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Abstract: The Maxwell-Dagum distribution is a continuous statistical distribution
suitable for modeling data sets relating to various fields including finance, business,
medical sciences, survival analysis, and related areas. This article aimed to propose
some important properties of the Maxwell-Dagum distribution and obtained the pa-
rameters of its estimates by using different methods of estimation including maximum
likelihood estimation, the maximum product of spacings, least squares estimation, and
weighted least squares estimation. The first and second derivatives of this distribution
are studied. We present two real data sets relating to the COVID-19 mortality rate
belonging to Canada and the waiting time of bank customers to assess the performance
of the proposed distribution. It is discovered that the Maxwell-Dagum distribution can
be chosen as the best distribution by having a minimum value of Akaike information
and Bayesian information criteria.

Keywords: Maxwell-Dagum distribution; Order statistics; q-entropy; Rényi entropy;
Stress-strength.
Mathematics Subject Classification (2010): 60E05, 62F10.

1 Introduction
Dagum distribution was first introduced by Dagum Dagum (1977) to serve as an alter-
native to Pareto and lognormal distributions and it is defined over non-negative real
numbers. This distribution has variety of parameters including three (Type-I) and four
(Type-II) parameter Dagum models and can be applied in several areas of applications
such as financial, wealth, reliability theory, actuarial, survival studies, meteorological
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and many more. One of the important characteristics of the Dagum model is that
its hazard rate could be monotonically decreasing, bathtub and upside-down bathtub.
Some discussions of the Dagum model can be found by many authors such as Dagum
(1977), Dagum (2006), Kleiber and Kotz (2003), Kleiber (2008), Shahzad and Asghar
(2013), among others. Many researchers have applied the Dagum model in different ar-
eas of applications including Domma and Condino (2013) who generalized the Dagum
model to Beta-Dagum distribution and applied it using glass fiber and income data.
Other generalized distributions to be mentioned include Log-Dagum distribution by
Domma (2004), Exponentiated Kumaraswamy-Dagum by Huang and Oluyede (2014),
Weighted-Dagum by Oluyede and Ye (2014), Transmuted Dagum by Elbatal and Aryal
(2015), Gamma-Dagum by Rodrigues and Silva (2015), Dagum-Poisson by Oluyede et
al. (2016), Weibull-Dagum by Tahir et al. (2018), Odd Log-Logistic Dagum by Domma
et al. (2018), and Topp-Leone Dagum distributions by Rasheed (2020). The cumula-
tive distribution function (cdf) and probability density function (pdf) of the Dagum
distribution are given as

M(x; t, δ, λ)=
(
1 + tx−λ

)−δ
, x > 0, (1)

m(x; t, δ, λ)= tδλx−λ−1
(
1 + tx−λ

)−δ−1
, x > 0, (2)

where λ, δ > 0 are shape parameters, and t > 0 is a scale parameter.
In this study, the four-parameter Maxwell-Dagum (M-D) distribution is developed

based on the following motivations and novelty:
i. To obtain a distribution with different pdf shapes such as left-skewed, right-skewed
and symmetric.
ii. To derive some structural properties such as stress-strength, Rényi and q-entropies.
iii. To estimate the parameters of M-D distribution by using different methods of esti-
mation such as maximum likelihood estimation (MLE), maximum product of spacings
(MPS), least squares estimation (LSE) and weighted least squares estimation (WLSE)
methods.
iv. To evaluate the performance of the M-D distribution from the basis of quantile
function by using a simulation study, and lastly.
v. To illustrate the flexibility and potentiality of the M-D distribution against its
competing distributions and compare the performance among them.

The study is organized as follows: Section 2 presents the cdf, pdf, survival, hazard
and quantile functions of Maxwell-Dagum distribution developed from the Maxwell
generalized family of distributions. Some properties and parameter estimates using
different methods of estimation are given in Sections 3 and 4. A simulation study is
carried out from the basis of quantile function in Section 5. An application to real data
sets are provided in section 6, the conclusion of the results and further study are given
in Section 7.

2 Methodology
The Maxwell-Dagum distribution and method used to derive this distribution are pro-
vided in this section.
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2.1 The Maxwell generalized class of distributions
The Maxwell generalized class of distributions was proposed by Ishaq and abiodun
(2020) from the logit of Maxwell random variable. Its cdf and pdf are given as

F (x; a, ψ)=
2√
π
γ

(
3

2
,

1

2a2

(
M(x, ψ)

1−M(x, ψ)

)2
)
, x ∈ ℜ, (3)

f(x; a, ψ)=
2m(x, ψ)

a3
√
2π (1−M(x, ψ))

2

(
M(x, ψ)

1−M(x, ψ)

)2

e
−

1

2a2
( M(x,ψ)

1−M(x,ψ) )
2

, (4)

where a is a scale parameter, M(x, ψ) and m(x, ψ) are cdf and pdf of the Dagum distri-
bution. Abdullahi et al. (2021) extends Exponential distribution to propose Maxwell-
Exponential distribution by applying Maxwell generalized class of distributions. Some
properties and real life applications of the proposed distribution are given in Abdullahi
et al. (2021). The Mukherjee-Islam distribution was generalized by Ishaq et al. (2021)
to study Maxwell-Mukherjee Islam distribution. The validity test and parameter esti-
mation of the Maxwell-Mukherjee Islam distribution was obtained by using Bayesian
approach, refer to Ishaq et al. (2021) for more details and application to real life data
set.

