′ can be approximated by replacing θ by
its MLE.
Example 3.2. For k-component systems with exponential distributed components, the
BUP can be obtained from (16) as

T̂ ′
BUP = s

(
n−m

s

)
θ

s−1∑
l=0

(
s− 1

l

)
(−1)l

 k∑
j=1

aje
−jθtm

s−l−1−n+m

×
∫ ∞

tm

t′

 k∑
j=1

jaje
−jθt′

 k∑
j=1

aje
−jθt′

n−m−s+l

dt′.

3.3 Conditional median predictor
Another conditional predictor is the conditional median predictor (CMP). This predic-
tor was first proposed by Raqab and Nagaraja (1995) in the context of order statistics.
Notice that a predictor T̂ ′ is called the CMP of T ′, if it is the median of the conditional
density of T ′ given tm observation, that is

Prθ(T ′ ≤ T̂ ′|Tm:n = tm) = Prθ(T ′ ≥ T̂ ′|Tm:n = tm).
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For the probability density function and survival function of the system lifetime pre-
sented in (3) and (4), we can obtain

Prθ(T ′ ≤ T̂ ′ | Tm:n = tm)

=Prθ

(
F (T ′)− F (tm)

1− F (tm)
≤ F (T̂ ′)− F (tm)

1− F (tm)

∣∣∣∣∣Tm:n = tm

)

=Prθ

(
1−

∑k
j=1 ajF̄0

jθ
(T ′)∑k

j=1 ajF̄0
jθ
(tm)

≤ 1−
∑k

j=1 ajF̄0
jθ
(T̂ ′)∑k

j=1 ajF̄0
jθ
(tm)

∣∣∣∣∣Tm:n = tm

)
.(17)

Note that the conditional distribution of random variable Z,

Z = 1−
∑k

j=1 ajF̄0
jθ
(T ′)∑k

j=1 ajF̄0
jθ
(tm)

,

given tm is a beta distribution with parameters s and n − m − s + 1 (denoted as
Beta(s, n−m− s+1)) using an application of probability integral transformation and
the fact that the i-th smallest order statistics from a random sample of size n from the
standard uniform distribution is distributed as Beta(i, n − i + 1). Therefore, by (17),
the CMP of T ′ can be obtained by solving the equation

1−
∑k

j=1 ajF̄0
jθ
(T̂ ′)∑k

j=1 ajF̄0
jθ
(tm)

= Med(B), (18)

where B is a random variable that follows Beta(s, n − m − s + 1) distribution and
Med(B) stands for the median of B. Now, from (18), the CMP of T ′, T̂ ′

CMP , is
computed by solving the nonlinear equation: k∑

j=1

ajF̄0
jθ
(tm)

 (1−Med(B))−

 k∑
j=1

ajF̄0
jθ
(T̂ ′)

 = 0. (19)

When θ is unknown, we can substitute θ with its MLE and obtain an approximate
CMP of T ′.

Example 3.3. For k-component systems with exponential distributed components,
since F̄0(t) = e−t, the CMP for T ′ = Ts+m:n(s = 1, 2, . . . , n − m) can be obtained
from (19) by solving the nonlinear equation k∑

j=1

aje
−jθtm

 (1−Med(B))−

 k∑
j=1

aje
−jθT̂ ′

 = 0.

3.4 Bayesian sample-based prediction
In the Bayesian inference procedures, we specify a loss function L(ϕ, ϕ̂) that describes
the loss incurred by making an estimate ϕ̂ when the true value of the parameter is
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ϕ = ϕ(θ). In the literature, the most commonly used loss function is the squared
error loss (SEL) function, L(ϕ, ϕ̂) = (ϕ̂ − ϕ)2. The symmetric nature of this function
gives equal weights to overestimation and underestimation, while in the estimation of
parameters of lifetime model, overestimation may by more serious than underestimation
or vice-versa. The Bayes estimator of ϕ under the SEL function (ϕ̂BS) is the posterior
mean of ϕ given the data. One of the most popular asymmetric loss functions is the
linear-exponential (LINEX) loss function. This loss function was introduced by Varian
(1975) and was extensively discussed by Zellner (1986). Under the assumption that the
minimal loss occurs at ϕ̂ = ϕ, the LINEX loss function for ϕ = ϕ(θ) can be expressed
as

L2(ϕ, ϕ̂) ∝ exp(c(ϕ̂− ϕ))− c(ϕ̂− ϕ)− 1, c ̸= 0, (20)

where ϕ̂ is an estimate of ϕ. The sign and magnitude of the shape parameter c repre-
sents the direction and degree of symmetry, respectively. (If c > 0, the overestimation
is more serious than underestimation, and vice-versa.) For c close to zero, the LINEX
loss is approximately SEL and therefore almost symmetric. The posterior expectation
of the LINEX loss function (20) is

Eϕ[L2(ϕ, ϕ̂)] ∝ exp(cϕ̂)Eϕ[exp(−cϕ)]− c(ϕ̂− Eϕ(ϕ))− 1, (21)

where Eϕ(.) denotes the posterior expectation with respect to the posterior density of
ϕ. The Bayes estimator of ϕ, denoted by ϕ̂BL under the LINEX loss function is the
value ϕ̂ which minimizes (21). It is

