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Abstract: In this paper, we discuss the statistical inference of the lifetime distribution
of components in a n-component coherent system when the system structure is known
and the component lifetime follows the proportional hazard rate model. Different esti-
mation methods, the maximum likelihood estimator, approximation of the maximum
likelihood estimator, and Bayes estimator for the component lifetime parameter are
discussed. Because the integrals of the Bayes estimates do not possess closed forms,
the Metropolis-Hastings method and Lindley’s approximate method are applied to ap-
proximate these integrals. Confidence intervals based on the asymptotic distribution
of the MLE, likelihood ratio test, pivotal method, and highest posterior density cred-
ible are computed. Two numerical examples are used to illustrate the methodologies
developed in this paper and a Monte Carlo simulation study is used to compare the
performance of these estimation methods and recommendations are made based on
these results.
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1 Introduction
Due to technological advancements in various fields, we depend on many devices and
equipments to perform tasks and even daily affairs. Usually, these devices use different
hardware or software systems that have smaller components. The lifetime of the devices
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and ensuring the performance of such systems depends on the lifetime and proper
functioning of their components. A set including several components designed with a
certain structure is called a system and a system n component is coherent when each n
its components are useful for the system. In the theory of reliability, coherent systems
provide a classical framework for describing the structure of technical systems.

Consider an n-component system with the component lifetimes, denoted by X1, X2,
. . . , Xn, being independent and identically distributed (i.i.d.) with common absolutely
continuous cumulative distribution function FX(·), probability density function fX(·),
and survival function F̄X(·) = 1 − FX(·). We further denote the lifetime of the n-
component system by T , with cumulative distribution function FT (·), probability den-
sity function fT (·) and survival function F̄T (·) = 1− FT (·).

In the study of coherent systems, system signature, introduced by Samaniego (1985)
and discussed further by Kochar et al. (1999), is an index that characterizes a system
with i.i.d. components in a simple and elegant probabilistic way. The system signature
is an n-dimensional probability vector p = (p1, p2, . . . , pn), where the i-th element pi is
the probability that the i-th ordered component failure causes the failure of the system,
i.e., pi = Pr(T = Xi:n) i = 1, 2, . . . , n, and

∑n
i=1 pi = 1.

Samaniego (1985) showed that the probability density function and survival func-
tion of the system lifetime T can be written as

fT (t) =

k∑
i=1

pi

(
k

i

)
ifX(t)[FX(t)]i−1[F̄X(t)]k−i,

F̄T (t) =

k∑
i=1

pi

i−1∑
j=0

(
k

j

)
[FX(t)]j [F̄X(t)]k−j ,

respectively.
Navarro et al. (2007) showed that the survival function of a coherent system can be

expressed as

F̄T (t) =

n∑
i=1

aiF̄1:i(t) =

n∑
i=1

ai[F̄X(t)]i, (1)

where F̄1:i(·) is the survival function of the series system lifetime with i components.
The vector a = (a1, a2, . . . , an) is called the minimal signature of the system and
a1, a2, . . . , an are some negative and nonnegative integers that do not depend on FX ,
and satisfy

∑n
i=1 ai = 1.

Our purpose here is to develop statistical inference for the component lifetime dis-
tribution based on observed lifetimes of n-component coherent systems with the same
structure and a known system signature. It is supposed that the common distribution
of the n i.i.d. component lifetimes in a coherent system is the PHR model with survival
function

F̄X(t) = [F̄0(t)]
θ, −∞ ⩽ c < x < d ⩽ ∞, θ > 0, (2)

where F̄0(t) = 1− F0(t), and F0(t) is a baseline cumulative distribution function with
F0(c) = 0 and F0(d) = 1. The PHR model includes the following lifetime models which
can be used to model component lifetimes:
i) Exponential distribution: EXP (θ) with F̄0(t) = e−t, t > 0, and the survival function
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is given by F̄X(t) = e−θt , t > 0, θ > 0.
ii) Type II standard Pareto distribution: Pa(θ) with F̄0(t) = 1

1+t , t > 0, and the

survival function is given by F̄X(t) =
(

1
1+t

)θ
, t > 0, θ > 0.

iii) Weibull distribution with known shape parameter: We(θ) with F̄0(t) = e−tβ , t > 0,

and known shape parameter β. The survival function is given by F̄X(t) = e−θtβ , t > 0,
θ > 0.

In recent years, many authors studied the statistical inference of the component
lifetime distribution based on system lifetime data when the system signature is known;
see, for example, Tavangar and Asadi (2020), Navarro and Rubio (2010), Bhattacharya
and Samaniego (2010), Balakrishnan et al. (2011a), Balakrishnan et al. (2011b), Ng et
al. (2012), Chahkandi et al. (2014), Zhang et al. (2015a), Zhang et al. (2015b), Yang
et al. (2016) and Yang et al. (2019).

In this paper, we discuss statistical inference for the component lifetime distribution
based on ordered system lifetimes with known system structure. The rest of this paper
is organized as follows. MLE, approximation of the MLE and interval estimation of the
exponentiated parameter are discussed in Section 2. We discuss Bayesian estimation
using sample-based and Lindley approximation in Section 3. In Section 4, statistical
testing procedures to test whether the exponentiated parameter equals to a particular
value are developed and different confidence intervals are presented in Section 4. In
Section 5, two numerical example are used to illustrate the methodologies developed
in this paper and a Monte Carlo simulation study is employed to evaluate the per-
formances of the proposed procedures. Finally, a conclusion remark is presented in
Section 6.

2 Maximum likelihood estimation
Based on the model in (2) and from (1), the survival function and probability density
function of the coherent system lifetime are given by

F̄T (t; θ) = 1− FT (t; θ) =

n∑
i=1

aiF̄
iθ
0 (t),

fT (t; θ) = −dF̄T (t; θ)

dt
= θf0(t)

n∑
i=1

iaiF̄
iθ−1
0 (t) = θ

[
f0(t)

F̄0(t)

] n∑
i=1

iaiF̄
iθ
0 (t),

respectively, where f0(t) = −dF̄0(t)/dt is the baseline probability density function.
Suppose m independent n-component systems with the same distribution as T are

placed on a life-test and that the corresponding lifetimes T1, T2, . . . , Tm are observed.
The likelihood function of θ is given by

L(t; θ) =

m∏
k=1

fT (tk; θ) = θm
m∏

k=1

{
f0(tk)

F̄0(tk)

n∑
i=1

iaiF̄
iθ
0 (tk)

}
, (3)

where t = (t1, t2, . . . , tm) is the vector of observations. The corresponding log-likelihood
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function can be written

logL(t; θ) = m log θ +

m∑
k=1

log

[
f0(tk)

F̄0(tk)

]
+

m∑
k=1

log

(
n∑

i=1

iaiF̄
iθ
0 (tk)

)
. (4)

Therefore, the maximum likelihood estimator (MLE) of θ, say θ̂MLE can be obtained
by maximizing (4) with respect to θ. From the log-likelihood function in (4), we obtain

d logL(t; θ)

dθ
=

m

θ
+

m∑
k=1

(∑n
i=1 i

2aiF̄
iθ
0 (tk)∑n

i=1 iaiF̄
iθ
0 (tk)

)
log F̄0(tk) = 0. (5)

It can be shown that the maximum of (4) can be obtained as a fixed point solution of
the following equation:

g(θ) = θ,

where

g(θ) = −m

[
m∑

k=1

(∑n
i=1 i

2aiF̄
iθ
0 (tk)∑n

i=1 iaiF̄
iθ
0 (tk)

)
log F̄0(tk)

]−1

.

