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Abstract: In designing an optimal life-testing experiment under a censoring setup, the
removal vector scheme is usually chosen by optimizing a suitable criterion function.
The criterion functions are usually constructed based on cost or variance functions,
and sometimes a combination of both. This paper considers a multiple optimization
problem in the context of type-II progressive censoring with random dependent re-
moval lifetime experiment. A simple simulation algorithm is presented for obtaining
the optimal scheme in a multi-objective optimal problem under the type-II progressive
censoring with random dependent removal model. Several simulation studies are con-
ducted to evaluate and compare the performance of the proposed strategy. Finally,
some concluding remarks and future works are provided.
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1 Introduction
The single-objective optimal designs have been used in selecting an efficient design in
the lifetime experiment. Single-objective optimal designs might be criticized for not
covering all aspects of the experiment. When the experimenter has multiple goals,
especially more than two, these designs must be revised. Rising different aspects of
an experiment have necessitated further efficient use of novel approaches. When two

∗Corresponding author: hasantabar_f@math.usb.ac.ir



Multi-objective optimal design strategy under type-II progressive censoring 158

or more competing criteria are combined, considering multi-objective optimal (MOO)
design for obtaining efficient design is reasonable. A MOO design is more valuable than
a single-objective optimal design because most experiments have several objectives in
practice. Actually, MOO designs are a popular topic for considering all aspects of an
experiment with different methods. For elaborate discussion and profound description
of the different MOO design and their related issues, the reader is encouraged to study
the books by Ehrgott (2005). The constrained and compound optimal strategies are
two standard methods in the MOO problem, which had been investigated by Huang
and Wong (1998) and Huang (1996).

In the lifetime experiments, mostly, single-objective optimal designs have been con-
sidered. Since the lifetime experiments are usually conducted under some censoring
mechanism, finding the optimal censoring scheme is desired using a suitable optimality
criterion. It can be done by maximizing or minimizing a proper choice of criterion
function based primarily on some variance or cost measures. Many authors have stud-
ied the single-objective optimal design problem, such as; Balakrishnan and Aggarwala
(2000) were the first to discuss an optimal progressive censoring scheme considering
the variance of the best linear unbiased estimators of the model parameters as the opti-
mality criterion under normal and extreme value distributions. Burkschat et al. (2006,
2007) computed optimal censoring schemes for generalized Pareto distribution using
the same optimality criterion. Moreover, Ng et al. (2004) considered minimum variance
criteria for the maximum likelihood estimator of the Weibull distribution. Based on
the Fisher information matrix, they introduced three optimality criteria. Fisher infor-
mation matrix as optimality criteria has also been discussed by Abo-Eleneen (2007),
Balakrishnan et al. (2008), Cramer and Ensenbach (2011), and Cramer and Schmiedt
(2011). Pradhan and Kundu (2009, 2013) proposed an optimality criterion based on an
asymptotic variance of the estimator of the pth quantile of underlying lifetime distribu-
tion. They obtained the optimum schemes for generalized exponential and Birnbaum-
Saunders distributions. The problem of optimum type-II progressive censoring scheme
via a meta-heuristic algorithm based on a variable neighborhood search approach has
been considered by Bhattacharya et al. (2016). They showed that the variable neigh-
borhood search algorithm performs sufficiently well for moderate to large sample size
values. Recently, Balakrishnan and Bhattacharya (2021) presented a simple probabilis-
tic approach for determining an optimal progressive censoring scheme. They considered
both variance measure and cost measure as optimality criteria.

Recently, the MOO designs have received more attention in planning lifetime ex-
periments. Bhattacharya et al. (2019) presented the constrained optimization prob-
lem for censoring life-testing design. They considered multi-criteria for optimization
problems under a hybrid censored scheme. Actually, they proposed an algorithm to
compute optimal design by converting the multi-criteria setup to max-min setup. Also,
Bhattacharya (2020) introduced the concept of compound optimal design to find an
optimal scheme in type-II progressive censoring. This strategy is constructed based on
two convex functions, and the optimal designs are a trade-off between two considered
criteria. Hassantabar et al. (2023) recently presented a new optimal design approach
for optimizing two criteria.

The present article develops a MOO strategy in which an experiment’s desired goals
are simultaneously optimized. A simple algorithm is also proposed to compute the so-
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determined optimal design. The solution strategy is described based on two introduced
criteria in a life-testing under type-II progressive censoring with random dependent re-
moval, which will be denoted by the “type-II PCRD” hereafter. The type-II PCRD
model was introduced by Hassantabar et al. (2022). In the type-II PCRD model, the
number of dropouts at each failure time follows a conditional binomial distribution
with dependent success probabilities. The success probabilities are updated based on
failure distances at each stage by adjusting some tuning parameters. The tuning pa-
rameters lead to more flexibility in removal patterns, so it is essential to determine their
optimal value in some applications according to suitable criteria. In subsequent sec-
tions, we present the general strategy of MOO design and the criteria used to optimize
simultaneously.

