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Abstract: Moments play an essential role in the characterization of statistical dis-
tributions and criteria such as dispersion, skewness, and kurtosis. This article is a
dissection of the central moments of two-point and binomial distributions. First, we
consider the Bernoulli distribution of the population and generalize the results. With
a simple method, we present the condition that when the sample size is large, the
structure of the sample central moment consists of random variables independent of
standard normal or chi-square or a combination of both. In the obtained results, the
role of points that have a probability of 1/2 is very influential in the limit distribution.
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1 Introduction
In statistical inference, when the sample size is large, the distribution of estimators is
tied to the normal distribution based on limit theorems, or in higher dimensions to the
multivariate normal distribution. Most of the time, these assumptions are acceptable
for statistical populations that have finite moments. But if we want to be more precise
about the asymptotic distribution of statistics, not all estimators follow the normal
distribution. In this paper, we try to clearly obtain their limiting distribution by using
a characteristic of Bernoulli random variable. Bernoulli distribution is considered from
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different aspects, based on moments and central moments (Knoblauch, 2008; Nguyen,
2021; Nowakowski, 2021; Ahle, 2022).

Moments and central moments can be seen almost in statistical textbooks. The
use of moments plays a significant role in determining skewness and kurtosis and de-
termining statistical distributions. He et al. (2011) have used four central moments to
determine the limit of probabilities and estimate the generating function of moments.
Fisher (1930) was one of the first to use moments in normality tests.

Determining the limit distribution of moments can also be seen in the topics of
U -statistics. The generalization of the theory of U -statistics is referred to Hoffding
(1948). Properties and theorems related to this group of statistics were presented by
Denker (1985) and Lee (1990). Heffernan (1997) presented a statistically unbiased
estimator for the sample central moment in the family of distributions with finite
central moments. These estimators are multiples of the sample central moment was
presented by Abbasi (2008). By displaying these relationships, we could determine the
distribution of central moments from the distribution of U -statistics. In limit theorems,
in a general expression and using operators, depending on the conditions, two types of
tendencies in the distribution were mentioned.

What leads to the difference between the results of this article and other previous
researches is that this simple method includes polynomial expansion and basic theorems
of calculus and differential. First, in Section 2, we obtain the results for the Bernoulli
distribution, and we generalize it to any two-point distribution. In Section 3, we obtain
results for the binomial distribution. In Section 4, the results obtained in the previous
two sections are confirmed by simulation and Kolmogorov-Smirnov test.

2 Bernoulli distribution
Let X ∼ Ber(p), then for k ∈ N and p ∈ (0, 1) , we see

µk(p) = E(X − p)k = pq
(
(−1)kpk−1 + qk−1

)
, q = 1− p.

Obviously µk(
1
2 ) = 0 if k odd and µk(

1
2 ) = ( 12 )

k if k even.
Now X1 . . . , Xn are independent identically Bernoulli random variables with pa-

rameter p, p ∈ (0, 1). The mean sample, X̄ is the sufficient statistic and maximum
likelihood estimator of p , also by weak law of large numbers X̄ → p in probability and
by central limit theorem Zn =

√
n(X̄−p)√

pq → Z in distribution as n → ∞, where Z is
random variable from standard norm distribution.

The kth central moment of sample, Mk, is

Mk =
1

n

n∑
i=1

(Xi − X̄)k =
1

n

n∑
i=1

k∑
j=0

(
k

j

)
Xj

i (−X̄)k−j . (1)

Equality Xj = X, j = 1, 2, . . . , (since P (X ∈ {0, 1} = 1)) allows us to write (1) as

nMk = nX̄(1− X̄)
(
(−1)kX̄k−1 + (1− X̄)k−1

)
. (2)

We obtain the limiting distribution of Mk in Bernoulli population for following three
cases.
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2-1. Case p ̸= 1
2 .

We rewrite formula (2) according to Zn and µk.

nMk = n
1

X̄

(√
pq

n

(
X̄ − p√

pq
n

)
+ p

)
µk(X̄)

=
√
n
√
pq

1

X̄
µk(X̄)Zn + n

p

X̄
µk(X̄),

or
√
n
(
Mk − p

X̄
µk(X̄)

)
=

√
pq

1

X̄
µk(X̄)Zn.