Notice that to solve the equation g(θ) = θ, first consider θ0 as an initial guess of θ.
Then, the successive approximations of the θ can be obtained as θ(1) = g(θ(0)), θ(2) =
g(θ(1)), . . . , θ(j+1) = g(θ(j)). This iterative procedure can be terminated at the jth
stage if | θ(j+1) − θ(j) |< ϵ, for some small pre-specified value of ϵ. Subsequently, after
jth stage, the MLE of θ is given by θ̂MLE = θ(j). Different computational algorithms
available in R version 4.0.0 (R Core Team, 2019) can be used for solving the nonlinear
equation in (5) for θ.

Ng et al. (2012) showed that, (5) has a unique positive solution, and L(t; θ) attains
a maximum at that point.
Example 2.1. Let F̄0(t;β) = exp{−tβ}. Therefore, the component lifetimes has
Weibull distribution with known shape parameter β. Using (5), the MLE of θ, θ̂MLE,
is the solution of

m

θ̂MLE

−
m∑

k=1

(∑n
i=1 i

2ait
β
ke

−iθ̂MLEtβk∑n
i=1 iaie

−iθ̂MLEtβk

)
= 0. (6)

It must be solved by a numerical method in order to obtain the MLE of the parameter
θ.

Yang et al. (2016) proposed a stochastic expectation-maximization (SEM) algo-
rithm (see, Celeux et al. (1996) and Celeux and Diebolt (1985)) to obtain an approxima-
tion of the MLEs of the component lifetime distribution parameter based on complete
system lifetimes. The SEM algorithm involves two steps, the S-step and the M-step.
In the M-step, suppose m i.i.d. n-component systems are placed on a life-testing ex-
periment and the observed data is t = (t1, t2, . . . , tm). The likelihood function based
on the complete observed data (x11, x12, . . . , x1n, x21, . . . , x2n, . . . , xm1, . . . , xmn), can
then be expressed as

LC(θ) =

m∏
k=1

n∏
i=1

fX(xki) =

m∏
k=1

n∏
i=1

θf0(xki)
[
F̄0(xki)

](θ−1)
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= θmn
m∏

k=1

n∏
i=1

f0(xki)
[
F̄0(xki)

](θ−1)
.

The log-likelihood function is

logLC(θ) = mn log θ + (θ − 1)

m∑
k=1

n∑
i=1

log
[
F̄0(xki

]
+

m∑
k=1

n∑
i=1

log f0(xki).

From the log-likelihood function, we obtain the likelihood equations as

d logLC(θ)

dθ
=

mn

θ
+

m∑
k=1

n∑
i=1

log
[
F̄0(xki

]
.

Therefore, the MLE of the parameter θ is

θ̂ = −(mn)/

m∑
k=1

n∑
i=1

log
[
F̄0(xki)

]
.

In the S-step, we consider the observed system lifetime of the k-th system among the
m systems in the experiment, tk. Assume that the δ-th component failure in the k-th
system caused the failure of the system. Then, the conditional distributions of the other
(n− 1) components are random variables with either left-truncated or right-truncated
distributions. Specifically, the conditional density of the first (δ−1) ordered component
lifetimes, Xk,1:n, Xk,2:n, . . . , Xk,(δ−1):n, given tk = xk,δ:n is a right-truncated density

gR(x|tk, δ) =
fX(x)

FX(tk)
=

θ[F̄0(x)]
θ−1f0(x)

1− [F̄0(tk)]θ
x < tk, (7)

and similarly the conditional density of the last (n − δ) ordered component lifetimes,
Xk,(δ+1):n, Xk,(δ+2):n, . . . , Xk,n:n, given tk = xk,δ:n is a left-truncated density

gL(x|tk, δ) =
fX(x)

1− FX(tk)
=

θ[F̄0(x)]
θ−1f0(x)

[F̄0(tk)]θ
, x > tk. (8)

Therefore, the (h+1)-th SEM iteration for the PHR model, given the current value of
the parameter estimate θ(h) and the observed system lifetime tk, the S-step and M-step
then proceed as follows:

Algorithm 2.2. A Stochastic Expectation-Maximization (SEM) algorithm:
Step 1: For the k-th system, generate a discrete random variable δ based on the system
signature of the n-component system with probability mass function Pr(δ = i) = pi,
i = 1, 2, . . . , n, and we denote the realization as δ;
Step 2: Generate δ − 1 random variates from the conditional distribution in (7) with
θ = θ(h), say x̃k,1:n, x̃k,2:n, . . . , x̃k,(δ−1):n;
Step 3: Generate n − δ random variates from the conditional distribution in (8) with
θ = θ(h), say x̃k,(δ+1):n, x̃k,(δ+2):n, . . . , x̃k,n:n;
Step 4: The pseudo-complete sample for system k is then (x̃k,1:n, x̃k,2:n, . . . , x̃k,(δ−1):n,
x̃k,δ:n = tk, x̃k,(δ+1):n, x̃k,(δ+2):n, . . . , x̃k,n:n). Repeat Steps 1–3 for k = 1, . . . ,m to
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obtain the pseudo-complete sample (x̃11, x̃12, . . . , x̃1n, x̃21, . . . , x̃2n, . . . , x̃m1, . . . , x̃mn).
Step 5: Obtain θ(h+1) for the next cycle as

θ(h+1) = −(mn)/

m∑
k=1

n∑
i=1

log
[
F̄0(x̃ki)

]
.

Step 6: To obtain an estimate of θ, we run the SEM algorithm to obtain a sequence
of θ(h), h = 1, 2, . . . , H, discard the first B iterations for burn-in, and average over the
estimates from the remaining iterations to get an estimate of θ (say, ˜θAMLE), i.e.,

θ̃AMLE =

H∑
h=B+1

θ(h)/(H −B).

Following the general asymptotic theory of the MLE, the sampling distribution of
(θ̂MLE − θ)/

√
V̂ ar(θ̂MLE) can be approximated by a standard normal distribution.

Hence, an asymptotic 100(1 − α)% confidence interval for θ can be constructed as
[θ̂l, θ̂u] = θ̂±z1−α

2

√
V̂ ar(θ̂MLE), where zq is the q-th percentile of the standard normal

distribution. Here, the variance of θ̂MLE can be approximated by the inverse of the
observed Fisher information, i.e.,

V̂ ar(θ̂MLE) =

[
−∂2L(θ)

∂2θ

∣∣∣∣
θ=θ̂MLE

]−1

,

where

−∂2L(θ)

∂2θ
= (

m

θ2
)−

m∑
k=1

[
log(F̄0(tk))

]2{∑n
i=1 i

3aiF̄
iθ
0 (tk)∑n

i=1 iaiF̄
iθ
0 (tk)

−
[∑n

i=1 i
2aiF̄

iθ
0 (tk)∑n

i=1 iaiF̄
iθ
0 (tk)

]2}
.

