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Abstract: For the interference models, the assumption is often made that the size
of the blocks (k) is not greater than the number of treatments (t). Typically, it is
difficult to specify optimal block designs theoretically or algorithmically when k > t.
In this article, we focus on a one-sided interference model with compound symmetry
correlation for the observations and obtain universally optimal block designs for both
cases k ≤ t and k > t. We present some methods for constructing these optimal designs
for various numbers of treatments and block sizes.
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1 Introduction
In serological, agricultural, horticultural, and medical experiments, sometimes, inter-
ference models can occur. These models arise when the response to a treatment is
affected by the other treatments in the neighbor plots. For example, in varietal trials,
the yields of shorter varieties may be depressed due to shading from taller neighbor
varieties (Kempton and Lockwood, 1984).

neighbor balanced designs ensure to minimize the influence of neighbor effects on
treatment comparisons. Rees (1967) introduced this concept in a serological exper-
iment, where treatments were organized in circular blocks such that each treatment
have two neighboring treatments.
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A block design is called circular if each treatment in its blocks has two neighbors
or in other words, the treatments within each block are circularly ordered. A set of k
elements {a1, a2, . . . , ak} arranged in the circular order a1 → a2 → · · · → ak → a1 is
said to be circularly ordered. The element ai+1 is said to be the right-neighbor of ai,
and ai is said to be the left-neighbor of ai+1, when i+1 is calculated in (modulo k)+1.

Let Dt,b,k denote the class of circular block designs where t, b and k are the numbers
of treatments, blocks and plots per block, respectively. For example, let

1 2 3 4 5

be a block of an arbitrary circular design with t = k = 5. According to the circular
structure of this block, treatment 5 is the left-neighbor of treatment 1.

A basic problem in the theory of experimental designs is to characterize optimal
designs. There are various criteria for assessment of optimality of experimental designs.
Kiefer (1975) introduced the definition of universally optimal designs such that they
are optimal under all optimality criteria (e.g., A, D, E).

Some researchers have studied different aspects of optimality of designs in the field
of interference models. For example, there are several results on optimality of cir-
cular neighbor balanced designs (CNBDs) and circular neighbor balanced designs at
distances 1 and 2 (CNBD2s) defined by Druilhet (1999), under the fixed and mixed
interference models, where the observations are correlated or not (Druilhet, 1999; Filip-
iak and Markiewicz, 2003, 2005, 2007; Bailey et al., 2017). Azaïs et al. (1993) presented
construction methods and the catalog of CNBDs and CNBD2s with the size of blocks
equal to t or t− 1.

The circular neighbor-balanced at distances up to γ, CNBD(γ), was introduced
by Ai et al. (2007). Filipiak and Markiewicz (2012) defined circular weakly neighbor
balanced designs (CWNBDs) and showed their universal optimality under the inter-
ference model with one-sided neighbor effects. Universal optimality of some CNBDs
of the second and higher order, under the interference models with two-sided neighbor
effects at distances one or more, has been proven by Ahmed et al. (2014).

Although the size of blocks may be so large, in the literature on interference models,
the assumption is usually made that k ≤ t.

If k > t, the universally optimal circular block designs are usually difficult to obtain.
Khodsiani and Pooladsaz (2022) introduced circular equineighbored designs (CEDs)
and obtained results regarding their universal optimality under the block-treatment
model and circulant correlation matrix for every k and t. Fakhari and Pooladsaz
(2022) considered an interference model with equal left- and right-neighbor effects for
uncorrelated errors when k = t+ 1, t+ 2, . . . , 2t− 1.

In this article, we consider universal optimality criterion for the general case,

k = ht+ s, (1)

where h and s are two non-negative integers, k > 2 and s < t.
This article is organized as follows. In Section 2, we introduce the notations and

definitions that will be used throughout the paper. In Section 3, we present the uni-
versal optimality of some circular balanced block designs under the interference model
with one-sided neighbor effects and correlated observations. Furthermore, we discuss
some methods for constructing these optimal designs in both cases k ≤ t, and k > t
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with s = 0, 1 and different values of h as described in equation (1). Finally, we provide
examples to illustrate the application of these methods.

2 Notations and definitions
The notation d(j, i) represents the treatment assigned to plot i of block j for the design
d in Dt,b,k. The left-neighbor interference model can be expressed as

yji = τd(j,i) + ηd(j,i−1) + βj + εji ; j = 1, . . . , b and i = 1, . . . , k, (2)

where yji represents the response on plot i of block j, τd(j,i) denotes the effect of
treatment d(j, i), ηd(j,i−1) represents the left-neighbor effect of d(j, i− 1), βj represents
the effect of block j, and εji is a random error with zero mean.