2.2 The Maxwell-Dagum distribution
The cdf and pdf in (3) and (4) were considered by Ishaq and abiodun (2020) in studying
Maxwell-Dagum distribution. Its cdf is obtained by using the Dagum baseline cdf and
pdf given in (1) and (2) as

F (x; a, t, δ, λ) = F (x) =
2√
π
γ

3

2
,

1

2a2

( (
1 + tx−λ

)−δ

1− (1 + tx−λ)
−δ

)2
 . (5)

The corresponding pdf is derived by inserting (1) and (2) into (4) as

f(x; a, t, δ, λ)=
2tλδx−λ−1

(
1 + tx−λ

)−δ−1

a3
√
2π
(
1− (1 + tx−λ)

−δ
)2
( (

1 + tx−λ
)−δ

1− (1 + tx−λ)
−δ

)2

× exp

− 1

2a2

( (
1 + tx−λ

)−δ

1− (1 + tx−λ)
−δ

)2
 , x > 0, (6)

where λ, δ > 0 are shape parameters and a, t > 0 are scale parameters. Plots of the
pdf of M-D distribution are presented in Figure 1. As provided in Figure 1, the pdf of
the M-D distribution can be symmetric, right-skewed and left-skewed.

The survival, hazard and quantile functions of the M-D distribution are

S(x)=1− 2√
π
γ

3

2
,

1

2a2

( (
1 + tx−λ

)−δ

1− (1 + tx−λ)
−δ

)2
 ,
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Figure 1: The plot of pdf for the Maxwell-Dagum distribution for some parameter
values.

h(x)=

2tλδx−λ−1
(
1 + tx−λ

)−3δ−1
exp

(
− 1

2a2

(
(1+tx−λ)

−δ

1−(1+tx−λ)−δ

)2
)

a3
√
2π
(
1− (1 + tx−λ)

−δ
)4(

1− 2√
π
γ

(
3
2 ,

1
2a2

(
(1+tx−λ)−δ

1−(1+tx−λ)−δ

)2)) ,

qu=

−θ

1−

 [
2α2γ−1

(
3
2 , uΓ

(
3
2

))] 1
2

1 +
[
2α2γ−1

(
3
2 , uΓ

(
3
2

))] 1
2

−1/δ


−1
1/λ

, (7)

where u is a uniform random variable defined on interval (0, 1). The hazard plots
of the M-D distribution are presented in Figure 2. The hazard function of the M-D
distribution can be constant, decreasing and increasing as given in Figure 2.

Figure 2: Hazard plots of the Maxwell-Dagum distribution for some parameter values.

3 Properties of the Maxwell-Dagum distribution
In this section, some properties of the Maxwell-Dagum distribution are presented in-
cluding stress-strength, Rényi and q-entropies, and order statistics.
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3.1 Stress-strength model of the Maxwell-Dagum distribution
The stress-strength model can be used for reliability estimation especially in the fields
of engineering and related areas to describe the strength failure and system collapse.
Suppose X1 and X2 are two independent random variables with pdfs f(x1) and f(x2),
respectively. The stress-strength (denoted by R) is a measure of the system when its
subjected to random stress X2 and has strength of X1. The reliability of the system
R can be defined as

R = P (X2 < X1)=

∫ ∞

−∞
f(x1; a1, ψ)dx1

∫ x1

−∞
f(x2; a2, ψ)dx2

=

∫ ∞

−∞
f(x1; a1, ψ)F (x1; a2, ψ)dx1, (8)

where F (x1; a2, ψ) is as given in (3); and f(x1; a1, ψ) and f(x2; a2, ψ) are defined in
(4). These functions can be presented as a mixture representation given as

F (x1; a2, ψ)=

∞∑
l=0

ΩwQ(x1, ψ)
w, (9)

f(x1; a1, ψ)=

∞∑
l=0

Ωl+1(l + 1)q(x1, ψ)Q(x1, ψ)
l. (10)

By taking the product of (9) and (10) gives

f(x1; a1, ψ)F (x1; a2, ψ) =

∞∑
l,w=0

Ωl+1Ωw(l + 1)m(x1, ψ)M(x1, ψ)
l+w, (11)

where

Ωw =

∞∑
f,g,n=0

(−1)f+n+wΓ(3 + 2f + g)

f !g!2fα3+2f
2 (3 + 2f)Γ(3 + 2f)

(
3 + 2f + g

n

)(
n

w

)√
2

π
,

Ωl+1=

∞∑
i,j,k=0

(−1)i+k+lΓ(4 + 2i+ j)
(
2+2i+j

k

)(
k
l

)
(l + 1)2iα3+2i

1 i!j!Γ(4 + 2i)

√
2

π
.

Using generalized binomial expansion, (11) can be written as

f(x1; a1, ψ)F (x1; a2, ψ)=

∞∑
l,w,p,s=0

Ωl+1Ωw(l + 1)(−1)p+s

(
l + w

k

)

×
(
p

s

)
m(x1, ψ)M(x1, ψ)

s

=

∞∑
l,w,p,s=0

Ωl+1Ωw(l + 1)(−1)p+s
(
l+w
k

)(
p
s

)
(s+ 1)

×(s+ 1)m(x1, ψ)M(x1, ψ)
s
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=

∞∑
s=0

ωs+1zs+1(x), (12)

where zs+1 = (s+ 1)m(x1, ψ)M(x1, ψ)
s and

ωs+1 =

∑∞
l,w,p=0 Ωl+1Ωw(l + 1)(−1)p+s

(
l+w
k

)(
p
s

)
(s+ 1)

.