The rest of the paper is organized as follows. In Section 2, the problem of the
MOO designs is presented. Also, some criteria which are used as optimality criteria
are introduced. type-II PCRD has been reviewed in Section 3. Then, the strategy of
MOO design is presented under type-II PCRD for the Weibull distribution. In Section
4, several simulation studies are performed. Finally, Section 5 contains some concluding
remarks and comments.

2 The multi-objective optimal design strategy
This section describes an approach for constructing optimal life-testing plan in multi
criteria setup. First, we formulate an appropriate criterion in the context of type-
II PCRD model and then present the method for achieving the solution. In type-II
progressive censoring, choosing and removing an optimal number of unfailed units as
censoring, may be a serious challenge which has led to a lot of researches in this area.
The progressive censoring experiment starts with n units and terminates after observing
the mth failure. Upon a failure, a predetermined number of units is removed from the
test. This procedure continues till the mth failure is observed and then, all remaining
units are withdrawn. If Ri denotes the number of removed units after the ith failure,
the censoring scheme is referred to as R = (R1, . . . , Rm) where Ri’s are non-negative
integer numbers where R1+ · · ·+Rm = n−m. In practice, m and Ri’s are fixed before
the experiment starts. Let CS(n,m) denote the set of all admissible censoring schemes
for n units and m failures where m ≤ n and let us denote those as,

CS(n,m) = {R = (R1, · · · ,Rm) ∈ Nm|
m∑
i=1

Ri = n−m,N = {0, 1, 2, . . . , n−m}}.

In designing a life-testing, the main problem is which element of CS(n,m) should
be used in order to maximize the accuracy and minimize the cost and time. Such an
element of CS(n,m) is called an optimal design. A high experimental cost directly
affects the budget constraint of the manufacturer, whereas a poor estimation of under-
lying model parameters may incur heavy post-sale expenses. Therefore optimal designs
are selected based on desired optimization criteria. We adapted a simple approach for
constructing multi-objective locally optimal designs for a typical type-II progressive
censoring setup. For this purpose, two single-objective criteria based on cost functions
have been considered as follows.
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Criterion I: The censoring cost of an experiment as a single-objective criterion func-
tion is defined. In type-II progressive censoring, experiment units are censored upon a
failure which imposes a side cost. We suppose that the cost of censoring in different
stages is not the same, and censoring in higher stages is more costly than in the lower
stages. The components of censoring cost are considered as: the repair and reinstall
cost, C0r, the cost per failed item, Cm, and vector of censoring cost for random removal
vector, Cr, which is assumed to be larger in higher stages. The total expected censoring
cost for removal vector R is given by,

ϕ1(R) = C0r +mCm + E(C′
rR). (1)

Criterion II: The second single-objective criterion is developed based on the duration
of the experiment. The total expected experiment time, which is widely noticed in the
literature, is considered as,

ϕ2(R) = C0t + (n−m)Cn + CtE(Tm:m:n), (2)

where, C0t, Cn and Ct are installation cost or transportation cost of testing facilities,
sample cost, which is the cost of running the experiment with sample size n and cost
of the duration of the experiment, respectively. Here C0r, Cm, Cr, C0t, Cn and Ct, are
determined by an experimenter. These introduced single-objective criteria are based on
cost functions and are used to construct MOO designs strategy in which all the desired
goals of an experiment are simultaneously optimized. Consequently, the optimal design
is obtained by minimizing all criteria simultaneously.

Suppose ϕ1(·), . . . , ϕk(·) are k optimality criteria over the design space ξ ∈ χ. The
general MOO problem is posed as follows,

minimize : ϕ12···k(ξ) = (ϕ1(ξ), ϕ2(ξ), · · · , ϕk(ξ)). (3)