Let y′ = (y11, . . . , y1k, y21, . . . , y2k, yb1, . . . , ybk) is the vector of observations of order
n = bk. In matrix notation, the model (2) can be written as,

y = Xdτ +Ldη +Bβ + ε, (3)

where τ , η and β are the vectors of treatment, left-neighbor and block effects, respec-
tively, and ε is a vector of random errors with E(ε) = 0n and Cov(ε) = V . Also,
Xd, Ld and B = Ib⊗1k are design matrices for treatments, left-neighbors and blocks,
respectively. Ib is the identity matrix of order b, 0n is the n-vector of zeros, 1k is the
k-vector of ones, and ⊗ is the Kronecker product.

There are different structures for covariance matrix V . Under interference models,
it is usually assumed that the observations in different blocks are uncorrelated but that
observations within blocks are correlated with the same correlation structure. In other
words, V = σ2(Ib ⊗Λ) where σ2 is an unknown positive constant, and Λ is a known
symmetric positive definite correlation matrix.

The compound symmetry correlation structure is a commonly used correlation
structure in the design of experiments. Several papers have discussed the implementa-
tion and application of the compound symmetry correlation structure in various fields.
For example, Smith et al. (2017) examined the impact of using the compound sym-
metry correlation structure in longitudinal data analysis and showed its usefulness in
modeling correlated data with equal correlation. Filipiak et al. (2023) studied a statis-
tical testing methodology for assessing independence among variables in the presence of
compound symmetry covariance structure. Kim et al. (2021) discussed the importance
of efficient designs in studying lifetime distributions and proposed a robust approach
that incorporates compound symmetry correlation.

Under compound symmetry correlation structure, there is the same correlation
between each pair of plots in a block, i.e.

Λ = Ik + ρ(Jk − Ik), (4)

where |ρ| < 1 is the correlation coefficient and Jk = 1k1
′
k. This correlation structure

simplifies the analysis by reducing the number of parameters that need to be estimated
compared to other correlation structures.
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Under the interference model (3), Li et al. (2015) showed that the information
matrix for estimating treatment effects is,

Cd = Cd,11 −Cd,12C
−
d,22Cd,21, (5)

with matrices Cd,11 = T ′
dV

∗Td, Cd,12 = T ′
dV

∗Ld and Cd,22 = L′
dV

∗Ld where C−
d,22

is a generalized inverse of Cd,22, V ∗ = Ib ⊗Λ∗ and

Λ∗ = Λ−1 − (1′
kΛ

−11k)
−1Λ−11k1

′
kΛ

−1. (6)

Let C = {Cd : d ∈ Dt,b,k} and λ(Cd) = (λ1(Cd), λ2(Cd), . . . , λt(Cd)) where
λi(Cd) is i-th largest eigenvalue of Cd. Given the function Φ : C −→ R, a design d∗ in
Dt,b,k is Φ-optimal with respect to C if Φ(Cd∗) ≤ Φ(Cd) for all d ∈ Dt,b,k.

Definition 2.1. (Kiefer, 1975) A design d∗ will be universally optimal in Dt,b,k if d∗
is Φ-optimal w.r.t any real-valued function Φ satisfying the following conditions:
i. For two designs d1 and d2 in Dt,b,k, if λ(Cd1

) ≤ λ(Cd2
) in the Schur ordering then

Φ(Cd1
) ≤ Φ(Cd2

).
ii. Φ(Cd) is a function of the eigenvalues of Cd.
iii. If λi(Cd1) ≥ λi(Cd2) for all i = 1, 2, . . . , t then Φ(Cd1) ≤ Φ(Cd2).

Throughout this paper we use some properties of a balanced block design (BBD),
i.e. such a design d ∈ Dt,b,k for which
(i) all nd,ij = ⌊k

t ⌋ or ⌊k
t ⌋ + 1 where nd,ij is the (i, j)-th entry of Nd = X ′

dB and ⌊x⌋
is the largest integer not exceeding x,
(ii) all the replications of teatments are equal (say r) and
(iii) every pair of distinct treatments occurs together in the same number of blocks
(say λ).
All designs satisfying (i) are called generalized binary designs (GBDs). Note that a
GBD reduces to a binary design when k ≤ t and so, a BBD reduces to a balanced
incomplete block design (BIBD) when k ≤ t.