Note, for n-component systems with Weibull distributed components, the variance of
θ̂MLE can be

V̂ ar(θ̂MLE) =


(

m

θ̂2MLE

)
−

m∑
k=1

t2βk


n∑

i=1

i3aie
−itβk θ̂MLE

n∑
i=1

iaie−itβk θ̂MLE

−


n∑

i=1

i2aie
−itβk θ̂MLE

n∑
i=1

iaie−itβk θ̂MLE


2


−1

.

3 Bayesian approaches
In this section, we discuss the Bayesian inference of the unknown parameter θ. For pa-
rameter estimation we have considered squared error loss (SEL) and linear-exponential
(LINEX) loss functions. In the Bayesian approach, θ is considered as a random variable
with a prior distribution π(θ). Here, we consider a gamma prior for θ which has the
probability density function

π(θ) =
dd1
2 θd1−1 e−d2θ

Γ(d1)
, θ > 0, d1 > 0, d2 > 0, (9)
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where d1 and d2 are positive hyperparameters. A prior knowledge of the mean and
variance of θ can help us to select these hyperparameters. Setting d1 = d2 = 0, the
Jeffreys’ non-informative prior distribution would be recovered.

By combining (9) and (3), we obtain the posterior of θ as

π(θ|t) = 1

R(t)
θm+d1−1e−θd2

m∏
k=1

n∑
i=1

iaiF̄
iθ
0 (tk),

where

R(t) =

[∫ ∞

0

θm+d1−1e−θd2

m∏
k=1

n∑
i=1

iaiF̄
iθ
0 (tk)dθ

]
.

For a parameter θ and a decision rule δ, the most commonly used loss function is SEL
function L1(θ, δ) = (δ− θ)2 . Another loss function is LINEX, see, Varrian (1975) and
Zellner (1986). The LINEX loss function of the decision rule δ of θ can be expressed
as

L2(θ, δ) = ec(δ−θ) − c(δ − θ)− 1, c ̸= 0.

where c is the shape parameter of the loss function. It controls the direction and degree
of symmetry. (If c > 0, the overestimation is more serious than underestimation, and
vice-versa). For c close to zero, the LINEX loss is approximately SEL and therefore
almost symmetric. The Bayes estimate of θ under L2(θ, δ), is expressed as

θ̂BL = −1

c
log
[
Eθ (e−cθ)

]
, (10)

where the expectation Eϕ(.) is taken with respect to the posterior distribution of θ. The
Bayes estimator of θ under the SEL function, θ̂BS , is the mean of posterior distribution
of θ, i.e.

θ̂BS = E(θ|t) =

∫ ∞

0

θπ(θ|t)dθ

=
1

R(t)

∫ ∞

0

θm+d1 e−θd2

m∏
k=1

n∑
i=1

iaiF̄
iθ
0 (tk) dθ. (11)

From (10), the Bayes point estimator for θ under the LINEX loss function, denoted
as, θ̂BL, is

θ̂BL = −1

c
log
(
Eθ(e

−cθ|t)
)
= −1

c
log

(∫∞
0

e−cθπ(θ|t)dθ∫∞
0

π(θ|t)dθ

)

= −1

c
log

(∫∞
0

θm+d1−1e−θ(c+d1)
∏m

k=1

∑n
i=1 iaiF̄

iθ
0 (tk) dθ∫∞

0
θm+d1−1e−θd2

∏m
k=1

∑n
i=1 iaiF̄

iθ
0 (tk) dθ

)
. (12)

Example 3.1. For system with Weibull distributed components, the Bayes estimator
of θ, under the SEL function and the LINEX loss function, are given respectively by

θ̂BS =

∫∞
0

θm+d1 e−θd2
∏m

k=1

∑n
i=1 iai e

−iθtβk dθ∫∞
0

θm+d1−1e−θd2
∏m

k=1

∑n
i=1 iai e

−iθtβkdθ
,
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θ̂BL = −1

c
log

{∫∞
0

θm+d1−1e−θ(c+d1)
∏m

k=1

∑n
i=1 iai e

−iθtβk dθ∫∞
0

θm+d1−1 e−θd2
∏m

k=1

∑n
i=1 iai e

−iθtβk dθ

}
.

Due to the complexity of the posterior probability density function π(θ|t), the Bayes
estimator of θ in (11) and (12) cannot be obtained, we adopt the Metropolis-Hastings
method and the Lindley’s approximate method to compute the Bayes estimate of θ.

3.1 Bayesian sample-based estimation
Here we adopt the Metropolis-Hastings algorithm (see, for example, Robert and Casella
(2004)) with a normal distribution as proposal distribution to generate random obser-
vations from the posterior distribution.

Algorithm 3.2. The steps for the Metropolis-Hastings algorithm are described as
follows:
Step 1: Start with an initial guess θ(0) is MLE of θ.
Step 2: Set q = 1.
Step 3: Using Metropolis-Hastings algorithm, generate θt from π(θ(j−1)|y) with the
N(θ(j−1), S2

θ ) as proposal distribution, where S2
θ is inverse of the Fisher information.

Step 4: Set q = q + 1.
Step 5: Repeat Steps 3 and 4 N times to obtain the Markov Chain Monte Carlo
(MCMC) sample of size N : θ1, θ2, . . . , θN .

Now the approximate Bayes estimation under squared error loss function and the
LINEX loss function, are given by

θ̂BS =
1

N −M

N∑
q=M+1

θq,

θ̂BL = −1

c
log

 1

N −M

N∑
q=M+1

e−cθq

 ,

respectively, where M is the burn-in period.
Based on the above simulated values of θ, {θq; q = M + 1, . . . , N}, and using the

method proposed by Chen and Shao (1999), we obtain the Highest Posterior Density
(HPD) credible interval for θ. We assume that θ[M+1] < . . . < θ[N ] is the ordered
MCMC sample of {θq; q = M + 1, . . . , N}. A 100(1 − α)% the HPD credible interval
for θ is (

θ[(α
2 )(N−M)], θ[(1−α

2 )(N−M)]

)
,

where θ[α2 (N−M)] and θ[(1−α
2 )(N−M)] are the [α2 (N − M)]-th smallest integer and the

[(1− α
2 )(N −M)]-th smallest integer of {θq q = 1, 2, · · · , N −M}, respectively.

3.2 Lindley approximation
The Lindley’s approximation was originally introduced by Lindley (1980) to approxi-
mate the ratio of two integrals such as (11) and (12). Using Lindley’s approximation,
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the Bayes estimate of θ under SEL and LINEX loss functions can be approximated as:

θ̂BLS = θ̂MLE +

(
d1 − 1

θ̂MLE

− d2

)
σ2(θ̂MLE) +

1

2
l3(θ̂MLE)σ

4(θ̂MLE),

θ̂BLL= θ̂MLE − 1

c
log

{
1 +

(
c2

2
− c(

d1 − 1

θ̂MLE

− d2)

)
σ2(θ̂MLE)−

c

2
l3(θ̂MLE)σ

4(θ̂MLE)

}
,

where

l3 =
∂3 logL(θ)

∂θ
=(

2m

θ3
) +

m∑
k=1

[
log(F̄0(tk))

]3{∑n
i=1 i

4aiF̄
iθ
0 (tk)∑n

i=1 iaiF̄
iθ
0 (tk)

+ 2

(∑n
i=1 i

2aiF̄
iθ
0 (tk)∑n

i=1 iaiF̄
iθ
0 (tk)

)3

−3

(∑n
i=1 i

2aiF̄
iθ
0 (tk)

∑n
i=1 i

3aiF̄
iθ
0 (tk)(∑n

i=1 iaiF̄
iθ
0 (tk)

)2
)}

,

and [σ(θ)]2 is the inverse of Fisher information. For n-component systems with Weibull
distributed components,

l3 =

(
2m

θ̂3MLE

)
−

m∑
k=1

t3βk

{∑n
i=1 i

4aie
−itβk θ̂MLE∑n

i=1 iaie
−itβk θ̂MLE

+ 2

(∑n
i=1 i

2aie
−itβk θ̂MLE∑n

i=1 iaie
−itβk θ̂MLE

)3

−3

∑n
i=1 i

2aie
−itβk θ̂MLE

∑n
i=1 i

3aie
−itβk θ̂MLE(∑n

i=1 iaie
−itβk θ̂MLE

)2
}.