Substituting (12) into (8) becomes

R =

∞∑
s=0

ωs+1

∫ ∞

−∞
zs+1(x)dx1.

Therefore, the stress-strength model of M-D distribution is derived by inserting (1) for
δ = δ2 and (2) when δ = δ1 into (8) as

R=

∞∑
s=0

ωs+1(s+ 1)λtδ1

∫ ∞

0

x−λ−1
1

(
1 + tx−λ

1

)−δ1−1
((

1 + tx−λ
1

)−δ2
)s
dx1

=

∞∑
s=0

ωs+1(s+ 1)λtδ1

∫ ∞

0

x−λ−1
1

(
1 + tx−λ

1

)−δ1−sδ2−1
dx1. (13)

Let A = tx−λ
1 then (13) gives

R =

∞∑
s=0

ωs+1(s+ 1)δ1

∫ ∞

0

(1 +A)
−δ1−sδ2−1

dA. (14)

We can also let 1 + A = 1
B then (14) gives the stress-strength model of the M-D

distribution given by

R =

∞∑
s=0

ωs+1(s+ 1)δ1

∫ 1

0

Bδ1+sδ2−1dB =

∞∑
s=0

ωs+1(s+ 1)

(
δ1

δ1 + sδ2

)
.

3.2 Rényi entropy
The Rényi entropy of the random variable X is defined as

Rϱ(x) =
1

1− ϱ

[∫ ∞

−∞
f(x)ϱdx

]
, ϱ > 0, ϱ ̸= 1;x ∈ ℜ, (15)

where f(x) is the pdf defined in (6). The term f(x)ϱ in (15) can be presented as

f(x)ϱ =

∞∑
l=0

φlm(x;ψ)ϱM(x, ψ)l,

where φl =
∑∞

i,j,k=0Ai,j(−1)k+l
(
2ϱ+2i+j

k

)(
k
l

)
and

Ai,j =

(
2

α3
√
2π

)ϱ
(−ϱ)i

i!(2α2)i
Γ (4ϱ+ 2i+ j)

j!Γ (4ϱ+ 2i)
.
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The integral part in (15) can be simplified as∫ ∞

−∞
f(x)ϱdx=(tδλ)

ϱ
∫ ∞

0

(
x−λ−1

(
1 + tx−λ

)−δ−1
)ϱ ((

1 + tx−λ
)−δ
)l
dx

=(tδλ)
ϱ
∫ ∞

0

x−ϱ(λ+1)
(
1 + tx−λ

)−ϱ(δ+1)−ϱl
dx. (16)

It becomes∫ ∞

−∞
f(x)ϱdx=

(tδλ)
ϱ

tλ

∫ ∞

0

((
t

A

)1/λ
)−ϱ(λ+1)+λ+1

(1 +A)
−ϱ(δ+1)−ϱl

dA

=
(tδλ)

ϱ

tλ
t
−ϱ(λ+1)+λ+1

λ

∫ ∞

0

(
A1/λ

)ϱ(λ+1)−λ−1

(1 +A)
−ϱ(δ+1)−ϱl

dA

=
(tδλ)

ϱ

λ
t
−ϱ(λ+1)+1

λ β

(
ϱ(λ+ 1)− 1

λ
, 1− ϱ(δ + 1)− ϱl

)
. (17)

Therefore, the Rényi entropy of Maxwell-Dagum distribution is obtained by inserting
(17) into (15) as

Rϱ(x) =
1

1− ϱ

[
(tδλ)

ϱ

λt
ϱ(λ+1)−1

λ

∞∑
l=0

φl

{
β

(
ϱ(λ+ 1)− 1

λ
, 1− ϱ(δ + 1)− ϱl

)}]
.

3.3 q-entropy
The q-entropy of a random variable X with pdf f(x) in (6) is given by

Qυ(x) =
1

υ − 1

[
1−

∫ ∞

−∞
f(x)υdx

]
, υ ̸= 1;x ∈ ℜ. (18)

The integral part of (18) has been defined in (17). By substituting (17) into (18) for
ϱ = υ gives the q-entropy of Maxwell-Dagum distribution

Qυ(x) =
1

υ − 1

[
1−

∞∑
l=0

φl

{
(tδλ)

υ

λt
υ(λ+1)−1

λ

β

(
υ(λ+ 1)− 1

λ
, 1− υ(δ + 1)− υl

)}]
.

3.4 Order statistics
Let X1, . . . , Xn be independent and identically distributed random variables drawn
with sample size n from the cdf and pdf given in (5) and (6), respectively. Then, the
τth order statistic of those variables denoted fτ,n(x) is given as

fτ,n(x)=
n!f(x)

(τ − 1)!(n− τ)!
F (x)τ−1 [1− F (x)]

n−τ

=
n!f(x)

(τ − 1)!(n− τ)!

n−τ∑
l=0

(−1)l
(
n− τ

l

)
F (x)τ+l−1.
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By (5) and (6), the order statistic of the Maxwell-Dagum distribution is given as

fτ,n(x)=
x−λ−1

(
1 + tx−λ

)−3δ−1(
1− (1 + tx−λ)

−δ
)4 exp

− 1

2a2

( (
1 + tx−λ

)−δ

1− (1 + tx−λ)
−δ

)2


×
n−τ∑
l=0

Ωl

 2√
π
γ

3

2
,

1

2a2

( (
1 + tx−λ

)−δ

1− (1 + tx−λ)
−δ

)2
τ+l−1

,

where Ωl =
2tλδn!(−1)l(n−τ

l )
a3

√
2π(τ−1)!(n−τ)!