The idea of a solution for (3) can be unclear, because a single point that minimizes
all objectives usually does not exist. One of the most intuitive methods for solving a
MOO is optimizing a weighted sum of the objective functions using any method for
single objective optimization. The MOO is transformed into a single objective problem
by using a weighted sum of the original multiple objectives as follows,

minimize : ϕ(ξ|wi, i = 1, . . . , k − 1) =

k−1∑
i=1

wiϕi(ξ) + (1−
k−1∑
i=1

wi)ϕk(ξ), (4)

where wi’s are the weighting coefficients. There are different method for determining
the weighting coefficients and in some cases will only determine based on the decision
makers preferences. The method is simple to implement but the results obtained are
highly dependent on the weights used, which have to be specified before the optimiza-
tion process begins. This method is simple to implement, but the results highly depend
on the weights. Additionally, in the presence of the convex functions, a complete set of
Pareto solutions can be obtained by varying the weighting coefficients. The following
section presents our strategy for determining the weighting coefficient under the type-II
PCRD model.
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3 General multi-objective optimal strategy
This section use MOO design approach for optimization the type-II PCRD model
and, describe a general strategy to solve the optimization problem in (4). Assum-
ing, X1, . . . , Xn are independent and identically distributed random variables from
an absolutely continuous population with cumulative distribution function (cdf) F (x)
and probability density function (pdf) f(x). Let T1:m:n, . . . , Tm:m:n denote the cor-
responding the type-II progressive censoring order statistics under a random removal
scheme R = (R1, . . . , Rm) where Ri, i = 1, . . . ,m, are random variables and belong to
[0, n−m−(R1+R2+· · ·+Ri−1)]. Based on the GLM-based dependent random removal
mechanism proposed by Hassantabar et al. (2022), Ris have some conditional binomial
distribution with success probabilities dependent on the experimental conditions. In
this work, these conditions, at the ith stage, have been considered preceding number
of removals (R1, . . . , Ri−1) and observed failure times (T1:m:n, . . . , Ti:m:n). That is,

R1 | T1:m:n ∼ b(n−m, p1),

Ri | R1, . . . , Ri−1, T1:m:n, . . . , Ti:m:n ∼ b(n−m−
i−1∑
j=1

Rj , pi), i = 2, . . . ,m− 1,

Rm = n−
m−1∑
i=1

Ri −m,

where, pis, binomial parameters, are modeled as follows,

H(pi) = α0 + α1(Ti:m:n − Ti−1:m:n), i = 1, . . . ,m− 1,

where, T0:m:n = 0 and {α0, α1} are the set of tuning parameters leading to different re-
moval probabilities according to the goals of study. As a special case, logit link function
(i.e., logit(pi) = log( pi

1−pi
)) is used to model H(·) function. Let t = (t1:m:n, · · · , tm:m:n),

and r = (r1, · · · , rm) denote the observed failure time and the vector of observed num-
ber of removals. The likelihood function for the observed sample under the type-II
PCRD is represented as,

L(Θ; r, t) = CRf(t1)[1− F (t1)]
n−1Πm

i=2

f(ti)

1− F (ti−1)

(
1− F (ti)

1− F (ti−1)

)n−
∑i−1

j=1 rj−i

×Πm−1
i=1

(
n−m−

∑i−1
j=1 rj

ri

)
(exp(α0 + α1(ti:m:n − ti−1:m:n)))

ri

× (1 + exp(α0 + α1(ti:m:n − ti−1:m:n)))
−(n−m−

∑i−1
j=1 rj) ,

where, CR = n
∏m

i=2(n−
∑i−1

j=1 rj − i+ 1) and Θ is the vector of parameters of distri-
bution. The Weibull lifetime distribution is considered for F (·) with cdf F (x; γ, β) =

1− e−( x
γ )β .

For solving the MOO under the type-II PCRD in (4), let us first consider censoring
cost and duration of experiment cost as two single-objective criteria in the type-II
PCRD model. Therefore, based on (1) and (2), we have,

ϕ1(R) = C0r +mCm + E[CrR|P(α0, α1)],
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ϕ2(R) = C0t + nCn + CtE[Tm:m:n|P(α0, α1)],

where, P(α0, α1) = (p1, . . . , pm−1). Note that, the optimal removal vector (R∗) is
specified with optimal tuning parameters (α∗

i , i = 0, 1). Therefore, the optimal removal
vector in the type-II PCRD model is determined by finding the optimal value of tuning
parameters. The steps of MOO design strategy under the type-II PCRD is as follows,

1. Let us normalize optimal criteria, ϕi(·), i = 1, 2, and define the new objective
functions as follows,

Ψi(R) =
ϕi(R)−mean(ϕi(R))

var(ϕi(R))
, i = 1, 2, (5)

where, mean and var are the mean and variance of criteria for all possible designs
(here, all possible removal vector). One of the appealing properties of normalized
measure is that its interpretation remains the same regardless of the measurement
unit and size of the design space. Since the considered criteria here are different in
the measurement unit, this index is handy for combining and comparing criteria.