According to X̄
P−→ p, p

X̄

P−→ 1, √pq 1
X̄

P−→
√

q
p and µk(X̄)

P−→ µk(p), the following
result obtained by Slutsky’s theorem (Casetlla and Berger, 1990).

√
n(Mk − µk(p))

D−→ N

(
0,

q

p
(µk(p))

2

)
, as n → ∞. (3)

2-2. Case p = 1
2 and k odd.

In this case for k odd the kth central moment Bernoulli is zero and the last term in (2)
equals to

(−1)kX̄k−1 + (1− X̄)k−1 = (1− X̄)k−1 − X̄k−1, (4)

which (4) divisible by (X̄ − 1
2 ) and from this, we make random variable Zn. On the

other hand, by L’Hopital’s rule (Leithold, 1976), we can see that

lim
X̄→ 1

2

(1− X̄)k−1 − X̄k−1

X̄ − 1
2

= −2(k − 1)(
1

2
)k−2, n → +∞.

Again we will return to (2) and rewrite

nMk = nX̄(1− X̄)(X̄ − 1

2
)(−2(k − 1))(

1

2
)k−2

= n
1

4

√
1

4n

X̄ − 1
2√

1
4n

 (−2(k − 1))(
1

2
)k−2

= −(k − 1)(
1

2
)k
√
nZn,

or
√
nMk

D−→ N(0, (k − 1)2(
1

4
)k), as n → ∞. (5)

2-3. Case p = 1
2 and k even.

For k = 2, we can easily see n(M2 − 1
4 )

D−→ −1
4 χ2

1. and by expanding polynomials
n(M4 − 1

16 )
D−→ 1

8χ
2
1. By changing the power of 1

2 , the simulation studies of the
sequence n[Mk−µk(

1
2 )] shows that the chi-square coefficient is different with these two
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cases (Appendix A1). Therefore, the Mk should be analyzed in another way. For k ≥ 6
even, the formula of (2) equals to

nMk = nX̄(1− X̄)(X̄ − 1

2
)2

(
X̄k−1 + (1− X̄)k−1 − ( 12 )

k−2

(X̄ − 1
2 )

2

)
+ nX̄(1− X̄)(

1

2
)k−2.

Since lim
X̄→ 1

2

X̄k−1+(1−X̄)k−1−( 1
2 )

k−2

(X̄− 1
2 )

2 = (k − 1)(k − 2)( 12 )
k−3, we have

n[Mk − µk(
1

2
)]

D−→ (k − 1)(k − 2)(
1

2
)k+1χ2

1, (6)

where χ2
1 is the random variable with chi-square distribution with one degree freedom.

2-4. Two-points distributions.
Let discrete random variable Y have probability model as P (Y = y1) = p, P (Y =
y2) = q. With the linear transformation of random variable Bernoulli X on the ran-
dom variable Y , we have

Y = y1X + y2(1−X) = (y1 − y2)X + y2.

Then Ȳ = (y1 − y2)X̄ + y2 and Yi − Ȳ = (y1 − y2)(Xi − X̄), therefore

nMY
k =

n∑
i=1

((y1 − y2)(Xi − X̄))k = (y1 − y2)
knMk,

where MY
k is kth sample central moment of Y . It is obvious that the rest of the results

are obtained by applying the (y1 − y2)
k coefficient.

3 Binomial distribution
One of the special cases of discrete variables is the binomial random variable, which is
equivalent to the sum of independent Bernoulli random variables.

Yi = X1i + · · ·+Xmi, i = 1, . . . , n,

where Xji ∼ Ber(p), i = 1, . . . , n, j = 1, . . . ,m are independent. also

Ȳ = X̄1 + · · ·+ X̄m.

This advantage will lead to the decomposition of sample central moments into the sum
of Bernoulli independent sample central moments and the product moments of those
independent variables.

nM
(m)
k =

n∑
i=1

(Yi − Ȳ )k

=

n∑
i=1

 m∑
j=1

(Xji − X̄j)

k
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=

m∑
j=1

n∑
i=1

(Xji − X̄j)
k +

n∑
i=1

∑
0≤l1,...,lm<k∑k

i=1 li=k

(
k

l1, . . . , lm

) m∏
j=1

(Xji − X̄j)
lj

=n(MX1

k + · · ·+MXm

k ) +

n∑
i=1

∑
0≤l1,...,lm<k∑k

i=1 li=k

(
k

l1, . . . , lm

) m∏
j=1

(Xji − X̄j)
lj , (7)

where M
(m)
k is kth sample central moment for Binomial distribution. As n → ∞ the

second part of (7) becomes the product of central moments.