ϕ̂BL = −1

c
log {Eϕ[exp(−cϕ)]} ,

provided that the expectation Eϕ[exp(−cϕ)] exists and is finite.
In this subsection, we consider the Bayesian point prediction for the future system

failures T ′ = Ts+m:n(s = 1, 2, . . . , n − m), based on the observed Type-II censored
sample t = (t1, t2, · · · , tm). Under the Bayesian paradigm, θ is considered as a random
variable following a specific prior distribution. Since the parameter θ is positive, for
computational and mathematical case, we consider the gamma prior with shape pa-
rameter α and rate parameter β, denoted as G(α, β), for θ which has the probability
density function

π(θ) =
βα

Γ(α)
θα−1e−βθ, θ > 0, (β > 0, α > 0). (22)

where α and β are chosen to reflect the prior knowledge about θ. The gamma prior is
flexible because informative and non-informative priors can be considered with suitable
choices of the parameters α and β. By combining (6) and (22), we obtain the posterior
density function of θ as

π(θ|t) = 1

m(t)
θm+α−1 e−βθ

m∏
i=1


k∑

j=1

jajF̄
jθ
0 (ti)




k∑
j=1

ajF̄
jθ
0 (tm)


n−m

, (23)
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where

m(t) =

∫ ∞

0

θm+α−1 e−βθ
m∏
i=1


k∑

j=1

jajF̄
jθ
0 (ti)




k∑
j=1

ajF̄
jθ
0 (tm)


n−m

dθ.

The Bayes predictive density function of T ′ given Tm = tm is given by

h∗(t′|tm; θ) =

∫ ∞

0

h(t′|tm; θ)π(θ|t)dθ. (24)

Substituting (10) and (23) into (24), the Bayes predictive density function, for t′ > t,
is

h∗(t′|tm; θ) = s

(
n−m

s

)
f0(t

′)

m(t)F̄0(t′)

∫ ∞

0

θm+α

eβθ

m∏
i=1


k∑

j=1

jajF̄
jθ
0 (ti)


×


k∑

j=1

jajF̄0
jθ
(t′)


s−1∑
l=0

[(
s− 1

l

)
(−1)l

 k∑
j=1

ajF̄0
jθ
(t′)

n−m−s+l

×

 k∑
j=1

ajF̄0
jθ
(tm)

s−l−1 ]
dθ.

Then the Bayesian point predictors of T ′ under the SEL function, T̂ ′
SEP , and under

the LINEX loss function, T̂ ′
LEP are

T̂ ′
SEP =

∫ ∞

tm

t′h∗(t′|tm; θ)dt′, (25)

T̂ ′
LEP = −1

c
log

[∫ ∞

tm

e−ct′h∗(t′|tm; θ)

]
dt′. (26)

respectively. Due to the complicated form of h∗(t′|tm; θ), the Bayesian point pre-
dictors in (25) and (26) cannot be computed explicitly. Here, we propose using the
Metropolis-Hastings algorithm (see e.g., Robert and Casella (2004)) with a normal pro-
posal distribution to find a simulation-based consistent estimator of h∗(t′|tm; θ). For
our situation, we first generate a Markov Chain Monte Carlo (MCMC) sample of size
N , θ1, . . . , θN , from the posterior distribution π(θ|t), using the Metropolis-Hastings
algorithm.

Algorithm 3.4. The Metropolis-Hastings algorithm for generating the MCMC sample
of size N from π(θ|t) is described as follows:
Step 1: Start with an initial guess θ(0) that can be the MLE of θ.
Step 2: Set i = 1.
Step 3: Using the Metropolis-Hastings algorithm, generate θt from π(θ(i−1)|t) with
N(θ(i−1), S2

θ ) as a proposal distribution, where S2
θ is inverse of the Fisher information.

Step 4: Set i = i+ 1.
Step 5: Repeat Steps 3 and 4, N times to arrive at the MCMC sample θ1, . . . , θN .
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Based on an MCMC sample θM+1, . . . , θN , the simulation consistent estimator of
h∗(t′|tm; θ) can be obtained as

ĥ∗(t′|tm; θ) =
1

N −M

N∑
i=M+1

h(t′|tm; θi), (27)

where M is the burn-in period and h(t′|tm; θi) is given in (10) with θ = θi. By using (25)
and (26), the Bayes predictors of the future failure under the SEL function, T̂ ′

s,SEP

and under the LINEX loss function T̂ ′
s,LEP can be obtained as

T̂ ′
s,SEP =

∫ ∞

tm

t′ĥ∗(t′|tm; θ)dt′ =
1

N −M

N∑
i=M+1

∫ ∞

tm

t′h(t′|tm; θi)dt
′

=
1

N −M

N∑
i=M+1

s−1∑
l=0

s

(
n−m

s

)(
s− 1

l

)
(−1)lθi

×

 k∑
j=1

ajF̄0
jθi(tm)

s−l−n+m−1

Ψ1(tm; θi), (28)

where

Ψ1(tm; θ) =

∫ ∞

tm

t′
f0(t

′)

F̄0(t′)

 k∑
j=1

jajF̄0
jθ
(t′)

 k∑
j=1

ajF̄0
jθ
(t′)

n−m−s+l

dt′,

and

T̂ ′
s,LEP = −1

c
log

(∫ ∞

tm

e−ct′ ĥ∗(t′|tm; θ)dt′
)

