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Abstract: Spatial data analysis methods have many applications in various fields,
such as agriculture, mining engineering, and meteorology. In this study, ordinary krig-
ing and indicator kriging are considered to predict alumina grade in the Jajarm mine
in Iran, and the precision of the methods is computed. A conditional simulation is
carried out based on the data set for a more general comparison of ordinary and in-
dicator kriging to interpolate Alumina grade in the mine. In the case of monitoring
possible variation related to sample size and type of variogram model, simulations are
performed with various sample sizes and different types of variogram models. Then
ordinary and indicator kriging methods are applied for every set of simulated data
(concerning different sample sizes and types of variogram models), and root of stan-
dardized mean square error prediction is considered as a cross-validation criterion to
compare the kriging methods. The simulation results show that under the assump-
tions, ordinary kriging has better performance than the indicator kriging method.
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1 Introduction
Kriging method was first introduced by Daniel Krige that used it to predict ore grades
in the gold mines of south Africa (Krige, 1951, 1966). The empirical approach of Krige
was formalized by Matheron (1963) and the term “kriging” was coined in his honor. In
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the following two decades, lots of environmental scientists used kriging in their fields
(Burgess and Webster, 1980; DeMarsily and Ahmed, 1987; Oliver and Webster, 1987;
Munyati and Sinthumule, 2021).

To estimate the values at unsampled locations, kriging uses nearby samples and
calculates their weighted average. But first, one needs to estimate the variogram func-
tion, which shows the correlations among neighboring values as a function of distance
between the points across the study area.

This research aims to compare two spatial interpolation techniques based on the
kriging theory. The kriging techniques, ordinary kriging, and indicator kriging have
been applied to interpolate grades of alumina in the Jajarm bauxite mine in Iran.

Additionally, a simulation study is carried out based on the Jajarm data set. Differ-
ent sample sizes and different variogram models are used to monitor their influence over
the interpolation results. The performance of the methods is assessed by a criterion
of cross-validation, namely the root of standardizedm Mean squared errors prediction
(RSMP). The results of the simulation imply that regardless of the sample size and the
type of variogram model used, ordinary kriging has better performance than indicator
kriging.

In section 2, the kriging methods are discussed. The variogram plays a crucial role
in these methods. Section 3 discusses some aspects of the variogram. In section 4, the
kriging methods are applied to predict the grade of alumina for the Jajarm data set.
In this process, different variogram models are fitted to the empirical variogram of the
data, and the performance of the kriging methods is computed in each case.

Furthermore, to determine the more efficient kriging method for predicting the
grade of alumina in the Jajarm mine, a simulation study is performed based on the
data set, and the performance of the kriging methods is compared.

2 Kriging
Kriging methods are applied to provide optimal predictions of unobserved values in
a random field. In this section, ordinary kriging and indicator kriging methods are
reviewed.

2.1 Ordinary kriging
Spatial data refers to data that is associated with a specific geographic location or
coordinate on the earth’s surface. In spatial data analysis, a random field is defined as
{Z(s); s ∈ D} where D ∈ Rd, and Z(s) is a random variable in position s.

Ordinary kriging does not require the mean (µ) of the random field Z(s) to be
known, being evaluated from the input data.

If the random field Z(.) is intrinsically stationary, with an unknown mean, ordinary
kriging is the suitable estimation method. The random field for ordinary kriging can
be represented by the model:

Z(s) = µ+ e(s), s ∈ D, (1)

where µ is the mean of the process and e(.) is a random quantity that its mean is zero
and its covariogram equals C(h), where h is the separation in space and is known as



139 R. Alimohammadi

the lag. Then, predictions at new locations are made by:

Ẑ(s0) =

n∑
i=1

liZ(si);
∑

li = 1,

where lis are the weights calculated by the related variogram model and n is the sample
size.