2. The coefficients of the equation are determined according to the range of changes
of the criteria. In this way, by placing the range of changes of the smaller func-
tion in the numerator and the range of changes of the larger function in the
denominator, we determine the coefficient for the larger function and place its
complement for the other function.

wi =
Ψmax

j (R)−Ψmin
j (R)

Ψmax
i (R)−Ψmin

i (R)
. (6)

3. For wi ∈ [0, 1], the design which minimizes Ψ12 is chosen and called optimal
design and is denoted by R∗ and its corresponding tuning parameters in the
GLM-based mechanism, α∗

i , i = 0, 1.

Ψij = wiΨi(R) + (1− wi)Ψj(R). (7)

It is worth to note, the optimal design, R∗, of ϕ12(·) is neither an optimal design
for ϕ1(·) nor ϕ2(·) individually but is optimal simultaneously for both of them.

4 Simulation study
Here, we used the proposed MOO design strategy to obtain optimal design in presence
of the type-II PCRD samples. The simulation study has been conducted to generate
10,000 the type-II PCRD samples from the Weibull distribution with the shape pa-
rameters β ∈ {0.5, 2} and scale parameter of γ = 6. we set (C0t, Cn, Ct) = (100, 2, 12),
(C0r, Cm, Cr) = (50, 4, 8(1 : m)) and (n,m) = (6, 3). Also, according to proposed tun-
ing parameters value by Hassantabar et al. (2022), we set α0 = 0.5 and optimize α1

value. The simulation algorithm for obtaining the optimal design under the type-II
PCRD model is as follows.
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Generate 10,000 type-II PCRD samples from F (·) distribution with dependent removal
scheme R.
Compute ϕ1(·) and ϕ2(·) base on T and R.
Obtain Ψ1(·) and Ψ2(·) based on (5).
Determine wi by (6).
Minimize the compound design of Ψ12(·), (7).

In Figure 1 and 2, ϕ1(·) and ϕ2(·) are drawn versus values of α1. As shown in
this figure, the single-objective criteria have opposite trends, and the optimal design of
every single-objective function, ϕ1(·) and ϕ1(·), would be obtained through numerical
methods assuming large and small values of the tuning parameters, respectively. Since
the range of changes of the two criteria is different, the two criteria are normalized.
Then, by determining the weighting coefficient and minimizing (7), the optimal tun-
ing parameters for β = 0.5 and β = 2 are obtained and shown in Figure 1 and 2,
respectively.

A comparative study between the single-objective and MOO designs has been con-
ducted for further investigation. For each optimal design, the expected experiment
time, expected censoring cost, and variance of the logarithm of pth quantile of the life-
time distribution is reported in Table 1. The expected experiment time is computed
based on the sample average of the mth order statistics. The cost of censoring in dif-
ferent stages is not the same; therefore, the average cost of the random removal vector
is computed for the expected censoring cost. The variability of the quantile estimator
of a particular censoring scheme is measured by the variance of the logarithm of pth

quantile. See Hassantabar et al. (2022) for more information about these indicators.
Table 1 shows that the shortest expected censoring cost occurs when the expected ex-
periment time is the highest under the ϕ1(·) criterion. However, minimization of an
experiment time under ϕ2(·) results in higher expected censoring and variance of the
logarithm of pth quantile cost. Therefore, the MOO design balances both effects of
ϕ1(·) and ϕ2(·) by keeping their values between the individual optimal criteria values.
Table 1 shows that the MOO design is a reasonable approach to the trade-off between
two criteria.

Table 1: Comparing between the single-objective optimal designs and the MOO design.
β design Criterion E(Tm) E(C ′

rR) V (ln(Tp)) α∗
1 R∗

i

0.5
single- ϕ1 17.00627 36.04000 1.34379 4.99 R∗

1 =(2, 1, 0)
objective ϕ2 4.70811 58.74400 1.36928 -4.96 R∗

2 =(1, 0, 2)
MOO ϕ12 10.50779 45.27200 1.35176 0.38 R∗

12 =(1, 1, 1)