4 Testing of hypothesis and interval confidence
In this section, we construct statistical testing procedures to assess whether the ex-
ponentiated parameter equals to a particular value, say θ0. We shall consider testing
hypothesis

H0 : θ = θ0 against Ha : θ ̸= θ0. (13)

by developing a pivotal quantity and a likelihood ratio test.

4.1 Test based on pivotal quantity
Let

W (θ) = −2

m∑
k=1

log[1− F̄ (Tk)] = −2

m∑
k=1

log

[
1−

n∑
i=1

aiF̄
iθ
0 (Tk)

]
.

Since log[1 − F̄ (Tk)] follows a standard exponential distribution, then the random
variable W (θ) has a chi-square distribution with 2m degrees of freedom. Also, we have

d

dθ

[
−2

m∑
k=1

log

(
1−

n∑
i=1

aiF̄
iθ
0 (Tk)

)]
= 2

m∑
k=1

(
log F̄0(Tk)

)( ∑n
i=1 iaiF̄

iθ
0 (Tk)

1−
∑n

i=1 aiF̄
iθ
0 (Tk)

)
≤ 0,

lim
θ→0

W (θ) = +∞, lim
θ→+∞

W (θ) = 0.
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This implies that W (θ) is a continuous function of θ on (0,∞) and W (θ) is an monotonic
decreasing function in θ. To test the hypotheses (13), since W (θ) is strictly decreasing
in θ, small and large values of W (θ0) lead to the rejection of H0. Therefore, the decision
rule for testing (13) is to reject H0 if W (θ0) < χ2

α/2(2m) or W (θ0) > χ2
1−α/2(2m). The

power function of this test can be obtained as

Pr
(
W (θ0) < χ2

α/2(2m)|Ha

)
+ Pr

(
W (θ0) > χ2

1−α/2(2m)|Ha

)
.

Now, a 100(1− α)% confidence interval for θ can be constructed from the relation

P

(
χ2
α/2,2m < −2

m∑
k=1

log

[
1−

n∑
i=1

aiF̄
iθ
0 (Tk)

]
< χ2

1−α/2,2m

)
= 1− α,

from which we can compute the 100(1−α)% confidence interval for θ as (L,U), where
L and U are the solutions of

−2

m∑
k=1

log

[
1−

n∑
i=1

aiF̄
iθ
0 (Tk)

]
= χ2

1−α/2(2m),

−2

m∑
k=1

log

[
1−

n∑
i=1

aiF̄
iθ
0 (Tk)

]
= χ2

α/2(2m),

respectively, where χ2
α/2,2m and χ2

1−α/2,2m denote the lower and upper α/2 percentage
points of a chi-square distribution with 2m degrees of freedom.

Example 4.1. For system with Weibull distributed components, we have

W (θ) = −2

m∑
k=1

log

(
1−

n∑
i=1

aie
−θitβk

)
.

Therefore, a 100(1− α)% confidence interval for θ, (θL, θU ), are the solutions of

−2

m∑
k=1

log

(
1−

n∑
i=1

aie
−θitβk

)
= χ2

1−α/2,2m,

−2

m∑
k=1

log

(
1−

n∑
i=1

aie
−θitβk

)
= χ2

α/2,2m,

respectively.

4.2 Likelihood ratio test
The likelihood ratio test (LRT) statistics for testing H0 : θ = θ0 versus Ha : θ ̸= θ0 is

λ(t) =
supθ∈Θ0

L(θ|t)
supθ∈Θ L(θ|t)

=
L(θ0|t)

L(θ̂MLE |t)
, (14)
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where Θ is the parameter space and t = (t1, t2, . . . , tm) is the observed value of T =
(T1, T2, . . . , Tm). Substituting (3) into (14), the LRT statistic is

λ(t) =

(
θ0

θ̂MLE

)m m∏
k=1

{ ∑n
i=1 iaiF̄

iθ0
0 (tk)∑n

i=1 iaiF̄
iθ̂MLE
0 (tk)

}
.

For large sample sizes, m → ∞, it is possible to approximate the distribution of the
statistic −2 log λ(T ) under H0 converges to a chi squared distribution with one degree
of freedom. Thus the test statistic is

−2 log λ(T ) = −2

[
m
[
log θ0 − log θ̂MLE

]
+

m∑
k=1

log

{ ∑n
i=1 iaiF̄

iθ0
0 (tk)∑n

i=1 iaiF̄
iθ̂MLE
0 (tk)

}]
.

Rejection of H0 : θ = θ0 for small values of λ(t) is equivalent to rejection for large
values of −2 log λ(T ). Thus, H0 is rejected at α level of significance if and only if
−2 log λ(t) ≥ χ2

1−α(1). The power function of the LRT can be obtained as

Pr
(
−2 log λ(T ) ≥ χ2

1−α(1)|Ha

)
.

In order to obtain the confidence interval by using the likelihood ratio test, it is enough
to consider the complement of the area of rejecting the hypothesis H0, the area of
acceptance or the confidence area. Therefore, 100(1 − α)% confidence interval for θ,
based on the likelihood ratio test is

K(θ) = {θ : −2 log λ(T ) ≤ χ2
1−α(1)}

= {θ : −2[logL(θ|T )− logL(θ̂MLE |T )] ≤ χ2
1−α(1)}

= {θ : logL(θ|T ) ≥ logL(θ̂MLE |T )− 1

2
χ2
1−α(1)}.

Since L(θ|t) is a unimodal function, So for a given α, K(θ) will be a unique confidence
interval.

Example 4.2. For system with Weibull distributed components, a 100(1− α)% confi-
dence interval for θ is

K(θ) =

{
θ : logL(θ|T ) ≥ m log θ̂MLE + log β + (β − 1)

m∑
k=1

tk

+

m∑
k=1

log

{
n∑

i=1

iaie
itβk θ̂MLE

}
− 1

2
χ2
1−α(1)

}
.

5 Numerical illustration and Monte Carlo simulation
study

In this section, two numerical example are considered for illustrative purposes and a
Monte Carlo simulation study is performed to compare the point and interval estima-
tion methods presented in Sections 2-4.