.

4 Parameter estimation
This section provides the methods used to estimate the unknown parameters of Maxwell-
Dagum distribution, which include MLE, MPS, LSE and WLSE.

4.1 Maximum likelihood estimation method
Let x1, x2, . . . , xn denotes the random sample of size n from M-D distribution with
parameters a, t, λ and δ and let φ = (a, t, δ, λ)T be the p × 1 vector parameter. The
MLE of the parameter φ is determined by using the likelihood function as

L =

(
2tλδ

a3
√
2π

)n n∏
i=1

x−λ−1
i A−δ−1

i(
1−A−δ

i

)2
(

A−δ
i

1−A−δ
i

)2

exp

− 1

2a2

(
A−δ

i

1−A−δ
i

)2
 , (19)

where Ai = 1 + tx−λ
i . The log-likelihood function of (19) is given by

ℓ=n log(2) + n log(t) + n log(λ) + n log(δ)− n

2
log(2π)− 3n log(a)− (λ+ 1)

×
n∑

i=1

log(xi)− (δ + 1)

n∑
i=1

log(Ai)− 2

n∑
i=1

log
(
1−A−δ

i

)
+2

n∑
i=1

log

(
A−δ

i

1−A−δ
i

)
− 1

2a2

n∑
i=1

(
A−δ

i

1−A−δ
i

)2

. (20)

The estimates of the parameter φ is determined by differentiating (20) partially with
respect to parameters a, t, δ and λ as given respectively in the following

∂ℓ

∂a
=−3n

a
+

1

a3

n∑
i=1

(
A−δ

i

1−A−δ
i

)2

,

∂ℓ

∂t
=
n

t
− (δ + 1)

n∑
i=1

(
x−λ
i

Ai

)
− 2δ

n∑
i=1

(
x−λ
i A−δ−1

i

1−A−δ
i

)
− 2δ

n∑
i=1

(
x−λ
i

Ai

(
1−A−δ

i

))

+
δ

a2

n∑
i=1

(
x−λ
i A−2δ−1

i(
1−A−δ

i

)3
)
,
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∂ℓ

∂λ
=
n

λ
−

n∑
i=1

log(xi) + t(δ + 1)

n∑
i=1

(
x−λ
i lnxi
Ai

)
+ 2tδ

n∑
i=1

(
A−δ−1

i x−λ
i lnxi

1−A−δ
i

)

+2tδ

n∑
i=1

(
x−λ
i lnxi

Ai

(
1−A−δ

i

))− tδ

a2

n∑
i=1

(
A−2δ−1

i x−λ
i lnxi

(1−Ai)−δ)
3

)
,

∂ℓ

∂δ
=
n

δ
−

n∑
i=1

logAi − 2

n∑
i=1

(
A−δ

i lnAi

1−A−δ
i

)
− 2

n∑
i=1

(
lnAi

1−A−δ
i

)
+

1

a2

n∑
i=1

(
A−2δ

i lnAi(
1−A−δ

i

)3
)
.

The MLEs of the parameter φ is derived by setting these equations to zero. As
observed, theses equations are non-linear and they cannot be derived analytically,
therefore statistical software such as Matlab, R-package, and so on, could be employed
to obtain the estimates of the parameters. The second derivatives of log-likelihood
function are presented in Appendix.

4.2 Maximum product of spacings method
The maximum product of spacings method is an alternative to MLE used in estimating
the parameters of continuous probability distributions. Suppose F (x(i)|a, λ, δ, t) and
F (x(i−1)|a, λ, δ, t) for i = 1, 2, . . . , n+ 1 are the cdfs of M-D distribution. Now, we can
let

Di(a, λ, δ, t) = F (x(i)|a, λ, δ, t)− F (x(i−1)|a, λ, δ, t),
be the uniform spacings of a random sample generated from the M-D distribution.
Then we can note that F (x(0)|a, λ, δ, t) = 0 and F (x(n+1)|a, λ, δ, t) = 1, this implies∑n+1

i=1 Di(a, λ, δ, t) = 1. Therefore, the estimates of the parameters
(
â, λ̂, δ̂, t̂

)
using

MPS method are obtained by maximizing the logarithm of geometric mean (GM) of
the spacings as

C (a, λ, δ, t) = log (GM (a, λ, δ, t)) , (21)

where GM (a, λ, δ, t) =
[∏n+1

i=1 Di(a, λ, δ, t)
] 1
n+1 .

The estimates â, λ̂, δ̂ and t̂ of the parameters of M-D distribution are obtained by
differentiating (21) partially with respect to parameters a, λ, δ and t, and setting the
result to zero as

∂C (a, λ, δ, t)

∂a,λ,δ,t
=

1

n+ 1

n+1∑
i=1

(
1

Di(a, λ, δ, t)

)
∂Di (a, λ, δ, t)

∂a,λ,δ,t
= 0.