Now, the method of computing kriging weights (lis) is explained: Kriging provides
optimal predictors. Optimal predictor refers to the case of squared-error loss and hence
of minimizing mean-squared prediction error, Therefore, the optimal Ẑ minimizes the
mean-squared prediction error

σ2
e = E(Z(.)− Ẑ(.))2, (2)

over the class of linear predictors
∑n

i=1 liZ(si) that satisfy
∑n

i=1 li = 1.
For ordinary kriging, the minimization of relation (2) is carried out over l1, l2, . . . , ln,

subject to
∑n

i=1 li = 1, where the model (1) is assumed to hold with variogram

2γ(h) = var(Z(s+ h)− Z(s)), h ∈ Rd.

Therefore to minimize equation (2) with Lagrange method, the follwing equation should
be minimized

E(Z(s0)−
n∑

i=1

liZ(si))
2 −m(

∑
li − 1), (3)

with respect to l1, . . . , ln and Lagrenge multiplier, m.
From (3) it can be shown that the optimal l1, l2, . . . , ln can be obtained from

L0 = Γ0γ0,

where L0 = (l1, l2, . . . , ln,m)
′ , γ0 = (γ(s0 − s1), . . . γ(s0 − sn), 1)

′ and

Γ0 =


γ(si − sj), i = 1, 2, . . . , n, j = 1, 2, . . . , n,

1, i = n+ 1, j = 1, 2, . . . , n,

0, i = n+ 1, J = n+ 1.

Γ0 is a symmetric matrix of dimension n+1. These weights are used in the computation
of ordinary kriging. For further details, please refer to Cressie (1993).

2.2 Indicator kriging
Indicator kriging is a non-parametric geostatistical method that works with variables
after indicator transformation (0, 1) of pre-defined threshold values and maps the
probability of exceeding pre-defined threshold values. Therefore, unlike other kriging
methods, it is not necessary to have information about the distribution of observations.
Sometimes the actual values of the variable are not important, but the probability of
the variable exceeding a certain threshold is considered. For example, to obtain the
probability of pollution of an area exceeding the standard level or to determine the
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probability of the grade of a mineral exceeding a certain value (in order to check the
economic feasibility of starting exploration operations), indicator kriging is used.

To estimate the probability of the variable value exceeding a certain threshold,
the indicator kriging method is used. This threshold is considered for the variable
alumina 40. (The mining expert determines the value of threshold 40 in the Jajarm
mine dataset). In this research, kriging calculates the probability of the alumina metal
grade exceeding 40 in places without samples (in other words, the places where the
alumina metal grade is more than 40 with a significant probability are identified).

The model of indicator kriging could be written as

I(s) = µ+ e(s),

where µ is an unknown constant and I(s) is a binary variable. The creation of binary
data may be through the use of a threshold for continuous data, or it may be that
the observed data is 0 or 1 (Hohn, 1998). In the other words, the indicator random
variables

I(s0, z) =

{
1, Z(s0) ≤ z,

0, otherwise,

is considered, where s ∈ D, z ∈ R.
It can be shown easily that E(I(s0, z)) = Pr(Z(s0) ≤ z). The indicator predictor

of I(s0, z) based on data (I(s1, z), . . . , I(sn, z)) is

Î(s0, z) =

n∑
i=1

li(z)I(si, z),

where
∑n

i=1 li(z) = 1, and li(z)’s satisfy
n∑

i=1

li(z)γ(si − sj) +m = γ(s0 − sj), j = 1, . . . , n, z ∈ R,

where m is the Lagrange multiplier and γ is the semivariogram. The weights, li(z)s
may be obtained as the mentioned manner explained for ordinary kriging earlier in this
section (Cressie (1993)).

2.3 Variogram
Assuming that Z(.) is intrinsically stationary, it can easily be shown that variogram is
2γ(h) = E((Z(s+h)−Z(s))2) and γ(h) is called Semivariogram. Empirical variograms
are nonparametric estimators of the variogram 2γ(h), is

2γ̂(h) =
1

|N(h)|
∑
N(h)

[Z(si)− Z(sj)]
2,

where N(h) = {(si, sj) : si − sj = h; i, j = 1, 2, . . . , n} and |N(h)| denotes the number
of unique pairs of locations in N(h). When Z(.) is isotropic, the empirical variogram
can be written as a function of the distance between pairs of observations. In this case,
a powerful graphical tool for exploring the spatial dependence structure of Z(.) is a
scatter plot of the empirical variogram, 2γ̂h against ||h|| (Calder and Cressie (2009)).
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2.3.1 Variogram models

In this section, some variogram models are reviewed. Besides, plots of fitting the
variogram models (solid lines) to empirical semivariogram (dots) for the Jajam mine
dataset are given.