2
single- ϕ1 7.217261 24.296 0.415583 3.86 R∗

1 =(3, 0, 0)
objective ϕ2 4.534232 70.568 0.514023 -5 R∗

2 =(0, 0, 3)
MOO ϕ12 5.319304 52.504 0.470471 -0.16 R∗

12 =(1, 1, 1)
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Figure 1: Plot of two criteria , ϕ1, ϕ2, its normalized criteria, Ψ1,Ψ2 and Ψ12 versus α1 values assuming (β, γ) = (0.5, 6) and α0 = −0.5 and
(n = 6,m = 3).
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5 Conclusion and future research
This work describes implementing the MOO design strategy in censored life-testing
experiments and provides a procedure for obtaining the solution. In particular, the
type-II progressive censoring sample of lifetime data with a novel GLM-based random
removal mechanism as the type-II PCRD model, where the number of dropouts at each
failure time follows a conditional binomial distribution with dependent success proba-
bilities, which is introduced by Hassantabar et al. (2022), is considered. This stochastic
removal mechanism can update the removal probability at each stage by adjusting some
tuning parameters. The tuning parameters lead to more flexibility in removal patterns,
so it is important to determine their optimal value in some applications according to
suitable criteria. The optimal tuning parameter values of the GLM-based mechanism
and corresponding removal vector are obtained via the MOO methodology. The pro-
posed solution methodology is computationally simple. In multi-criteria formulation,
we use two objective functions. However, adding more suitable objective functions can
extend this to more complex structures. We use the weighing and normalizing strategy
in the MOO problem. Also, the Weibull lifetime distribution under the type-II PCRD
model is used to determine the optimal removal vector. Theoretically, one can work
with other optimization solutions and lifetime models by considering different criteria.

References
Abo-Eleneen, Z.A. (2007). Fisher information and optimal schemes in progressive type-

II censored samples. Model Assisted Statistics and Applications, 2(3):153–163.

Balakrishnan, N. and Aggarwala, R. (2000). Progressive Censoring: Theory, Methods,
and Applications. Springer Science and Business Media.

Balakrishnan, N. and Bhattacharya, R. (2021). Revisiting Best Linear Unbiased Esti-
mation of Location-Scale Parameters Based on Optimally Selected Order Statistics
Using Compound Design. Methodology and Computing in Applied Probability, 1–25.

Balakrishnan, N., Burkschat, M., Cramer, E. and Hofmann, G. (2008). Fisher informa-
tion based progressive censoring plans. Computational Statistics and Data Analysis,
53(2):366–380.

Bhattacharya, R. (2020). Implementation of compound optimal design strategy in cen-
sored life-testing experiment. TEST, 29(4):1029–1050.

Bhattacharya, R., Pradhan, B. and Dewanji, A. (2016). On optimum life-testing plans
under type-II progressive censoring scheme using variable neighborhood search algo-
rithm. TEST, 25(2):309–330.

Bhattacharya, R., Saha, B. N., Farías, G.G. and Balakrishnan, N. (2019). Multi-
criteria-based optimal life-testing plans under hybrid censoring scheme. TEST,
29:430–453.

Burkschat, M., Cramer, E. and Kamps, U. (2006). On optimal schemes in progressive
censoring. Statistics and Probability Letters, 76(10):1032–1036.



167 F. Hassantabar Darzi, F. Haghighi, S. Eftekhari Mahabadi

Burkschat, M., Cramer, E. and Kamps, U. (2007). Optimality criteria and optimal
schemes in progressive censoring. Communications in Statistics-Theory and Methods,
36(7):1419–1431.

Cramer, E. and Ensenbach, M. (2011). Asymptotically optimal progressive censoring
plans based on Fisher information. Journal of Statistical Planning and Inference,
141(5):1968–1980.

Cramer, E. and Schmiedt, A.B. (2011). Progressively type-II censored competing
risks data from Lomax distributions. Computational Statistics and Data Analysis,
55(3):1285–1303.

Ehrgott, M. (2005). Multicriteria Optimization. Vol. 491, Springer Science and Business
Media.

Hassantabar Darzi, F. Eftekhari, Mahabadi, S. and Haghighi, F. (2022). Type-II pro-
gressive censoring with GLM-based random removal mechanism dependent on the
experimental conditions. Journal of Applied Statistics, 1–30.

Hassantabar Darzi, F., Haghighi, F. and Eftekhari Mahabadi, S. (2023). Compound
optimal design approach under type-II progressive censoring with random removal
dependent on the failure distances. Andishe _ye Amari, 27(2):95-103.

Huang, Y.C. (1996). Multiple-objective Optimal Designs. PH.D. Thesis, Loss Angeles:
University of California.

Huang, Y.C. and Wong, W.K. (1998). Sequential construction of multiple-objective
optimal designs. Biometrics, 1388-1397.

Ng, H.K.T., Chan, P.S. and Balakrishnan, N. (2004). Optimal progressive censoring
plans for the Weibull distribution. Technometrics, 46(4):470–481.

Pradhan, B. and Kundu, D. (2009). On progressively censored generalized exponential
distribution. TEST, 18(3):497–515.

Pradhan, B. and Kundu, D. (2013). Inference and optimal censoring schemes for pro-
gressively censored Birnbaum-Saunders distribution. Journal of Statistical Planning
and Inference, 143(6):1098–1108.