L̂(p; k,m) =
1

n

n∑
i=1

∑
0≤l1,...,lm<k∑k

i=1 li=k

(
k

l1, . . . , lm

) m∏
j=1

(Xji − X̄j)
lj

So,

L(p, k,m) =
∑

0≤l1,...,lm<k∑k
i=1 li=k

(
k

l1, . . . , lm

) m∏
j=1

µlj (p), (8)

where from the independence of variables, the limit result equals to L(p; k,m) with the
moment estimator L̂(p; k,m).

Notice that: µm
k (p) = E(Y −mp)k = mµk(p) + L(p; k,m). The most applications

of central moments are considered in the second, third and fourth orders: µm
2 (p) =

mµ2(p), µm
3 (p) = mµ3(p) and µm

4 (p) = mµ4(p)+3m(m−1)(µ2(p))
2, also, µm

2 ( 12 ) = m 1
4 ,

µm
4 ( 12 ) = m(3m−2)( 12 )

4. And the number of non-zero terms of the right side of (8), L(p)
is equal to

(
m−1+ k

2
m−1

)
−m. It is obtained by solving the equation l1+l2+· · ·+lm = k where

l1, l2, . . . , lm even and does not count the terms of lj = k; j = 1, 2, . . . ,m. Despite
the appearance of L(p; k,m) , it is possible to obtain bounds for it. If p = max(p, q),
then 2qlj+1 ≤ µlj (p) = pq(plj−1 + qlj−1) ≤ 2plj+1. As a result

2mqk+mm(mk−1 − 1) ≤ L(p; k,m) ≤ 2mpk+mm(mk−1 − 1).

At first glance, it seems that in (7), in the limiting case, term L̂(p, k,m) can be omitted
and the limiting distribution of the central moment can be assigned to

∑m
i=1 M

Xi

k . But
the simulation study shows us that this assumption is not correct (Appendix A2). In
the following, we try to get results for k = 2, 3.

3-1. Case k = 2.
For p ∈ (0, 1),

E(L̂(p; 2,m))=E

 1

n

∑
1≤k≤j<m

n∑
i=1

(Xki − X̄k)(Xji − X̄j

 = 0,

E((Xki − X̄k)
2)=

n− 1

n
µ2(p); i = 1, 2, . . . , n, k = 1, 2, . . . ,m,
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C =
∑

1≤k1≤j1<m

1≤k2≤j2<m

(k1,j1) ̸=(k2,j2)

cov[

n∑
i=1

(Xk2i − X̄k2)(Xj1i − X̄j1),

n∑
i=1

(Xk2i − X̄k2)(Xj2i − X̄j2)] = 0,

V ar(L̂(p; 2,m))=
4

n2
V ar

 ∑
1≤k≤j<m

n∑
i=1

(Xki − X̄k)(Xji − X̄j)


=

4

n2
{

∑
1≤k≤j<m

V ar[(

n∑
i=1

(Xki − X̄k)(Xji − X̄j)] + C}

=
4

n2

∑
1≤k≤j<m

n∑
i=1

V ar
(
(Xki − X̄k)(Xji − X̄j)

)
=

4

n2

∑
1≤k≤j<m

n∑
i=1

E
(
(Xki − X̄k)

2(Xji − X̄j)
2
)

=
2

n
m(m− 1)

(
n− 1

n
µ2(p)

)2

,

also with a little simple calculation, it can be shown that the correlation coefficient
between L̂(p; 2,m) and MXi

2 , i = 1, 2, . . . ,m is zero. Then

En := L̂(p; k,m)/

(
µ2(p)

n− 1

n

√
2

n

√
m(m− 1)

)
D−→ Z, as n → ∞.