Definition 2.2. (Druilhet (1999)) A circular BIBD such that for each ordered pair
of distinct treatments there exist exactly l inner plots which receive the first chosen
treatment and which have the second one as right neighbor, is called circular neighbor
balanced design (CNBD).

3 Main results
For correlation matrix (4), we have

Λ−1 =
1

v2
(v1Ik + ρJk),

where v1 = (1− k)ρ− 1 and v2 = (k − 1)ρ2 − (k − 2)ρ− 1. Note that, if ρ = 1
1−k then

v1 = v2 = 0. So, for correlation matrix (4), ρ can not be equal to 1
1−k . From (6), it

follows that,
Λ∗ = a(Ik − 1

k
Jk),
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where a = v1
v2

. Under the interference model (3) and correlation matrix (4), the infor-
mation matrix for estimating treatment effects has the form (5) with matrices,

Cd,11 = Cd,22 = a(Rd −
1

k
NdN

′
d), (7)

Cd,12 = C ′
d,21 = a(Sd −

1

k
NdN

′
d), (8)

where Rd = XdX
′
d = diag(rd,1, rd,2, . . . , rd,t) such that rd,i is the replication of treat-

ment i in design d, Sd = X ′
d(Ib⊗Hk)Xd is a t× t left-neighboring matrix of a circular

design d and Hk denotes the k × k left-neighbor incidence matrix, that is the matrix
with the following elements

(Hk)ij =
{
1, if (i− j = 1) or (i = 1 and j = k),
0, o.w.

In fact, the ij-th element of Sd, denoted as sd,ij , indicates the number of times that
treatment i is the left neighbor of treatment j at distance 1. So, by Definition 2.2,
design d is a CNBD if it is a circular BIBD such that Sd = l(Jt − It) where l is a
positive integer.

We denote D̄t,b,k as a subclass of Dt,b,k with no treatment preceded by itself, i.e.
for every d ∈ D̄t,b,k, there is no self-neighboring for the treatments.

Kiefer (1975) proved that design d∗ ∈ Dt,b,k is universally optimal if (i) Cd∗ is
completely symmetric, i.e. all diagonal elements of Cd∗ are equal and all its off-diagonal
elements are equal, and (ii) Cd∗ has maximal trace over Dt,b,k.

Kushner (1997) defined the quadratic function qd : R −→ R as follows,

qd(x) = cd,11 + 2cd,12x+ cd,22x
2, x ∈ R,

where cd,ij = tr(Cd,ij), i, j = 1; 2. The function qd(x) has the minimum value at
xd = − cd,12

cd,22
such that,

qd(x) ≥ q∗d(xd) = cd,11 −
(cd,12)

2

cd,22
.

We state the analogue of Theorem 4.4 of Kushner (1997) in the next proposition,

Proposition 3.1. Let d∗ ∈ Dt,b,k have completely symmetric Cd,ij, i, j = 1; 2. If
q∗d ≤ q∗d∗ for every d ∈ Dt,b,k, then d∗ is universally optimal.

Remark 3.2. A design d is called degenerate, if qd(x) = 0 for all x. It is clear that
such design cannot be optimal, therefore it is not considered here.

Theorem 3.3. If d∗ is a circular BBD such that Sd∗ is completely symmetric, then d∗

is universally optimal over D̄t,b,k under model (3) and compound symmetry correlation
matrix (4).

Proof. According to Equations (7) and (8), since d∗ is BBD, the matrices Rd, NdN
′
d

and therefore Cd∗,ij , i, j = 1, 2, are completely symmetric.
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Also, under model (3) and correlation matrix (4), we have

q∗d = a

(
bk − tr(

1

k
NdN

′
d)−

(tr(Sd)− tr( 1kNdN
′
d))

2

bk − tr( 1kNdN
′
d)

)
.

So, for every d ∈ D̄t,b,k,

q∗d = abk

(
1−

(
bk

tr( 1kNdN
′
d)

− 1

)−1
)
. (9)

Since q∗d in Equation (9) is a decreasing function of tr( 1kNdN
′
d), q∗d is maximized when

tr( 1kNdN
′
d) is minimum. It is known (cf. Shah and Sinha (1989)) that tr(NdN

′
d) is

minimal for BBD and thus, by Proposition 3.1 the proof is complete.