4.3 Least squares estimation method
The LSE method is another technique used for estimating the unknown parameters
of probability distribution. Let X(i), i = 1, 2, . . . denotes the order statistics drawn
from the random sample of size n with the cdf as F (xi|a, λ, δ, t) . The estimates of
parameters of M-D distribution using LSE method are obtained by minimizing as

L (a, λ, δ, t) =

n∑
i=1

[
F (x(i)|a, λ, δ, t)−

i

n+ 1

]2
, (22)
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with respect to parameters a, λ, δ and t.
Therefore, the estimates â, λ̂, δ̂ and t̂ can be obtained by differentiating (22) par-

tially with respect to parameters as a, λ, δ and t, and setting the result to zero as

∂L (a, λ, δ, t)

∂a,λ,δ,t
=

n∑
i=1

[
F (x(i)|a, λ, δ, t)−

i

n+ 1

]
∂F (x(i)|a, λ, δ, t)

∂a,λ,δ,t
= 0.

4.4 Weighted least squares estimation method
The WLSE method is modified version of LSE, and the estimation using WLSE followed
similar procedure to LSE method by multiplying the LSE by a wieight. The estimation
is done by minimizing

W (a, λ, δ, t) =

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
F (x(i)|a, λ, δ, t)−

i

n+ 1

]2
, (23)

with respect to parameters a, λ, δ and t.
Therefore, the estimates of the parameters of M-D distribution are obtained by

differentiating (23) partially with respect to parameters as a, λ, δ and t, and setting
result to zero as

∂W (a, λ, δ, t)

∂a,λ,δ,t
=

n∑
i=1

(n+ 1)2(n+ 2)

i(n− i+ 1)

[
F (x(i)|a, λ, δ, t)−

i

n+ 1

]
∂F (x(i)|a, λ, δ, t)

∂a,λ,δ,t
= 0.

(24)

5 Simulation study
We provide a simulation study by using MPS, LSE and WLSE methods in order to
evaluate the performance of the parameters of M-D distribution and compare the ef-
ficiency among them. The simulation study is conducted from the basis of quantile
function given in (7) for sample sizes n = 10, 20, 50, 250, 500 and 1000; and parameter
values a = 1.5, λ = 1, δ = 1.5 and t = 2. The simulation was repeated 1,000 times
in which the mean, bias, variance and mean square error (MSE) were obtained. This
simulation can be done through the following procedures:
i. Set a random sample of size n from the M-D distribution with the stated parameter
values.
ii. Compute the parameters, say â, λ̂, δ̂ and t̂ by using MPS, LSE and WLSE.
iii. Repeat steps 1 and 2, 1,000 times, and lastly.
iv. Evaluate the mean, bias, variance and MSE.

Repeat for n = 10, 20, 50, 250, 500 and 1000. The mean, bias, variance and MSE are
obtained. The results for simulation 1 of the Maxwell-Dagum distribution for sample
sizes 10, 20, 50, 250, 500,1000 and parameter values a = 1.5, λ = 1, δ = 1.5 and t = 2
using MPS, LSE and WLSE methods are given in Tables 1, 2 and 3, respectively.

It observed from Table 1 that the mean of each estimates get closer to the true
parameter values as the sample size increases. The variance and MSE of each estimates
decreases with increase in sample size. Similarly, it seen from Table 2 that the mean of
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Table 1: Simulation results of the Maxwell-Dagum distribution using MPS method of
estimation for a = 1.5, λ = 1, δ = 1.5 and t = 2.

sample size parameter mean bias variance MSE
n = 10 a 1.6768 0.1768 0.1656 0.1969

λ 0.9280 -0.0720 0.0314 0.0366
δ 1.3041 -0.1959 0.3265 0.3649
t 2.1099 0.1099 0.1731 0.1851

n = 20 a 1.5881 0.0881 0.1306 0.1384
λ 0.9515 -0.0485 0.0161 0.0185
δ 1.3657 -0.1343 0.1885 0.2065
t 2.0888 0.0888 0.1089 0.1168

n = 50 a 1.5542 0.0542 0.0802 0.0831
λ 0.9703 -0.0297 0.0087 0.0096
δ 1.3891 -0.1109 0.0861 0.0984
t 2.0747 0.0747 0.0666 0.0722

n = 250 a 1.5247 0.0247 0.0292 0.0298
λ 0.9914 -0.0086 0.0026 0.0026
δ 1.4424 -0.0576 0.0265 0.0298
t 2.0515 0.0515 0.0277 0.0304

n = 500 a 1.5237 0.0237 0.0214 0.0220
λ 0.9958 -0.0042 0.0014 0.0014
δ 1.4568 -0.0432 0.0179 0.0197
t 2.0391 0.0391 0.0177 0.0192

n = 1000 a 1.5275 0.0275 0.0143 0.0151
λ 0.9995 -0.0005 0.0007 0.0007
δ 1.4599 -0.0401 0.0129 0.0145
t 2.0394 0.0394 0.0114 0.0130

Table 2: Simulation results of the Maxwell-Dagum distribution using LSE method of
estimation for a = 1.5, λ = 1, δ = 1.5 and t = 2.

sample size parameter mean bias variance MSE
n = 10 a 1.5616 0.0616 0.0854 0.0891