Statistical inference of component lifetimes in a coherent system 158

Here, we assume that the lifetime of the components are i.i.d. Weibull distributed
with known shape parameter and cumulative distribution function FX(t; θ, β) = 1 −
exp{−θtβ}. Before progressing further, first we describe how we can generate a sample
T1, T2, . . . , Tm of i.i.d. system lifetimes for systems with Weibull distributed compo-
nents. The following algorithm is used to generate the system lifetime T1, T2, . . . , Tm

with system signature p = (p1, p2, . . . , pn) (0 < pi < 1,
∑n

i=1 pi = 1) with Weibull
distributed components.

Algorithm 5.1. The steps for Algorithm to generate system lifetimes are described as
follows:
Step 1 Generate u, u1, u2, . . . , un independently from uniform distribution in [0, 1];

Step 2 Set Xj =
[
1
θ

(
log( 1

1−uj
)
)]1/β

, j = 1, 2, . . . , n;
Step 3 Sort X1, X2, · · · , Xn in ascending order to obtain X1:n < X2:n < · · · < Xn:n;
Step 4 Take T = Xj:n for

∑j−1
i=1 pi < u <

∑j
i=1 pi, (j = 1, 2, · · · , n), i.e.,

T =


X1:n 0 < u < p1
X2:n p1 < u < p1 + p2
X3:n p1 + p2 < u < p1 + p2 + p3

...
...

Xn:n

∑n−1
j=1 pj < u <

∑n
j=1 pj

Step 5 Repeat Steps 1− 4, m times, and Generate lifetime T = (T1, T2, · · · , Tm).

Example 5.2. To illustrate all the methods presented in the preceding sections, we
consider a coherent system of 4 components according to Figure 1.

Figure 1: The coherent system of 4 components

A sample of size m = 20 was generated from a 4-component reliability system
having lifetime T = min{X1,max{X2, X3, X4}}, system signature P = ( 14 ,

1
4 ,

1
2 , 0),

and minimal signature a = (0, 3,−3, 1), with components following a two-parameter
Weibull distribution with scale parameter θ = 2, and shape parameter β = 2. The
simulated system lifetimes are presented in Table 1.

Based on the system lifetime data in Table 1, we obtain the MLE, the approximate
MLE (AMLE) using SEM algorithm (with H = 20000 and B = 5000) of θ. Bayes
estimates are obtained using Lindley approximation and Metropolis-Hastings methods
based on the SEL and LINEX loss functions. In the Metropolis-Hastings algorithm, we
have generated N = 50000 values with S2

θ = 0.1536, θ̂MLE = 2.063 and the acceptance
rate is about 70%. We discarded the initial M = 5000 burn-in sample and calculate
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Table 1: Simulated 4-component system lifetimes with system signature P =
( 14 ,

1
4 ,

1
2 , 0) with Weibull distributed components.

m 1 2 3 4 5 6 7 8 9 10
tm:20 0.1223 0.1503 0.2761 0.2967 0.2990 0.3136 0.3752 0.4265 0.4291 0.4578
m 11 12 13 14 15 16 17 18 19 20

tm:20 0.5223 0.5398 0.5795 0.5839 0.6126 0.6137 0.7816 0.8879 0.9525 1.2941

the Bayes estimates based on the remaining 45000 samples. For computing the Bayes
estimates, since we do not have any prior information, we assumed that the prior
of θ is almost improper, i.e., d1 = d2 = 0.0001. The LINEX loss function is used
for computing the Bayes estimates under different values of c, c = (−0.05, 0.05, 1).The
results are summarized in Table 2.

The 95% confidence intervals corresponding MLE, LRT, exact method and HPD
credible of θ become (1.2911, 2.8350), (1.3753, 2.9229), (1.2845, 4.4039) and (1.3448,
2.9020), respectively.

Figure 2 shows the trace plot and histogram plot for the parameter θ. The trace
plots show the values of θ is randomly scattered around the average. From the histogram
of the Metropolis-Hastings sequences for θ in Figure 2, we observe that choosing the
normal distribution as a proposal distribution is quite appropriate.

Table 2: Point estimates of θ for Example 5.2 with Weibull distributed components.
Method Point Estimate
MLE 2.063
Approximate MLE via SEM 1.997

Lindley’s approximation
SEL 2.055
LINEX (c = −0.05) 2.058
LINEX (c = 0.05) 2.051
LINEX (c = 1) 1.981

MCMC
SEL 2.066
LINEX (c = −0.05) 2.070
LINEX (c = 0.05) 2.062
LINEX (c = 1) 1.991

Consider testing
H0 : θ = 1 against H1 : θ ̸= 1,

at the level of significance α = 0.05. Based on the pivotal quantity approach, since

Q(θ0) = Q(1) = 67.9901 > χ2
0.975(40) = 59.3417,

then, the hypothesis H0 : θ = 1 is rejected at 5% level of significance. Based on the
likelihood ratio test, since

−2 log λ(t) = 10.8486 ≥ χ2
0.95(1) = 3.8414,

we reject H0 : θ = 1 at 5% level of significance.
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Figure 2: Plots of Metropolis-Hastings Markov chains for θ using the non-informative prior.

Example 5.3. A sample of size m = 25 was generated from a 4-component reliability
system having lifetime

T = min{X1,max{X2, X3},max{X2, X4}},

system signature P = ( 14 ,
7
12 ,

1
6 , 0), and minimal signature a = (0, 1, 1,−1), with com-

ponents following a two-parameter Weibull distribution with scale parameter θ = 1, and
shape parameter β = 0.75. The simulated system lifetimes are presented in Table 3.

Table 3: Simulated 4-component system lifetimes with system signature P =
( 14 ,

7
12 ,

1
6 , 0) with Weibull distributed components.

m 1 2 3 4 5 6 7 8 9 10
tm:25 0.0009 0.0101 0.0243 0.0470 0.0882 0.0919 0.0951 0.1017 0.1099 0.1247
m 11 12 13 14 15 16 17 18 19 20

tm:25 0.1354 0.1791 0.1827 0.1938 0.3178 0.3447 0.3771 0.4877 0.5011 0.5479
m 21 22 23 24 25 26 27 28 29 30

tm:25 0.6546 0.9910 1.0687 3.1065 5.2747

Based on the system lifetime data in Table 3, we obtained the point and interval
estimates of θ as described in Sections 2-4. For computing the Bayes estimates, it is
assumed that the prior of θ is proper, d1 = 2, d2 = 4. The results are summarized in
Table 4.

The convergence of - samples can be verified through graphical inspection. From
Figure 3, we observe that choosing the normal distribution as a proposal distribution is
quite appropriate. Consider testing

H0 : θ = 1 against H1 : θ ̸= 1,

at the level of significance α = 0.05. Based on the pivotal quantity approach, since

Q(θ0) = 62.3684 < χ2
0.975(50) = 71.4202,

then, the hypothesis H0 : θ = 1 is accepted at 5% level of significance. Based on the
likelihood ratio test, since

−2 log λ(t) = 0.0934 < χ2
0.95(1) = 3.8414,
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Table 4: Point and interval estimates of of θ for Example 5.3 with Weibull distributed
components.

Method Point Estimate
MLE 1.0562
Approximate MLE via SEM 0.9973

Lindley’s approximation
SEL 0.9817
LINEX (c = −0.05) 0.9825
LINEX (c = 0.05) 0.9810
LINEX (c = 1) 0.9682

MCMC
SEL 0.9952
LINEX (c = −0.05) 0.9959
LINEX (c = 0.05) 0.9944
LINEX (c = 1) 0.9808

Method Interval Estimate
Exact method (0.8334 , 2.4883)
Normal-approximation of MLE (0.6898 , 1.4226)
LRT (0.7298 , 1.4650)
HPD credible interval (0.6905 , 1.3551)

we accept H0 : θ = 1 at 5% level of significance.
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Figure 3: Plots of Metropolis-Hastings Markov chains for θ using the informative prior.