For obtaining design d∗ of Theorem 3.3, we must construct a circular BBD with
completely symmetric left-neighboring matrix without self-neighborring. There are two
cases as follows:
Case 1. If k ≤ t then there is no self-neighboring in any blocks of a BIBD and therefore
d∗ of Theorem 3.3 is a CNBD which can be constructed by the methods of Azaïs et al.
(1993).
Case 2. If k > t, we present the mothods for construction of optimal design d∗ by the
values of s in Equation (1). Our methods are used for two cases s = 0 and s = 1.
When s is zero. Let t and k are in Equation (1) with s = 0. In this case, for
constructing design d∗ in Theorem 3.3, we need b = t − 1 blocks. At first, we obtain
a primary design, say dp, which is a CNBD(t, t − 1, t). Now, we repeat the treatment
in i-th plot of block j of dp to the plots i, i+ t, i+ 2t, . . . , i+ (h− 1)t of block j of d∗,
i = 1, 2, . . . , t and j = 1, 2, . . . , t− 1.
For example, let t = 5 and k = 15. So, h = 3, s = 0 and the primary design dp is
constructed as below,

dp :

1 2 3 4 5
1 3 5 2 4
1 4 2 5 3
1 5 4 3 2

(10)

where each row is a block. Therefore, under model (3) and correlation matrix (4) the
following design is universally optimal over D̄5,4,15

d∗ :

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
1 3 5 2 4 1 3 5 2 4 1 3 5 2 4
1 4 2 5 3 1 3 5 2 4 1 3 5 2 4
1 5 4 3 2 1 3 5 2 4 1 3 5 2 4

When s is one. Let t and k are in Equation (1) with s = 1. In this case, for
constructing design d∗ in Theorem 3.3, we need b = t(t− 1) blocks. At first, we obtain
a primary design, say dp, which is a CNBD(t, t − 1, t). Now, we repeat the treatment
in i-th plot of block j of dp to the plots i, i + t, i + 2t, . . . , i + (h − 1)t, i = 1, 2, . . . , t,
and put an extra replication of the 2-th plot of block j of dp to the plot ht+1 of block
j of d∗, j = 1, 2, . . . , t− 1.

For example, let t = 5 and k = 11. So, h = 2, s = 1 and the primary design dp
can be considered as dp in (10). Thus, under model (3) and correlation matrix (4) the
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following design is universally optimal over D̄5,20,13

d∗ :

1 2 3 4 5 1 2 3 4 5 2
2 3 4 5 1 2 3 4 5 1 3
3 4 5 1 2 3 4 5 1 2 4
4 5 1 2 3 4 5 1 2 3 5
5 1 2 3 4 5 1 2 3 4 1
1 3 5 2 4 1 3 5 2 4 3
2 4 1 3 5 2 4 1 3 5 4
3 5 2 4 1 3 5 2 4 1 5
4 1 3 5 2 4 1 3 5 2 1
5 2 4 1 3 5 2 4 1 3 2
1 4 2 5 3 1 4 2 5 3 4
2 5 3 1 4 2 5 3 1 4 5
3 1 4 2 5 3 1 4 2 5 1
4 2 5 3 1 4 2 5 3 1 2
5 3 1 4 2 5 3 1 4 2 3
1 5 4 3 2 1 5 4 3 2 5
2 1 5 4 3 2 1 5 4 3 1
3 2 1 5 4 3 2 1 5 4 2
4 3 2 1 5 4 3 2 1 5 3
5 4 3 2 1 5 4 3 2 1 4

Note that in our methods of constructing d∗ in Theorem 3.3 with t treatments and
block size k, we require

b =
{

t− 1, if s = 0,
t(t− 1), if s = 1,

blocks which does not depend on h. As a result, the value of b does not need to be
excessively large, even for large k. For example, if k = 41 and t = 5 then we have h = 8
and s = 1. So, the universally optimal design can be constructed by b = 20 blocks.

Discussion and conclusions
In this article, we consider the left-neighbor interference model, which assumes a corre-
lation structure of compound symmetry for the observations. Using Kushner’s method,
we obtain the design that maximizes the trace of the information matrix on D̄t,b,k for
each k and t as defined in Equation (1). By adding the condition that the information
matrix of this design is completely symmetric, the universally optimal design is ob-
tained. Also, the methods of constructing these designs are mentioned with examples.
It is noticed that in our methods the required numbers of blocks are not excessively
large, even for large k.
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