So

nM
(m)
2 = n

m∑
i=1

M
(Xi)
2 + µ2(p)

(
n− 1

n

)√
2n
√
m(m− 1)En,

n(M
(m)
2 − µm

2 ) = n

m∑
i=1

(M
(Xi)
2 − µ2(p)) + µ2(p)

(
n− 1

n

)√
2n
√

m(m− 1)En,

then by (3), p ̸= 1
2 , as n → ∞

√
n(M

(m)
2 − µm

2 (p)) =

√
q

p
µ2(p)(Z1 + · · ·+ Zm) +

(
n− 1

n

)√
2m(m− 1)µ2(p)Z,

and p = 1
2 , as n → ∞

n(M
(m)
2 − µm

2 (p)) = −1

4
(χ2

11 + · · ·+ χ2
1m) +

√
2n

(
n− 1

n

)√
m(m− 1)µ2(p)Z. (9)

3-2. Case k odd.
For any k odd, By comparing with (5), the limiting distribution of

√
n(M

(m)
3 −µm

3 (p))
will consist of two normal parts and with coefficients that take time to calculate. At
this stage of the work, we are satisfied with the fact that the limiting distribution is
normal. It does not give us a new reality.
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4 Simulation study
In the simulation calculations, we divided the chi-square coefficient on the left side and
worked with a variable whose asymptotic distribution is chi-square with one degree
of freedom. Since we wanted to find the conditions that lead to a limit distribution
according to the chi-square distribution, therefore, we consider the simulation study for
the values of to be even and p to be 1/2. Table 1 shows the p-values of the Kolmogorov-
Smirnov test according to the chi-square distribution with one degree freedom.

Table 1: The p-values of the K-S test for different values of n and k.
n k = 4 k = 6 k = 8 k = 10 k = 12 k = 14
30 0.0483 0.0610 0.0612 0.0582 0.0535 0.0432
40 0.1385 0.1047 0.1008 0.0969 0.0891 0.0748
50 0.1035 0.1377 0.1366 0.1316 0.1193 0.1065
60 0.1658 0.1637 0.1657 0.1501 0.1566 0.1444
70 0.1361 0.1846 0.1955 0.1846 0.1728 0.1677
80 0.3045 0.1992 0.2102 0.2078 0.2018 0.1863
90 0.3095 0.2095 0.2300 0.2280 0.2200 0.2136
100 0.2530 0.2393 0.2376 0.2508 0.2412 0.2277
200 0.4737 0.3249 0.3487 0.3266 0.3360 0.3446
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Figure 1: The blue color is the limit distribution and the red color is the result of the simulated
empirical distribution function of the central moments in different orders from (5) and (6) with p = 1

2
.

The simulation was done in the R software under the library “dgof”. The results
show that too for small random samples, the asymptotic distributions in (3), (5) and (6)
are valid. Figure 1 shows the distribution matching well with the chi-square distribution
with n = 100, and k even. Figure 2, with m = 2, 3, 4, 5, n = 100, k = 2, shows the
result (9).
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Figure 2: The blue color is the limit distribution and the red color is the result of the simulated
empirical distribution function of the central moments in k = 2 from (9) with p = 1

2
.

5 Discussion and conclusion
We have seen that in the case of two-point distribution, the point which has a proba-
bility of half and the order of the central moment is even, creates a random variable
of chi-square factor in the limit distribution of the sample central moment. But in the
binomial case, the chi-square factor in the limit distribution was not directly related
to the probability of the occurrence of a point in the support, but the chi-square fac-
tor appeared depending on the decomposition of the binomial variable into the sum
of independent Bernoulli variables. What was important for us is that we were able
to show under what conditions the independent combination of chi-square variables
appears in the limit distribution. There are problems in generalizing to any discrete
random variable using its representation in terms of Bernoulli random variables, and
we cannot easily obtain results from the above arguments.
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Appendix
We have checked four hypothetical models, all of which did not fit well (Figure 3). The
figure 4 shows that removing L̂(p; k,m) in the limiting case does not give an accurate
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distribution, and the effectiveness of this factor can be seen well.
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Figure 3: From 4, we have checked four hypothetical models for n(M6 − ( 1
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D−→ Qiχ
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)7, (d) Qd = ( 1

2
)8.
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Figure 4: Investigating relation (7) with the idea of how much the L̂(p; k,m) affects the approxima-
tion distribution of

√
nM

(m)
k and n(M

(m)
k − µ

(m)
k ): (a) m = 2, p = 1

2
, k = 2, (b) m = 3, p = 1

2
, k = 2,
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2
, k = 3, (d) m = 3, p = 1

2
, k = 2.
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