= −1

c
log

(
1

N −M

N∑
i=M+1

∫ ∞

tm

e−ct′h(t′|tm; θi)dt
′

)

= −1

c
log

[
1

N −M

N∑
i=M+1

s−1∑
l=0

s

(
n−m

s

)(
s− 1

l

)
(−1)lθi

×

 k∑
j=1

ajF̄0
jθi(tm)

s−l−n+m−1

Ψ2(tm; θi)

]
, (29)

where

Ψ2(tm; θ) =

∫ ∞

tm

exp(−ct′)
f0(t

′)

F̄0(t′)

 k∑
j=1

jajF̄0
jθ
(t′)

 k∑
j=1

ajF̄0
jθ
(t′)

n−m−s+l

dt′,

respectively.



131 A. Fallah

Example 3.5. For exponential distributed components, the Bayesian point predictors
of the future failure T ′ = Ts+m:n(s = 1, 2, · · · , n −m) can be obtained from (28) and
(29) as

T̂ ′
s,SEP =

1

N −M

N∑
i=M+1

s−1∑
l=0

s

(
n−m

s

)(
s− 1

l

)
(−1)lθi

×

 k∑
j=1

aje
−jθitm

s−l−n+m−1

Ψ1(tm; θi),

where

Ψ1(tm; θ) =

∫ ∞

tm

t′

 k∑
j=1

jaje
−jθt′

 k∑
j=1

aje
−jθt′

n−m−s+l

dt′,

T̂ ′
s,LEP = −1

c
log

[
1

N −M

N∑
i=M+1

s−1∑
l=0

s

(
n−m

s

)(
s− 1

l

)
(−1)lθi

×

 k∑
j=1

aje
−jθitm

s−l−n+m−1

Ψ2(tm; θi)

]
,

Ψ2(tm; θ) =

∫ ∞

tm

e−ct′

 k∑
j=1

jaje
−jθt′

 k∑
j=1

aje
−jθt′

n−m−s+l

dt′.

4 Prediction intervals
In this section, based on the observed Type-II censored system lifetime data t =
(t1, t2, . . . , tm), we want to obtain the prediction intervals for the s-th censored sys-
tem lifetime data T ′ = Ts+m:n(s = 1, 2, . . . , n − m) based on classical and Bayesian
approaches.

4.1 Non-Bayesian prediction Intervals
In Subsection 3.3, we have already discussed that the distribution of random variable
Z,

Z = 1−
∑k

j=1 ajF̄0
jθ
(T ′)∑k

j=1 ajF̄0
jθ
(tm)

, (30)

given Tm:n = tm is a beta distribution with parameters s and n−m−s+1. Therefore,
we can consider Z as a pivotal quantity to obtain the prediction interval for T ′. Taking
1− γ (0 < γ < 1) as the prediction coefficient and using (30), we have

Pr(B γ
2
< Z < B1− γ

2
|Tm:n = tm) = 1− γ,
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where Bγ is the 100γ-th upper percentile of Beta(s, n−m−s+1) distribution. There-
fore, 100(1− γ)% prediction interval for T ′ (L1(T ), U1(T )), are the solutions of k∑

j=1

ajF̄0
jθ
(tm)

 (1−B1− γ
2
)−

 k∑
j=1

ajF̄0
jθ
(T ′)

 = 0,

 k∑
j=1

ajF̄0
jθ
(tm)

 (1−B γ
2
)−

 k∑
j=1

ajF̄0
jθ
(T ′)

 = 0,

respectively. When parameter θ is unknown, the prediction interval (L1(T ), U1(T ))
can be approximated by replacing θ with its corresponding MLE.

Let us now consider the highest conditional density (HCD) method for constructing
the prediction interval of T ′. The distribution of Z given Tm:n = tm is a Beta(s, n −
m− s+ 1) distribution with the probability density function

f(z|tm) =
(n−m)!

(s− 1)!(n−m− s)!
zs−1(1− z)n−m−s, 0 < z < 1,

which is a unimodal function of z for (s = 2, . . . , n −m − 1). The 100(1 − γ)% HCD
prediction interval for T ′ is (L2(T ), U2(T )), where the observed values of L2(T ) and
U2(T ) are given by w1 and w1, respectively, where w1 and w1 satisfy k∑

j=1

ajF̄0
jθ
(tm)

 (1− w1)−

 k∑
j=1

ajF̄0
jθ
(T ′)

 = 0,

 k∑
j=1

ajF̄0
jθ
(tm)

 (1− w2)−

 k∑
j=1

ajF̄0
jθ
(T ′)

 = 0,

and at the same time w1 and w1 are the simultaneous solutions of the following equa-
tions: ∫ w2

w1

f(z|tm)dz = 1− γ, (31)

f(w1|tm) = f(w2|tm). (32)

(31) and (32) can be simplified as

Bw2(s, n−m− s+ 1)−Bw1(s, n−m− s+ 1) = 1− γ,(
1− w2

1− w1

)n−m−s

=

(
w1

w2

)s−1

,

where Bt(a, b) is incomplete beta function defined as

Bt(a, b) =
1

B(a, b)

∫ t

0

xa−1(1− x)b−1 dx,
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with B(a, b) = [Γ(a)Γ(b)]
Γ(a+b) being the incomplete beta function for real values of a and b.