Spherical semivariogram

spherical semivariogram is defined as

γ(h) =

{
c( 3h2a − 1

2 (
h
a )

3), h ≤ a,

c, h > a,

where a is the range, r is the spatial extent parameter and c is the sill.

Exponential model

The model is given by γ(h) = c(1− exp (−h
r )), where a is the range, and parameter

r defines the spatial extent of the model. Figure 1 illustrates the fitting of exponen-
tial semivariogram (plot a), and spherical semivariogram (plot b), to the empirical
semivariogram [dots] of alumina in the Jajarm dataset.

Figure 1: plot (a): Exponential semivariogram; plot (b): Spherical semivariogram.

Circular semivariogram

The formula for the circular semivariogram is

γ(h) =

{
c(1− 2

Πcos
−1(ha ) +

2h
Πa

√
1− h2

a2 ), h ≤ a,

c, h > a,

where c and a are the sill and the range.

Gaussian model
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Gaussia semivariogram is defined as γ(h) = c(1− exp (−h2

r2 )), where c is the sill, h
is the lag distance, and r is the spatial extent parameter. Figure 2 indicates Circular
model (plot c), and Gaussian model (plot d) as solid line and the empirical semivari-
ogram is denoted by dots.

Figure 2: plot (c): Circular semivariogram, plot (d): Gaussian semivariogram.

Wave semivariogram

A semivariogram model that exhibits nagative correlations caused by a periodicity
of the process is the wave (or hole-effect) model:γ(h) = c[1 − sin(h)

h ], where c is the
sill and h is the lag distance. Figure 3 shows the fitted wave semivariogram (as the
contunoius line) to the empirical variogram as dots, based on Jajarm mine dataset.
For more details on variogram models, please refer to Wester and Oliver (2007).

Figure 3: Wave semivariogram as solid line and empirical semivariogram as dots.

2.4 Cross-validation
To compare the method’s performances, a criterion should be considered. Cross-
validation is a popular means of assessing statistical estimation and prediction. If
the variogram model described adequately spatial dependencies implicit in a data set,
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then the predicted value Ẑ(t0) should be close to the true value Z(t0). Ideally addi-
tional observations on Z (.) to check this, or initially some of the data might be set aside
to validate spatial predictor. More likely, all of the data are used to fit the variogram,
build the spatial predictor and there is no possibility of taking more observations. In
this case, the cross-validation approach can be used. Let 2γ̂(h) be the fitted variogram
model (obtained from the data); now delete a datum Z(tj) and predict it with Ẑ−j(tj)
[based on 2γ̂(h) variogram estimate and the data without Z(tj)].

The closeness of prediction values to the true values can be characterized as cross-
validation criteria. the Root of Standardized Mean Squares Error Prediction (RSMP)
is a cross-validation criterion

RSMP = [
1

n

n∑
i=1

(
Z(tj)− Ẑ−j(tj)

σ−j(tj)
)2]1/2,

where Ẑ−j(tj) is the predict of true value Z(tj) after deleting j’th datum, σ2
−j(tj) is

the related standard deviation, and n is the number of observations. For more details,
please refer to Cressie (1993).

In this study, RSMP criterion is applied to compare ordinary and indicator kriging
methods.

3 Comparison of ordinary kriging with indicator
kriging

In this section, the real data set of alumina in the Jajarm mine (in Iran) is considered.
The mine is located 175 km from Jajarm city in South Khorasan province. In Figure
4, sample points in the dataset are shown in the Jajam Bauxite mine.

Figure 4: Scattering of sample points in the Jajam Bauxite mine.