λ 1.0063 0.0063 0.0206 0.0207
δ 1.4936 -0.0064 0.1590 0.1590
t 2.0822 0.0822 0.0899 0.0966

n = 20 a 1.5690 0.0690 0.0592 0.0640
λ 1.0000 0.0000 0.0118 0.0118
δ 1.4537 -0.0463 0.0991 0.1013
t 2.0664 0.0664 0.0604 0.0648

n = 50 a 1.5457 0.0457 0.0380 0.0401
λ 1.0014 0.0014 0.0070 0.0070
δ 1.4535 -0.0465 0.0509 0.0531
t 2.0625 0.0625 0.0376 0.0415

n = 250 a 1.5289 0.0289 0.0124 0.0132
λ 1.0047 0.0047 0.0022 0.0022
δ 1.4799 -0.0201 0.0106 0.0110
t 2.0250 0.0250 0.0114 0.0120

n = 500 a 1.5192 0.0192 0.0066 0.0070
λ 1.0050 0.0050 0.0013 0.0013
δ 1.4882 -0.0118 0.0050 0.0051
t 2.0211 0.0211 0.0064 0.0069

n = 1000 a 1.5155 0.0155 0.0037 0.0039
λ 1.0039 0.0039 0.0007 0.0007
δ 1.4909 -0.0091 0.0024 0.0025
t 2.0149 0.0149 0.0040 0.0043
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Table 3: Simulation results of the Maxwell-Dagum distribution using WLSE method
of estimation for a = 1.5, λ = 1, δ = 1.5 and t = 2.

sample size parameter mean bias variance MSE
n = 10 a 1.5744 0.0744 0.0850 0.0906

λ 0.9625 -0.0375 0.0202 0.0216
δ 1.3977 -0.1023 0.1564 0.1668
t 2.0549 0.0549 0.1015 0.1045

n = 20 a 1.5682 0.0682 0.0667 0.0714
λ 0.9904 -0.0096 0.0133 0.0133
δ 1.4367 -0.0633 0.1070 0.1110
t 2.0662 0.0662 0.0716 0.0760

n = 50 a 1.5387 0.0387 0.0433 0.0448
λ 1.0025 0.0025 0.0076 0.0076
δ 1.4622 -0.0378 0.0545 0.0559
t 2.0688 0.0688 0.0506 0.0553

n = 250 a 1.5304 0.0304 0.0155 0.0165
λ 1.0054 0.0054 0.0022 0.0022
δ 1.4844 -0.0156 0.0112 0.0114
t 2.0213 0.0213 0.0140 0.0145

n = 500 a 1.5173 0.0173 0.0078 0.0081
λ 1.0041 0.0041 0.0012 0.0013
δ 1.4897 -0.0103 0.0048 0.0049
t 2.0181 0.0181 0.0071 0.0074

n = 1000 a 1.5138 0.0138 0.0041 0.0042
λ 1.0036 0.0036 0.0007 0.0007
δ 1.4908 -0.0092 0.0024 0.0025
t 2.0162 0.0162 0.0044 0.0047

Table 4: Summary of the estimates of the parameters of Maxwell-Dagum distribution
using different methods of estimation for various parameter values.

parameter sample size (n) MPS LSE WSLE
mean MSE mean MSE mean MSE

a = 1.5 10 1.6768 0.1969 1.5616 0.0891 1.5744 0.0906
20 1.5881 0.1384 1.5690 0.0640 1.5682 0.0714
50 1.5542 0.0831 1.5457 0.0401 1.5387 0.0448
250 1.5247 0.0298 1.5289 0.0132 1.5304 0.0165
500 1.5237 0.0220 1.5192 0.0070 1.5173 0.0081
1000 1.5275 0.0151 1.5155 0.0039 1.5138 0.0042

λ = 1 10 0.9280 0.0366 1.0063 0.0207 0.9625 0.0216
20 0.9515 0.0185 1.0000 0.0118 0.9904 0.0133
50 0.9703 0.0096 1.0014 0.0070 1.0025 0.0076
250 0.9914 0.0026 1.0047 0.0022 1.0054 0.0022
500 0.9958 0.0014 1.0050 0.0013 1.0041 0.0013
1000 0.9995 0.0007 1.0039 0.0007 1.0036 0.0007

δ = 1.5 10 1.3041 0.3649 1.4936 0.1590 1.3977 0.1668
20 1.3657 0.2065 1.4537 0.1013 1.4367 0.1110
50 1.3891 0.0984 1.4535 0.0531 1.4622 0.0559
250 1.4424 0.0298 1.4799 0.0110 1.4844 0.0114
500 1.4568 0.0197 1.4882 0.0051 1.4897 0.0049
1000 1.4599 0.0145 1.4909 0.0025 1.4908 0.0025

t = 2 10 2.1099 0.1851 2.0822 0.0966 2.0549 0.1045
20 2.0888 0.1168 2.0664 0.0648 2.0662 0.0760
50 2.0747 0.0722 2.0625 0.0415 2.0688 0.0553
250 2.0515 0.0304 2.0250 0.0120 2.0213 0.0145
500 2.0391 0.0192 2.0211 0.0069 2.0181 0.0074
1000 2.0394 0.0130 2.0149 0.0043 2.0162 0.0047
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Table 5: Simulation results of the Maxwell-Dagum distribution using MPS method of
estimation for a = 2.5, λ = 1, δ = 1.5 and t = 2.

sample size parameter mean bias variance MSE
n = 10 a 2.6694 0.1694 0.2624 0.2911