5.1 Simulation study
Here, we present some results based on Monte Carlo simulations to compare the perfor-
mance of the different methods. Five different systems with different system signatures
and minimal signatures are considered in the simulation study which are listed in Table
5.

For different choices of sample size m, we generated system lifetimes T1, . . . , Tm

with Weibull distributed components with the parameters θ = 1 and β = 1. The
MLEs and AMLEs are computed using the methods described in Section 2. The
approximate Bayes estimates under the SEL and LINEX loss functions are computed
for θ using Lindley’s approximation and Metropolis-Hastings procedures. We compare



Statistical inference of component lifetimes in a coherent system 162

Table 5: System signatures and minimal signatures of the 4-component systems.
System no. System lifetime T P a

1 X1:4 = min{X1, X2, X3, X4} (series) (1, 0, 0, 0) (0, 0, 0, 1)
2 min{X1,max{X2, X3, X4}} ( 14 ,

1
4 ,

1
2 , 0) (0, 3,−3, 1)

3 max{X1,min{X2, X3, X4}} (0, 1
2 ,

1
4 ,

1
4 ) (1, 0, 1,−1)

4 min{X1,max{X2, X3},max{X2, X4}} ( 14 ,
7
12 ,

1
6 , 0) (0, 1, 1,−1)

5 min{max{X1, X2},max{X3, X4}} (0, 1
3 ,

2
3 , 0) (0, 4,−4, 1)

the performances of the MLEs, AMLEs, and the Bayes estimates in terms of biases,
and mean squares errors (MSEs), which can be estimated as

B̂ias =
1

1000

1000∑
i=1

(θ̂i − θ), and M̂SE =
1

1000

1000∑
i=1

(θ̂i − θ)2,

respectively, where θ̂i is the estimate of θ obtained in the i-th simulation, where i =
1, . . . , 1000. In Table 6, we present the biases and MSEs of different estimator of θ for
sample sizes m = 10, 15, 20 and 25 based on 1000 replications.

We also compare different confidence intervals, namely the confidence intervals ob-
tained by using asymptotic distributions of the MLE, LRT, exact confidence interval
and the HPD credible intervals in terms of their simulated average widths and simu-
lated coverage probabilities based on 1000 replications. If (Li, Ui) is the 95% confidence
interval of θ obtained in the i-th simulation, then the average widths (AWs) and the
coverage probabilitys (CPs) are computed as

AW =
1

1000

1000∑
i=1

(Ui − Li) , and CP =
1

1000

1000∑
i=1

I {Li < θ < Ui} ,

where I {·} denotes the indicator function. The results for sample sizes m = 10, 15, 20
and 25 are reported in Table 7.

For computing the Bayes estimators and HPD credible intervals, we assume two
priors as follows:
Prior I: Jeffreys non-informative prior with d1 = d2 = 0.
Prior II: Informative prior with d1 = 2, d2 = 4.
In order to compare the power properties of the pivotal quantity approach and the LRT
for testing the hypotheses H0 : θ = 1 against H1 : θ ̸= 1 at the level of significance
α = 0.05, a Monte Carlo simulation study is conducted under different alternatives.
The simulated rejection rates for sample sizes m = 10, 15, 20 and 25 are presented
in Table 8. The computations are performed in R, R Core Team (2019) with the
MHadaptive package Chivers (2012).

6 Discussion and conclusions
From Table 6, we observe that the MSEs of the estimators are decreasing with increase
sample size m, and the performance of the estimators depend on the structure of the
system. Since the serial system (System No. 1) has the minimum lifetimes, we can
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Table 6: Biases and MSEs of the MLE, AMLE and Bayes estimators for m = 10, 15, 20
and 25.

Prior1: G(0, 0) Prior2: G(2, 4)
MCMC Lindley MCMC Lindley

no m = 10 MLE AMLE BS BL BS BL BS BL BS BL
1 Bias 0.109 0.157 0.109 0.105 0.109 0.106 -0.098 -0.100 -0.219 -0.217

MSE 0.159 0.190 0.161 0.159 0.159 0.156 0.051 0.051 0.060 0.058
2 Bias -0.178 -0.210 0.068 0.066 0.069 0.067 -0.073 -0.074 -0.123 -0.123

MSE 0.118 0.122 0.091 0.090 0.091 0.090 0.040 0.040 0.034 0.035
3 Bias 0.063 -0.033 0.079 0.077 0.080 0.077 -0.074 -0.075 -0.130 -0.131

MSE 0.080 0.099 0.104 0.103 0.104 0.103 0.045 0.045 0.036 0.037
4 Bias 0.086 0.068 0.084 0.082 0.085 0.083 -0.073 -0.074 -0.133 -0.133

MSE 0.109 0.110 0.109 0.108 0.109 0.108 0.044 0.043 0.035 0.036
5 Bias 0.027 0.012 0.028 0.027 0.028 0.027 -0.063 -0.064 -0.082 -0.083

MSE 0.050 0.048 0.050 0.050 0.050 0.050 0.032 0.032 0.029 0.029
no m = 15
1 Bias 0.069 0.099 0.069 0.067 0.069 0.067 -0.069 -0.070 -0.117 -0.118

MSE 0.097 0.107 0.097 0.096 0.097 0.096 0.043 0.043 0.035 0.035
2 Bias -0.201 -0.232 0.047 0.046 0.047 0.046 -0.047 -0.048 -0.068 -0.069

MSE 0.091 0.099 0.057 0.056 0.056 0.056 0.032 0.032 0.028 0.029
3 Bias 0.046 -0.059 0.057 0.055 0.057 0.055 -0.045 -0.046 -0.069 -0.070

MSE 0.052 0.060 0.062 0.062 0.062 0.062 0.035 0.035 0.030 0.030
4 Bias 0.042 0.010 0.047 0.046 0.047 0.046 -0.053 -0.054 -0.077 -0.078

MSE 0.052 0.058 0.059 0.058 0.059 0.059 0.033 0.033 0.029 0.030
5 Bias 0.036 0.017 0.037 0.036 0.037 0.036 -0.028 -0.028 -0.037 -0.038

MSE 0.038 0.036 0.039 0.038 0.038 0.038 0.026 0.026 0.024 0.024
no m = 20
1 Bias 0.044 0.066 0.043 0.041 0.044 0.042 -0.058 -0.059 -0.081 -0.082

MSE 0.063 0.068 0.063 0.062 0.063 0.062 0.036 0.036 0.031 0.032
2 Bias -0.225 -0.259 0.028 0.027 0.028 0.027 -0.040 -0.041 -0.051 -0.052

MSE 0.087 0.099 0.036 0.035 0.035 0.035 0.024 0.024 0.023 0.023
3 Bias 0.016 -0.094 0.024 0.023 0.023 0.022 -0.049 -0.050 -0.061 -0.061

MSE 0.037 0.039 0.038 0.038 0.038 0.038 0.026 0.026 0.025 0.025
4 Bias 0.034 -0.001 0.030 0.029 0.030 0.029 -0.045 -0.045 -0.057 -0.058