When parameter θ is unknown, the prediction interval (L2(T ), U2(T )) can be approx-
imated by replacing θ with its corresponding MLE. It should be mentioned here that
for the case that s = 1 or s = n − m, the function f(z|tm) is not unimodal and the
HCD prediction interval cannot be obtained in these cases.

4.2 Bayesian prediction intervals
A 100(1− γ)% Bayesian prediction interval for the s-th censored system lifetime data
T ′ = Ts+m:n(s = 1, 2, . . . , n −m) is given by (L(tm), U(tm)), where L(tm) and U(tm)
can be obtained by solving the following two nonlinear equations simultaneously

Pr(T ′ > L(tm)|tm) =

∫ ∞

L(tm)

h∗(t′|tm; θ)dt′ = 1− γ

2
,

Pr(T ′ > U(tm)|tm) =

∫ ∞

U(tm)

h∗(t′|tm; θ)dt′ =
γ

2
.

By using ĥ∗(t′|tm; θ) defined in (27) to approximate h∗(t′|tm; θ), and using the MCMC
sample {θi : i = M + 1,M + 2, . . . , N}, from π(θ|t), we can compute the lower and
upper bounds L(tm) and U(tm) from the relations

1− γ

2
=

1

N −M

N∑
i=1M+1

s−1∑
l=0

s

(
n−m

s

)(
s− 1

l

)
(−1)lθi

×

 k∑
j=1

ajF̄0
jθi(tm)

s−l−n+m−1

Ψ3(L(tm); θi),

γ

2
=

1

N −M

N∑
i=M+1

s−1∑
l=0

s

(
n−m

s

)(
s− 1

l

)
(−1)lθi

×

 k∑
j=1

ajF̄0
jθi(tm)

s−l−n+m−1

Ψ3(U(tm); θi),

where

Ψ3(Len, θ) =

∫ ∞

Len

f0(t
′)

F̄0(t′)

 k∑
j=1

jajF̄0
jθ
(t′)

 k∑
j=1

ajF̄0
jθ
(t′)

n−m−s+l

dt′.

For the exponential distribution considered in Section 4, different PIs can be obtained
as described in this section by taking F̄0(t) = e−t.

5 Numerical study
In this section, a numerical example is considered for illustrative purposes and a Monte
Carlo simulation study is performed to compare the point and interval prediction meth-
ods presented in Sections 3 and 4.
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5.1 Algorithm to Generate System Lifetimes
Here, we assume that the lifetimes of the components are i.i.d. exponentially dis-
tributed with F̄X(t) = e−θt, t > 0, θ > 0. This model is equivalent to setting
F̄0(t) = e−t in (2). Before progressing further, first we describe how we can generate
a sample T1, T2, · · · , Tn of i.i.d. system lifetimes for systems with exponentially dis-
tributed components. The following algorithm is used to generate the system lifetime
T1, T2, · · · , Tn with system signature p = (p1, p2, · · · , pk) (0 < pj < 1,

∑k
j=1 pj = 1)

with exponentially distributed components.

Algorithm 5.1. Algorithm to generate system signature lifetimes:
Step 1: Generate U , U1, U2, . . . , Uk independently from a uniform distribution in [0, 1];
Step 2: Set Xj = F−1

0

(
1− (1− Uj)

1/θ
)
, j = 1, 2, . . . , k;

Step 3: Sort X1, X2, · · · , Xk in ascending order to obtain X1:k < X2:k < · · · < Xk:k.
Step 4: Take T = Xj:k for

∑j−1
i=1 pi < U <

∑j
i=1 pi, (j = 1, 2, · · · , k), i.e.,

T =


X1:k 0 < U < p1
X2:k p1 < U < p1 + p2
X3:k p1 + p2 < U < p1 + p2 + p3

...
...

Xk:k

∑k−1
j=1 pj < U <

∑k
j=1 pj

Step 5: Repeat Steps 1− 4, n times, to generate lifetimes T1, T2, · · · , Tn.

Suppose that n items are placed on a life-testing experiment and it is planned that
the experiment will be terminated as soon as the m-th (where m is pre-fixed) failure is
observed. Then, only the first m failures out of n units under the test will be observed.
The data obtained from such a life-test, are denoted as T1:n < T2:n < . . . < Tm:n.

5.2 Numerical example
To illustrate all the methods presented in the preceding sections, a sample of n = 30
is generated from a 4-component system with lifetime

T = min{X1,max{X2, X3, X4}}.

The corresponding system signature is P = ( 14 ,
1
4 ,

1
2 , 0) and the corresponding minimal

signature is a = (0, 3,−3, 1). The component lifetimes follow the exponential distri-
bution with parameter θ = 1. The simulated system lifetimes are presented in Table
1.

Table 1: Simulated 4-component system lifetimes with system signature P =
( 14 ,

1
4 ,

1
2 , 0).