λ 0.9265 -0.0735 0.0288 0.0342
δ 1.3074 -0.1926 0.4005 0.4376
t 2.1349 0.1349 0.2428 0.2610

n = 20 a 2.6487 0.1487 0.1867 0.2088
λ 0.9514 -0.0486 0.0158 0.0182
δ 1.3282 -0.1718 0.2144 0.2439
t 2.1033 0.1033 0.1763 0.1870

n = 50 a 2.6251 0.1251 0.1302 0.1458
λ 0.9703 -0.0301 0.0076 0.0085
δ 1.3805 -0.1195 0.1022 0.1165
t 2.0317 0.0317 0.1079 0.1089

n = 250 a 2.5492 0.0492 0.0304 0.0328
λ 0.9894 -0.0106 0.0022 0.0023
δ 1.4595 -0.0405 0.0183 0.0200
t 1.9878 -0.0122 0.0304 0.0305

n = 500 a 2.5326 0.0326 0.0196 0.0207
λ 0.9939 -0.0061 0.0011 0.0011
δ 1.4748 -0.0252 0.0089 0.0095
t 1.9911 -0.0089 0.0145 0.0155

n = 1000 a 2.5206 0.0206 0.0113 0.0117
λ 0.9966 -0.0034 0.0006 0.0006
δ 1.4861 -0.0139 0.0038 0.0040
t 1.9930 -0.0070 0.0077 0.0078

Table 6: Simulation results of the Maxwell-Dagum distribution using LSE method of
estimation for a = 2.5, λ = 1, δ = 1.5 and t = 2.

sample size parameter mean bias variance MSE
n = 10 a 2.6076 0.1076 0.1402 0.1518

λ 1.0086 0.0086 0.0141 0.0142
δ 1.5079 0.0079 0.1657 0.1657
t 2.0591 0.0591 0.1004 0.1039

n = 20 a 2.5913 0.0913 0.1089 0.1172
λ 1.0015 0.0015 0.0089 0.0089
δ 1.4757 -0.0243 0.0976 0.0982
t 2.0505 0.0505 0.0836 0.0862

n = 50 a 2.5780 0.0780 0.0768 0.0829
λ 1.0030 0.0030 0.0054 0.0054
δ 1.4701 -0.0299 0.0461 0.0470
t 2.0374 0.0374 0.0569 0.0583

n = 250 a 2.5606 0.0606 0.0256 0.0293
λ 1.0042 0.0042 0.0019 0.0020
δ 1.4838 -0.0162 0.0110 0.0113
t 2.0113 0.0113 0.0207 0.0208

n = 500 a 2.5532 0.0532 0.0177 0.0205
λ 1.0045 0.0045 0.0012 0.0012
δ 1.4862 -0.0138 0.0057 0.0059
t 2.0114 0.0114 0.0148 0.0149

n = 1000 a 2.5374 0.0374 0.0124 0.0138
λ 1.0039 0.0039 0.0007 0.0007
δ 1.4922 -0.0078 0.0028 0.0028
t 2.0084 0.0084 0.0075 0.0076
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Table 7: Simulation results of the Maxwell-Dagum distribution using WLSE method
of estimation for a = 2.5, λ = 1, δ = 1.5 and t = 2.

sample size parameter mean bias variance MSE
n = 10 a 2.6198 0.1198 0.1535 0.1679

λ 0.9706 -0.0294 0.0157 0.0166
δ 1.4005 -0.0995 0.1596 0.1695
t 2.0413 0.0413 0.1148 0.1165

n = 20 a 2.5899 0.0899 0.1379 0.1460
λ 0.9931 -0.0069 0.0106 0.0107
δ 1.4525 -0.0475 0.1069 0.1091
t 2.0558 0.0558 0.0993 0.1024

n = 50 a 2.5889 0.0889 0.0863 0.0942
λ 1.0053 0.0053 0.0060 0.0060
δ 1.4767 -0.0233 0.0499 0.0505
t 2.0348 0.0348 0.0565 0.0587

n = 250 a 2.5669 0.0669 0.0275 0.0320
λ 1.0063 0.0063 0.0020 0.0020
δ 1.4899 -0.0101 0.0091 0.0092
t 2.0078 0.0078 0.0204 0.0204

n = 500 a 2.5630 0.0630 0.0169 0.0209
λ 1.0052 0.0052 0.0011 0.0011
δ 1.4829 -0.0171 0.0048 0.0051
t 2.0111 0.0111 0.0121 0.0122

n = 1000 a 2.5433 0.0433 0.0100 0.0118
λ 1.0038 0.0038 0.0006 0.0006
δ 1.4866 -0.0134 0.0020 0.0022
t 2.0108 0.0108 0.0067 0.0068

each estimate approaches true parameter values, and their corresponding bias, variance
and MSE decrease with increase in sample size. It is also observed in Table 3 that the
mean of each estimate decreases as the sample size increases. Also, the bias, variance
and MSE decrease as the sample size increases.

The summary of the results of simulation 1 using different methods of estimation
for the parameters of Maxwell-Dagum distribution setting a = 1.5, λ = 1, δ = 1.5 and
t = 2 are provided in Table 4.