MSE 0.041 0.043 0.042 0.042 0.042 0.042 0.028 0.028 0.026 0.026
5 Bias 0.026 0.004 0.026 0.026 0.026 0.026 -0.021 -0.022 -0.026 -0.027

MSE 0.029 0.027 0.029 0.028 0.029 0.028 0.021 0.021 0.020 0.020
no m = 25
1 Bias 0.049 0.067 0.049 0.048 0.049 0.048 -0.035 -0.036 -0.050 -0.051

MSE 0.052 0.056 0.052 0.052 0.052 0.052 0.031 0.031 0.028 0.028
2 Bias -0.243 -0.277 0.035 0.034 0.035 0.034 -0.022 -0.022 -0.029 -0.029

MSE 0.086 0.099 0.032 0.032 0.032 0.031 0.022 0.022 0.021 0.021
3 Bias 0.024 -0.090 0.030 0.029 0.034 0.034 -0.030 -0.030 -0.037 -0.038

MSE 0.034 0.035 0.034 0.034 0.034 0.034 0.024 0.024 0.023 0.023
4 Bias 0.029 -0.005 0.037 0.036 0.037 0.036 -0.024 -0.025 -0.033 -0.033

MSE 0.031 0.034 0.035 0.035 0.035 0.035 0.024 0.024 0.022 0.022
5 Bias 0.014 -0.008 0.015 0.014 0.014 0.014 -0.022 -0.023 -0.025 -0.026

MSE 0.020 0.019 0.020 0.020 0.020 0.020 0.016 0.016 0.016 0.016

see that results based on data of lifetimes for the serial system is better than from
other coherent systems (System No. 2–5). Comparing the Bayes estimators obtained,
we observe that the Lindley’s approximation method is better than the importance
sampling method in terms of both biases and MSEs. It can also be seen that the Bayes
estimators based on the proper prior perform better than the Bayes estimate based on
the improper prior. From Table 6, we observe that the MSEs of the Bayes estimators



Statistical inference of component lifetimes in a coherent system 164

Table 7: Estimated average widths (AW) and coverage probabilities (CP) of the interval
estimates.

m no. MLE LRT Exact HPD
G(0,0) G(1,2)

10 1 AW 1.395 1.421 3.177 1.387 1.021
CP 0.957 0.954 0.943 0.949 0.952

2 AW 1.105 1.111 2.862 1.095 0.901
CP 0.957 0.956 0.957 0.962 0.947

3 AW 1.145 1.166 1.645 1.150 0.896
CP 0.958 0.956 0.957 0.954 0.949

4 AW 1.165 1.179 2.637 1.161 0.921
CP 0.951 0.937 0.948 0.943 0.948

5 AW 0.893 0.899 1.332 0.889 0.769
CP 0.946 0.936 0.951 0.939 0.939

15 1 AW 1.090 1.098 2.061 1.079 0.882
CP 0.947 0.946 0.954 0.948 0.943

2 AW 0.873 0.877 1.950 0.868 0.7643
CP 0.952 0.949 0.947 0.945 0.955

3 AW 0.921 0.932 1.261 0.921 0.779
CP 0.955 0.945 0.954 0.948 0.951

4 AW 0.916 0.923 1.797 0.912 0.786
CP 0.965 0.962 0.949 0.963 0.961

5 AW 0.711 0.715 1.053 0.707 0.644
CP 0.947 0.951 0.952 0.945 0.943

20 1 AW 0.921 0.926 1.653 0.915 0.788
CP 0.960 0.960 0.957 0.958 0.959

2 AW 0.752 0.754 1.475 0.748 0.679
CP 0.951 0.946 0.955 0.948 0.947

3 AW 0.776 0.783 1.047 0.774 0.685
CP 0.955 0.956 0.955 0.954 0.946

4 AW 0.790 0.795 1.358 0.788 0.703
4 AW 0.790 0.795 1.358 0.788 0.703

CP 0.955 0.946 0.947 0.946 0.949
5 AW 0.611 0.613 0.889 0.607 0.566

CP 0.957 0.951 0.949 0.949 0.949
25 1 AW 0.816 0.819 1.446 0.811 0.719

CP 0.957 0.957 0.950 0.950 0.952
2 AW 0.674 0.676 1.262 0.669 0.622

CP 0.938 0.940 0.955 0.933 0.944
3 AW 0.695 0.700 0.923 0.693 0.626

CP 0.956 0.953 0.950 0.953 0.947
4 AW 0.697 0.701 1.180 0.696 0.636

CP 0.949 0.946 0.948 0.945 0.943
5 AW 0.549 0.550 0.777 0.546 0.517

CP 0.956 0.949 0.960 0.950 0.959

are smaller than the MSEs of the MLE and AMLE in the most systems.
For interval estimation, from Table 7, we observe that in all of cases different

methods for obtaining confidence, Bayesian credible intervals and confidence intervals
based on the asymptotic distribution of the MLE work well in term of average length
of confidence interval and coverage probability, respectively. For all interval estimation
procedures considered here, as the sample size m increases, the simulated average width
of the intervals decreases.
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Table 8: Simulated rejection rates of the pivotal quantity approach and likelihood ratio
test for testing H0 : θ = 1 against H1 : θ ̸= 1.

System θ
m No. Tests 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
10 1 Pivot 0.513 0.232 0.091 0.051 0.061 0.109 0.128 0.188 0.296

LRT 0.832 0.388 0.113 0.050 0.096 0.179 0.268 0.401 0.547
2 Pivot 0.564 0.277 0.118 0.055 0.065 0.084 0.153 0.216 0.291

LRT 0.936 0.540 0.148 0.054 0.107 0.212 0.388 0.569 0.692
3 Pivot 0.748 0.350 0.100 0.053 0.089 0.148 0.272 0.401 0.533

LRT 0.911 0.493 0.131 0.051 0.105 0.240 0.390 0.566 0.719
4 Pivot 0.615 0.328 0.101 0.056 0.055 0.109 0.182 0.248 0.348

LRT 0.920 0.516 0.131 0.054 0.090 0.236 0.374 0.519 0.677
5 Pivot 0.826 0.434 0.143 0.054 0.085 0.180 0.326 0.494 0.644

LRT 0.980 0.698 0.206 0.053 0.118 0.321 0.538 0.747 0.880
15 1 Pivot 0.618 0.286 0.098 0.050 0.072 0.108 0.136 0.275 0.374

LRT 0.939 0.565 0.145 0.050 0.107 0.223 0.289 0.596 0.758
2 Pivot 0.719 0.348 0.117 0.052 0.053 0.125 0.224 0.322 0.480

LRT 0.983 0.708 0.209 0.050 0.124 0.337 0.553 0.745 0.889
3 Pivot 0.871 0.450 0.137 0.050 0.086 0.220 0.408 0.540 0.698

LRT 0.982 0.633 0.180 0.051 0.125 0.315 0.595 0.734 0.854
4 Pivot 0.736 0.373 0.123 0.055 0.080 0.159 0.235 0.385 0.489

LRT 0.969 0.632 0.204 0.052 0.141 0.332 0.544 0.717 0.858
5 Pivot 0.938 0.587 0.157 0.051 0.113 0.262 0.489 0.678 0.830