0.038 0.091 0.115 0.144 0.169 0.209 0.225 0.228 0.257 0.284
0.331 0.364 0.369 0.399 0.475 0.504 0.715 0.735 0.782 0.822
0.922 1.053 1.140 1.252 1.313 1.371 1.624 1.803 1.920 2.499
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Table 2: Point predictors and 95% prediction intervals for T ′.
Point prediction

Bayesian predictor
True
Value PMLE MLP BUP CMP (SEL) (LINEX)

c = −0.1 c = 0.05
s = 1 1.371 1.033 1.313 1.428 1.393 1.433 1.434 1.433
s = 2 1.624 1.032 1.439 1.569 1.529 1.583 1.585 1.584
s = 3 1.803 1.030 1.599 1.753 1.706 1.775 1.779 1.777
s = 4 1.920 1.029 1.819 2.023 1.961 2.052 2.060 2.056
s = 5 2.499 1.028 2.187 2.548 2.431 2.597 2.623 2.610

Prediction intervals
True Pivot HCD Bayes
Value Method Method Method

s = 1 1.371 (1.316,1.731) — (1.316,1.765)
s = 2 1.624 (1.344 ,2.016) (1.328,1.934) (1.344,2.085)
s = 3 1.803 ( 1.405,2.367) (1.398,2.298 ) (1.403,2.483)
s = 4 1.920 (1.505,2.898) (1.543,2.898) (1.500,3.078)
s = 5 2.499 (1.683,4.092) — (1.670,4.361)

We consider the case when we observe the first 25 observations and the rest are
censored, i.e., a Type-II censored sample with n = 30 and m = 25 is observed. With
this Type-II censored sample, we compute the point and interval predictions for future
system failures T ′ = Ts+25:30(s = 1, 2, 3, 4, 5) as described in Sections 3 and 4. Specif-
ically, we compute the MLP, BUP, CMP, Bayesian predictions and we also compute
the 95% prediction intervals for T ′ = Ts+25:30(s = 1, 2, 3, 4, 5) based on the pivotal
quantity method, HCD method and Bayesian method. It should be mentioned here
that for the case that s = 1 or s = n −m = 5, the function f(z|tm) is not unimodal
and the HCD prediction interval cannot be obtained in these cases. The results are
presented in 2.

For the Bayesian predictions, we use the Metropolis-Hastings method to compute
the Bayesian point predictions of T ′ = Ts+25:30(s = 1, 2, 3, 4, 5) under the SEL and
LINEX loss functions. We have generated N = 50000 values by Metropolis-Hastings
algorithm with S2

θ = 0.0283, θ̂MLE = 0.9990 and the acceptance rate is about 70%. We
discard the initial M = 5000 as burn-in samples and compute the Bayesian predictions
based on the remaining 45000 samples. For computing the Bayesian predictions and
corresponding prediction intervals, it is assumed that the prior of θ is almost improper,
i.e., α = β = 0.0001. The LINEX loss function is used for computing Bayes predictions
under different values of c (c = −0.1, 0.05). The convergence of Metropolis-Hastings
samples can be verified through graphical inspection. The histogram of the Metropolis-
Hastings sequence of θ after burn-in is presented in Figure 1. The plot of the posterior
probability density function of θ in Figure 1 shows that the choice of normal distribution
as a proposal distribution is quite appropriate. The trace plot for the Metropolis-
Hastings sequence of values of θ is also presented in 1. From Figure 1, the trace
plot shows the values of θ are randomly scattered around the average. To check the
sensitivity of the prior parameters on the convergence of Metropolis-Hastings algorithm,
we have taken another Metropolis-Hastings simulation using a proper prior. Let us
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consider the case where α = 2, β = 4. Figure 2 shows the trace and posterior probability
density function plots for the parameter θ. In this case, we have S2

θ = 0.0243 and the
acceptance rate is about 70%. From Figures 1 and 2, it can be seen that both priors
maintain similar acceptance rates and that the simulated posterior distributions of θ
under the proper and almost improper priors converge to the normal distribution as a
desired proposal. Moreover, these figures also show the convergence of the algorithm.
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Figure 1: Plots of Metropolis-Hastings Markov chains for θ using improper prior.
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Figure 2: Plots of Metropolis-Hastings Markov chains for θ using proper prior.

Table 3: System signatures and minimal signatures of the 4-component systems.
System no. System lifetime T p a

1 T = min(X1, X2, X3, X4) (1, 0, 0, 0) (0, 0, 0, 1)

2 T = min(X1,max(X2, X3, X4)) ( 14 ,
1
4 ,

1
2 , 0) (0, 3,−3, 1)

3 T = min(X1,max(X2, X3),max(X2, X4)) ( 14 ,
7
12 ,

1
6 , 0) (0, 1, 1,−1)

4 T = max(min(X1, X2),min(X3, X4)) (0, 2
3 ,

1
3 , 0) (0, 2, 0,−1)

5 T = max(min(X1, X2, X3),min(X2, X3, X4)) ( 12 ,
1
2 , 0, 0) (0, 0, 2,−1)
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5.3 Monte Carlo simulation study
In this subsection, a Monte Carlo simulation study is employed to evaluate the perfor-
mances of the different proposed predictors for systems with exponentially distributed
components. We compare the performances of the point predictors MLP, BUP, CMP
and the Bayesian point predictors in terms of their estimated biases and estimated
mean square prediction errors (MSPEs). The predictive intervals obtained by different
methods are compared by means of their estimated average widths (AWs) and coverage
probabilities (CPs). For notational convenience, Table 3 lists the different systems and
their signatures and minimal signatures used in the simulation study.