To utilize kriging methods, it is imperative to satisfy two conditions: stationarity
and the Gaussian distribution of the data. The exploratory studies demonstrate these
conditions are satisfied for the Jajarm dataset. The means of stationarity here is the
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absence of a trend in both directions. Plot 5 shows that there is no trend in the two
directions.

Figure 5: Scatterplot of alumina with respect to the x-axis (left) and respect to the y-axis (right).

In Table 1, ordinary and indicator kriging methods are compared for the data set.

Table 1: RSMP of alumina in ordinary and indicator kriging.
Spherical Exponential Circular Gaussian Wave

Ordinary Kriging 0.97 0.98 0.96 0.97 1.01
Indicator Kriging 0.88 0.90 0.86 0.88 0.92

Table 1 shows that the circular variogram has the best performance for this data
set in ordinary and indicator kriging methods. Besides, for this data set, the RSMP of
indicator kriging is smaller than ordinary kriging.

Prediction map and prediction variance map of alumina grade in the mine are
obtained by using ordinary kring and are shown in Figure 6.

Figure 6: Prediction map (above) and prediction variance map (below).

To investigate a more precise comparison of ordinary and indicator kriging methods
to predict alumina grade in the mine, conditional simulation based on the data is
considered, and the simulation results are presented in the following. In the simulation
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study, the effects of different sample sizes and different types of variograms are assessed.
The results have been presented in Table 2.

Table 2: RSMP of kriging methods based on variogram.
Variogram n Ordinary kriging Indicator kriging
Circular 49 0.90 0.88

100 0.72 0.76
225 0.62 0.82
400 0.55 0.76

Spherical 49 0.92 0.88
100 0.73 0.76
225 0.64 0.82
400 0.62 0.78

Exponential 49 0.96 0.88
100 0.72 0.70
225 0.64 0.70
400 0.54 0.66

Gaussian 49 0.94 0.90
100 0.71 0.78
225 0.61 0.82
400 0.56 0.76

Wave 49 0.90 0.94
100 0.66 0.80
225 0.76 0.82
400 0.56 0.80

Table 2 shows that for the simulated data based on the circular variogram, errors
that are assigned to indicator kriging in all sample sizes are larger than ordinary kriging.
Therefore, ordinary kring based on the circular variogram has better performance than
the indicator kriging method. Also, ordinary kriging’s errors in the most of sample sizes
based on the spherical variogram are smaller than the other method. Then, applying
ordinary kriging is preferred. As indicated for simulated data based on exponential
variogram, ordinary kriging for simulated data has better performance than indicator
kriging for every sample size except sample size 49. The simulated data based on
the Gaussian variogram demonstrates the error values that are assigned to ordinary
kriging in most of the sample sizes are smaller than the other kriging method. In
addition based on the wave variogram, errors that are assigned to ordinary kriging are
smaller than indicator kriging. Therefore, ordinary kring based on wave variogram has
better performance than indicator kriging.

Finally, the simulation results show that ordinary kriging has better performance
than indicator kriging for the most of sample sizes and every considered variogram.
Then, to predict the alumina grade in the Jajarm mine for unsampled points, the
application of ordinary kriging is preferred.

4 Discussion and conclusions
Kriging methods are applied to predict attribute values at unsampled locations in
spatial data. These methods have numerous applications in the environmental sciences.
In this article, two kriging methods, namely ordinary kriging and indicator kriging, are
used to predict the alumina grade in an Iranian mine.
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The variogram model plays an important role in kriging methods. Therefore, to
determine the best variogram model, the empirical variogram of the data is calculated
and various variogram models are fitted to it. The results show that the circular model
of the variogram performs best for both ordinary and indicator kriging methods. To
ensure a more accurate comparison between ordinary kriging and indicator kriging in
the mine, a conditional simulation is performed based on the dataset. In the simulation
study, various variogram models and sample sizes are evaluated to investigate the effect
of sample size and the variogram model. The RSMP is used as a cross-validation
criterion to compare the methods. The results of the simulation study show that
regardless of the dataset size and variogram models used, ordinary kriging outperforms
the alternative kriging method. Therefore, it is recommended to use ordinary kriging
for predicting the alumina grade in the mine.
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