LRT 1.000 0.820 0.271 0.051 0.159 0.435 0.731 0.905 0.978
20 1 Pivot 0.720 0.344 0.120 0.050 0.079 0.159 0.256 0.376 0.508

LRT 0.978 0.649 0.181 0.051 0.115 0.326 0.533 0.689 0.870
2 Pivot 0.807 0.415 0.157 0.049 0.077 0.160 0.302 0.447 0.640

LRT 0.994 0.797 0.239 0.050 0.158 0.450 0.705 0.885 0.962
3 Pivot 0.932 0.538 0.162 0.049 0.115 0.252 0.480 0.700 0.838

LRT 0.994 0.749 0.203 0.051 0.150 0.408 0.686 0.851 0.955
4 Pivot 0.835 0.435 0.141 0.053 0.081 0.175 0.340 0.486 0.639

LRT 0.994 0.770 0.215 0.051 0.151 0.412 0.657 0.844 0.945
5 Pivot 0.971 0.669 0.200 0.050 0.122 0.347 0.598 0.825 0.932

LRT 1.000 0.899 0.346 0.049 0.199 0.573 0.852 0.973 0.996
25 1 Pivot 0.817 0.394 0.125 0.049 0.092 0.171 0.327 0.453 0.617

LRT 0.993 0.735 0.207 0.048 0.165 0.359 0.641 0.828 0.942
2 Pivot 0.857 0.482 0.145 0.049 0.0864 0.206 0.365 0.546 0.716

LRT 1.00 0.884 0.302 0.048 0.177 0.502 0.804 0.944 0.994
3 Pivot 0.972 0.654 0.206 0.050 0.121 0.343 0.579 0.753 0.900

LRT 0.999 0.847 0.256 0.048 0.166 0.458 0.761 0.905 0.980
4 Pivot 0.864 0.517 0.148 0.052 0.090 0.221 0.419 0.587 0.747

LRT 0.999 0.861 0.237 0.046 0.183 0.422 0.780 0.906 0.985
5 Pivot 0.989 0.757 0.215 0.049 0.126 0.403 0.689 0.914 0.980

LRT 1.000 0.958 0.375 0.048 0.244 0.674 0.923 0.994 0.999

For hypothesis testing related to the parameter θ, from Table 8, both the pivotal
quantity approach and the LRT can control the type-I error rate close to the nominal
level 5%. it is clear that the LRT performs better than the pivotal quantity approach
based on the simulation results.

References
Balakrishnan, N., Ng, H.K.T. and Navarro, J. (2011a). Linear inference for Type-II cen-

sored lifetime data of reliability systems with known signatures, IEEE Transactions



Statistical inference of component lifetimes in a coherent system 166

on Reliability, 60(2):426–440.

Balakrishnan, N., Ng, H.K.T. and Navarro, J. (2011b). Exact nonparametric inference
for component lifetime distribution based on lifetime data from systems with known
signatures. Journal of Nonparametric Statistics, 23(3):741–752.

Bhattacharya, D. and Samaniego, F.J. (2010). Estimating component character-
istics from system failure time data. Naval Research Logistics, 57, 380-389,
doi:10.1002/nav.20407.

Casella, G. and Berger, R.L. (2002). Statistical Inference. 2nd edition, California.

Celeux, G., Chauveau, D. and Diebolt, J. (1996). Stochastic versions of the EM algo-
rithm: an experimental study in the mixture case. Journal of Statistical Computation
and Simulation, 55(4):287–314.

Celeux, G. and Diebolt, J. (1985). The SEM algorithm: a probabilistic teacher al-
gorithm derived from the EM algorithm for the mixture problem. Computational
Statistics Quarterly, 2:73–82.

Chahkandi, M., Ahmadi, J. and Baratpour, S. (2014). Non-parametric prediction in-
tervals for the lifetime of coherent systems. Statistical Papers, 55(4):1019–1034.

Chen, M.H. and Shao, Q.M. (1999). Monte Carlo estimation of Bayesian credible and
HPD intervals, Journal of Computational and Graphical Statistics, 8(1):69–92.

Chivers, C. (2012). MHadaptive: General Markov Chain Monte Carlo for Bayesian
Inference Using Adaptive Metropolis-Hastings Sampling. URL: cran. r-project.
org/web/packages/MHadaptive/MHadaptive. pdf.

Kochar, S., Mukerjee, H. and Samaniego, F.J. (1999). The “signature” of a coherent
system and its application to comparisons among systems. Naval Research Logistics
(NRL), 46(5):507–523.

Lindley, D.V. (1980). Approximate Bayesian methods. Trabajos de Stadistca, 31:223–
237.

Meeker, W.Q. and Escobar, L.A. (1998). Statistical Method for Reliability Data. New
York: John Wiley & Sons.

Navarro, J. and Rubio, R. (2010). Computations of coherent systems with five compo-
nents. Communications in Statistics-Simulation and Computation, 39:68–84.

Navarro, J., Ruiz, J.M. and Sandoval, C.J. (2007). Properties of coherent systems
with dependent components. Communications in Statistics-Theory and Methods,
36(1):175-191.

Navarro, J., Samaniego, F.J., Balakrishnan, N. and Bhattacharya, D. (2008). On the
application and extension of system signatures in engineering reliability. Naval Re-
search Logistics (NRL), 55(4):313–327.



167 A. Fallah, R. Zaman

Ng, H.K.T., Navarro, J. and Balakrishnan, N. (2012). Parametric inference from system
lifetime data under a proportional hazard rate model. Metrika, 75:367–388.

R Core Team (2019). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.

Robert, C. and Casella, G. (2004). Monte Carlo Statistical Methods. 2nd edition, New
York: Springer.

Samaniego, F.J. (1985). On closure of the IFR class under formation of coherent sys-
tems. IEEE Transactions on Reliability Theory, 34(1):69–72.

Samaniego, F.J. (2007). System Signatures and their Applications in Engineering Re-
liability. Vol. 110, Springer Science & Business Media.

Tavangar, M. and Asadi, M. (2020). Component reliability estimation based on system
failure-time data. Journal of Statistical Computation and Simulation, 90(17):3232–
3249.

Yang, Y., Ng, H.K.T. and Balakrishnan, N. (2016). A stochastic expectation-
maximization algorithm for the analysis of system lifetime data with known sig-
nature, Computational Statistics, 31:609–641,

Yang, Y. Ng, H.K.T. and Balakrishnan, N. (2019). Expectation maximization algo-
rithm for system based lifetime data with unknown system structure. AStA Advanced
Statistical Analysis, 103:69–98.

Varrian, H.R. (1975). A Bayesian approach to real estate assessment. Studies in
Bayesian econometrics and statistics in Honor of Leonard J. Savage, Amsterdam,
195–208.

Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss function.
Journal of the American Statistical Association, 81(394):446–451.

Zhang, J., Ng, H.K.T. and Balakrishnan, N. (2015a). Statistical inference of component
lifetimes with location-scale distributions from censored system failure data with
known signature. IEEE Transactions on Reliability, 64(2):613–626.

Zhang, J., Ng, H.K.T. and Balakrishnan, N. (2015b). Tests for homogeneity of distribu-
tions of component lifetimes from system lifetime data with known system signatures.
Naval Research Logistics (NRL), 62(7):550–563.