For different choices of sample size n and effective sample size m, we generated
1000 sets of Type-II censored sample T1:n, . . . , Tm:n from coherent systems with ex-
ponentially distributed component lifetimes with θ = 2 using Algorithm 5.1. We
then obtained the point predictors MLP, BUP, CMP for the sth future system failure
time. Then, we have computed different point predictors for the sth future failure time
T ′ = Ts+m:n(s = 1, 2, · · · , n−m). We also obtained Bayesian point predictions under
a gamma prior with α = 0.0001 and β = 0.0001, denoted as G(0.0001, 0.0001). For
various choices of (n = 15, m = 10), (n = 25, m = 20) and (s = 1, . . . , 5), Tables 4 and
5 present the estimated biases and estimated MSPEs of different predictors obtained
from this simulation study.

The estimated biases and estimated MSPEs are computed as follows. Suppose T̂ ′
i

is the prediction of T ′ obtained in the i-th replication, then we compute the estimated
bias and estimated MSPE as

Bias =
1

1000

1000∑
i=1

(T̂ ′
i − T ′

i ), MSPE =
1

1000

1000∑
i=1

(T̂ ′
i − T ′

i )
2.

We also computed the 95% non-Bayesian and Bayesian prediction intervals for T ′ by
using the results given in Section 4. The average lengths and the corresponding coverage
probabilities of 95% prediction intervals are also computed and reported in Table 6. If
(Li, Ui) is the 95% prediction interval of T ′ obtained in the i-th replication, then the
coverage probability (CP) is computed as

CP =
1

1000

1000∑
i=1

I {Li < T ′
i < Ui} ,

where I {·} denotes the indicator function. The results for sample sizes (n = 15, m =
10), (n = 25, m = 20) and (s = 1, . . . , 5) are reported in Table 6.

The computations are performed in R (R Core Team, 2019) with the MHadaptive
package Chivers (2012).

6 Discussions
For point prediction, from Table 4, we observe that BUP performs better that the MLP
and CMP in terms of both estimated biases and estimated MSPEs. The estimated
MSPEs of CMP and the estimated MSPEs of BUP are close to each other in the most
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Table 4: Estimated biases and estimated MSPEs of classic point predictions for T ′.
n m no. s MLP BUP CMP

Bias(MSPE) Bias(MSPE) Bias(MSPE)
15 10 1 1 -0.026(0.002) -0.001(0.001) -0.008(0.001)

2 -0.030(0.004) -0.001(0.002) -0.009(0.002)
3 -0.042(0.007) -0.003(0.003) -0.013(0.003)
4 -0.059(0.012) -0.004(0.008) -0.018(0.009)
5 -0.099(0.036) -0.006(0.023) -0.026(0.024)

2 1 -0.061(0.008) 0.004(0.005) -0.015(0.005)
2 -0.085(0.019) -0.006(0.011) -0.027(0.012)
3 -0.092(0.032) -0.010(0.026) -0.033(0.026)
4 -0.108(0.049) -0.014(0.044) -0.044(0.045)
5 -0.209(0.171) -0.036(0.134) -0.092(0.135)

3 1 -0.050(0.004) -0.001(0.002) -0.014(0.002)
2 -0.064(0.012) -0.003(0.007) -0.018(0.007)
3 -0.075(0.028) -0.018(0.018) -0.024(0.020)
4 -0.110(0.041) -0.021(0.025) -0.033(0.026)
5 -0.197(0.113) -0.034(0.075) -0.054(0.078)

4 1 -0.057(0.008) -0.002(0.003) -0.018(0.004)
2 -0.060(0.013) -0.004(0.007) -0.021(0.008)
3 -0.073(0.023) -0.006(0.014) -0.022(0.015)
4 -0.104(0.046) -0.007(0.031) -0.030(0.032)
5 -0.179(0.128) -0.010(0.093) -0.049(0.096)

5 1 -0.038(0.003) -0.001(0.001) -0.011(0.001)
2 -0.046(0.006) -0.002(0.003) -0.013(0.004)
3 -0.061(0.011) -0.005(0.006) -0.014(0.006)
4 -0.085(0.034) -0.007(0.020) -0.018(0.021)
5 -0.165(0.088) -0.014(0.052) -0.033(0.055)

25 20 1 1 -0.023(0.001) 0.000(0.001) -0.006(0.001)
2 -0.025(0.003) -0.001(0.001) -0.008(0.001)
3 -0.043(0.004) -0.002(0.002) -0.009(0.002)
4 -0.050(0.012) -0.003(0.006) -0.014(0.007)
5 -0.093(0.033) -0.005(0.022) -0.021(0.023)

2 1 -0.061(0.007) -0.001(0.003) -0.019(0.004)
2 -0.071(0.013) -0.003(0.008) -0.023(0.009)
3 -0.081(0.021) -0.004(0.014) -0.023(0.015)
4 -0.102(0.044) -0.007(0.030) -0.024(0.031)
5 -0.171(0.120) -0.024(0.091) -0.034(0.092)

3 1 -0.045(0.004) -0.001(0.002) -0.014(0.002)
2 -0.052(0.010) -0.002(0.006) -0.016(0.007)
3 -0.066(0.017) -0.006(0.012) -0.018(0.013)
4 -0.087(0.031) -0.013(0.023) -0.025(0.024)
5 -0.178(0.111) -0.032(0.074) -0.048(0.077)

4 1 -0.050(0.006) -0.001(0.003) -0.015(0.003)
2 -0.059(0.011) -0.003(0.007) -0.017(0.007)
3 -0.070(0.020) -0.004(0.013) -0.021(0.014)
4 -0.101(0.041) -0.005(0.030) -0.030(0.031)
5 -0.177(0.132) -0.009(0.093) -0.049(0.095)

5 1 -0.037(0.003) 0.000(0.001) -0.011(0.001)
2 -0.045(0.005) -0.002(0.003) -0.015(0.003)
3 -0.046(0.009) -0.003(0.006) -0.011(0.006)
4 -0.064(0.017) -0.006(0.012) -0.013(0.013)
5 -0.116(0.049) -0.009(0.033) -0.031(0.034)
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Table 5: Estimated biases and estimated MSPEs of Bayes point predictions for T ′.
G(0.0001, 0.0001)

SEL LINEX
n m no. s Bias(MSPE) Bias(MSPE)

c=-0.05 c=1
15 10 1 1 0.003(0.001) 0.003(0.001) 0.003(0.001)

2 0.007(0.002) 0.007(0.002) 0.008(0.003)
3 0.009(0.005) 0.009(0.005) 0.010(0.005)
4 0.015(0.010) 0.016(0.011) 0.017(0.012)
5 0.035(0.032) 0.036(0.033) 0.037(0.035)

2 1 0.009(0.005) 0.010(0.005) 0.011(0.006)
2 0.013(0.014) 0.013(0.014) 0.014(0.016)
3 0.018(0.027) 0.020(0.028) 0.023(0.030)
4 0.032(0.046) 0.032(0.046) 0.033(0.048)
5 0.066(0.143) 0.071(0.145) 0.076(0.147)

3 1 0.001(0.002) 0.001(0.002) 0.002(0.003)
2 0.005(0.009) 0.005(0.009) 0.007(0.010)
3 0.015(0.021) 0.015(0.021) 0.016(0.022)
4 0.020(0.035) 0.021(0.036) 0.027(0.037)
5 0.024(0.086) 0.025(0.087) 0.026(0.090)

4 1 0.001(0.004) 0.001(0.004) 0.001(0.004)
2 0.012(0.008) 0.013(0.009) 0.015(0.010)
3 0.019(0.019) 0.019(0.019) 0.022(0.020)
4 0.020(0.042) 0.021(0.042) 0.023(0.045)
5 0.043(0.109) 0.043(0.109) 0.044(0.110)

5 1 0.006(0.001) 0.006(0.001) 0.006(0.001)
2 0.008(0.004) 0.008(0.004) 0.008(0.004)
3 0.009(0.008) 0.010(0.008) 0.011(0.009)
4 0.037(0.026) 0.038(0.026) 0.042(0.027)
5 0.052(0.077) 0.054(0.078) 0.055(0.080)

25 20 1 1 0.002(0.001) 0.002(0.001) 0.002(0.001)
2 0.003(0.002) 0.003(0.002) 0.003(0.003)
3 0.009(0.003) 0.009(0.003) 0.010(0.004)
4 0.006(0.009) 0.007(0.009) 0.008(0.011)
5 0.017(0.026) 0.019(0.027) 0.020(0.030)

2 1 0.000(0.004) 0.000(0.004) 0.001(0.004)
2 0.002(0.010) 0.002(0.010) 0.003(0.011)
3 0.009(0.016) 0.009(0.016) 0.009(0.017)
4 0.021(0.037) 0.022(0.037) 0.028(0.038)
5 0.039(0.101) 0.043(0.102) 0.060(0.105)

3 1 0.001(0.002) 0.001(0.002) 0.001(0.002)
2 0.002(0.007) 0.002(0.007) 0.003(0.008)
3 0.012(0.014) 0.012(0.014) 0.013(0.016)
4 0.019(0.026) 0.020(0.027) 0.021(0.030)
5 0.020(0.085) 0.021(0.086) 0.025(0.087)

4 1 0.001(0.003) 0.001(0.003) 0.002(0.004)
2 0.005(0.008) 0.005(0.008) 0.006(0.009)
3 0.006(0.015) 0.006(0.016) 0.007(0.017)
4 0.010(0.033) 0.010(0.033) 0.012(0.035)
5 0.017(0.106) 0.017(0.107) 0.019(0.109)

5 1 0.001(0.001) 0.001(0.001) 0.001(0.001)
2 0.004(0.003) 0.004(0.003) 0.004(0.004)
3 0.009(0.007) 0.009(0.007) 0.010(0.008)
4 0.018(0.014) 0.019(0.014) 0.021(0.015)
5 0.032(0.040) 0.033(0.040) 0.042(0.041)
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Table 6: Simulated average widths (AW) and coverage probabilities (CP) of 95% PIs.
Bayesian PIs

n m System no. s Pivot method HCD method G(0.0001, 0.0001)
AW(CP) AW(CP) AW(CP)

15 10 1 1 0.091(0.941) — 0.111(0.950)
2 0.152(0.925) 0.136(0.927) 0.189(0.952)
3 0.221(0.936) 0.205(0.923) 0.290(0.949)
4 0.326(0.926) 0.324(0.923) 0.439(0.943)
5 0.581(0.910) — 0.778(0.948)

2 1 0.223(0.918) — 0.276(0.940)
2 0.357(0.938) 0.324(0.933) 0.469(0.957)
3 0.495(0.916) 0.461(0.904) 0.671(0.956)
4 0.721(0.895) 0.715(0.908) 0.983(0.949)
5 1.209(0.889) — 1.621(0.942)

3 1 0.179(0.933) — 0.212(0.952)
2 0.293(0.942) 0.264(0.932) 0.354(0.956)
3 0.419(0.922) 0.389(0.920) 0.524(0.951)
4 0.622(0.906) 0.619(0.918) 0.798(0.955)
5 1.114(0.916) — 1.399(0.950)

4 1 0.198(0.926) — 0.223(0.943)
2 0.318(0.930) 0.287(0.923) 0.369(0.950)
3 0.456(0.935) 0.423(0.918) 0.539(0.947)
4 0.665(0.929) 0.661(0.911) 0.778(0.948)
5 1.183(0.928) — 1.390(0.952)

5 1 0.139(0.927) — 0.170(0.945)
2 0.227(0.922) 0.205(0.920) 0.285(0.966)
3 0.321(0.914) 0.298(0.914) 0.428(0.958)
4 0.469(0.925) 0.468(0.915) 0.639(0.937)
5 0.805(0.901) — 1.084(0.950)

25 20 1 1 0.091(0.930) — 0.100(0.926)
2 0.150(0.926) 0.135(0.927) 0.172(0.939)
3 0.217(0.930) 0.201(0.912) 0.253(0.946)
4 0.322(0.924) 0.280(0.910) 0.379(0.954)
5 0.577(0.924) — 0.673(0.942)

2 1 0.212(0.945) — 0.234(0.951)
2 0.342(0.945) 0.309(0.941) 0.387(0.943)
3 0.487(0.924) 0.453(0.920) 0.560(0.943)
4 0.699(0.927) 0.694(0.922) 0.811(0.954)
5 1.194(0.918) — 1.369(0.941)

3 1 0.176(0.942) — 0.190(0.950)
2 0.287(0.933) 0.258(0.939) 0.317(0.943)
3 0.418(0.929) 0.388(0.926) 0.472(0.947)
4 0.617(0.943) 0.615(0.946) 0.699(0.946)
5 1.111(0.932) — 1.257(0.954)

4 1 0.193(0.937) — 0.203(0.944)
2 0.311(0.924) 0.280(0.925) 0.330(0.944)
3 0.448(0.932) 0.416(0.932) 0.488(0.944)
4 0.661(0.949) 0.658(0.934) 0.724(0.950)
5 1.164(0.936) — 1.263(0.945)

5 1 0.136(0.944) — 0.150(0.949)
2 0.221(0.929) 0.199(0.928) 0.248(0.945)
3 0.319(0.932) 0.297(0.925) 0.364(0.939)
4 0.459(0.922) 0.456(0.933) 0.544(0.945)
5 0.798(0.927) — 0.924(0.947)
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systems. We also observe that the CMP and BUP compare very well with the MLP
(in terms of both estimated biases and estimated MSPEs) in all the considered cases.
Comparing the Bayesian point predictions, the Bayesian point predictors under the
SEL function perform better than the Bayesian point predictors under the LINEX loss
function in terms of estimated biases and estimated MSPEs. We also observe that the
CMP and BUP perform better than the Bayesian point predictors in term of estimated
MSPEs. We also observe that the MLP does not work well because it gives the largest
absolute values of estimated biases and estimated MSPEs among all the predictors
considered here. For fixed value of n and m and the system structure, the estimated
MSPEs of all the point predictors are increasing with respect to s as expected.

For prediction intervals, we observe from Table 6, that the simulated coverage
probabilities are close to the nominal level 95% in the most cases. It can be seen that
Bayesian prediction intervals are wider than the prediction intervals obtained by the
pivotal quantity method and the HCD method. Among the pivotal quantity method
and the HCD method, the simulated average widths of prediction intervals based on
HCD method are smaller. For fixed values of n and m and the system structure, the
average widths of different prediction intervals increase as s increases.

7 Concluding remarks
In this paper, we consider a k-component coherent system while the system lifetimes
are observed and the system structure is known. We discuss the prediction problem
based on Type-II censored system lifetime data when the component lifetime follows the
proportional hazard model. For predicting the future system failures, different point
predictors including the maximum likelihood predictor, best unbiased predictor, condi-
tional median predictor and Bayesian predictors are developed. We also computed the
associated predictive interval estimates using pivotal quantity method, highest condi-
tional density method and Bayesian method. A comprehensive Monte Carlo simulation
is performed to assess the performance of the prediction methods.

Overall speaking, based on the simulation results here, we would recommend using
the best unbiased predictor for the point prediction of the future system failures and
using the prediction interval based on HCD method for interval prediction.
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