As observed from the Table 4, for sample size 10, the MSE of each estimate using
LSE method produces smaller values followed by WSLE and finally MPS methods. As
sample size increases from 20, 50, 250, 500 and 1000, the MSE of each estimate for LSE
method still provides the smallest MSE values followed by WSLE and MPS methods.
This indicated that the estimation using LSE method provided a better estimates
than WSLE and MPS irrespective of sample sizes. We concluded by saying that the
LSE method could be a better choice in estimating the parameters of Maxwell-Dagum
distribution using simulation study.

For the second simulation, the estimate using parameter a was increased to a = 2.5,
whereas λ, δ and t remained unchanged. The results of each estimate using MPS, LSE
and WLSE methods are provided in Tables 5, 6 and 7 respectively for sample sizes 10,
20, 50, 250, 500 and 1000.

It is observed from Tables 5, 6 and 7 that the mean of each estimate approaches
true parameter values irrespective of sample sizes n. Similarly, the variance and MSE
of each estimate decreases as sample size increases.
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Summary of the simulation results by using different methods of estimation setting
a = 2.5, λ = 1, δ = 1.5 and t = 2 are provided in Table 8.

Table 8: Summary of the estimates of the parameters of Maxwell-Dagum distribution
using different methods of estimation for various parameter values.

parameter sample size (n) MPS LSE WSLE
mean MSE mean MSE mean MSE

a = 2.5 10 2.6694 0.2911 2.6076 0.1518 2.6198 0.1679
20 2.6487 0.2088 2.5913 0.1172 2.5899 0.1460
50 2.6251 0.1458 2.5780 0.0829 2.5889 0.0942
250 2.5492 0.0328 2.5606 0.0293 2.5669 0.0320
500 2.5326 0.0207 2.5532 0.0205 2.5630 0.0209
1000 2.5206 0.0117 2.5374 0.0138 2.5433 0.0118

λ = 1 10 0.9265 0.0342 1.0086 0.0142 0.9706 0.0166
20 0.9514 0.0182 1.0015 0.0089 0.9931 0.0107
50 0.9699 0.0085 1.0030 0.0054 1.0053 0.0060
250 0.9894 0.0023 1.0042 0.0020 1.0063 0.0020
500 0.9939 0.0011 1.0045 0.0012 1.0052 0.0011
1000 0.9966 0.0006 1.0039 0.0007 1.0038 0.0006

δ = 1.5 10 1.3074 0.4376 1.5079 0.1657 1.4005 0.1695
20 1.3282 0.2439 1.4757 0.0982 1.4525 0.1091
50 1.3805 0.1165 1.4701 0.0470 1.4767 0.0505
250 1.4595 0.0200 1.4838 0.0113 1.4899 0.0092
500 1.4748 0.0095 1.4862 0.0059 1.4829 0.0051
1000 1.4861 0.0040 1.4922 0.0028 1.4866 0.0022

t = 2 10 2.1349 0.2610 2.0591 0.1039 2.0413 0.1165
20 2.1033 0.1870 2.0505 0.0862 2.0558 0.1024
50 2.0317 0.1089 2.0374 0.0583 2.0348 0.0587
250 1.9878 0.0305 2.0113 0.0208 2.0078 0.0204
500 1.9911 0.0155 2.0114 0.0149 2.0111 0.0122
1000 1.9930 0.0078 2.0084 0.0076 2.0108 0.0068

The mean and MSE of each estimates using MPS, LSE and WLSE methods are
provided in Table 8. For sample sizes 10, 20, 50 and 250, the MSE of each estimate
by using LSE method produced smaller MSE values followed by WSLE and then MPS
methods. At sample sizes 500 and 1000, the MSE of each parameter using WLSE
method provided smaller MSE values followed by LSE and MPS methods. This implies
that as sample size goes higher, the estimation using WLSE method could be a better
choice in estimating the parameters of Maxwell-Dagum distribution using simulation
study.

6 Applications
Real life datasets are used in this section to assess the superiority of the Maxwell-
Dagum distribution.

6.1 Data sets
We analyze two data sets in comparing the flexibility of the Maxwell-Dagum distri-
bution against its other competing distributions. The first data set has been studied
by Almetwally et al. (2021) and the data represents the mortality rate of COVID-19
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belonging to Canada of about 36 days from 10 April, 2020 to 15 May, 2020. The second
data was reported in Alqallaf et al. (2015) and the data represents the waiting time
of bank customers before service is being rendered and it’s measured in minutes. The
first and second data sets are presented in Table 9.

Table 9: Data sets
First Data Set.

3.1091 3.3825 3.1444 3.2135 2.4946 3.5146 4.9274 3.3769
6.8686 3.0914 4.9378 3.1091 3.2823 3.8594 4.0480 4.1685
3.6426 3.2110 2.8636 3.2218 2.9078 3.6346 2.7957 4.2781
4.2202 1.5157 2.6029 3.3592 2.8349 3.1348 2.5261 1.5806
2.7704 2.1901 2.4141 1.9048

Second Data Set.
0.8 0.8 1.3 1.5 1.8 1.9 1.9 2.1
2.6 2.7 2.9 3.1 3.2 3.3 3.5 3.6
4.0 4.1 4.2 4.2 4.3 4.3 4.4 4.4
4.6 4.7 4.7 4.8 4.9 4.9 5 5.3
5.5 5.7 5.7 6.1 6.2 6.2 6.2 6.3
6.7 6.9 7.1 7.1 7.1 7.1 7.4 7.6
7.7 8 8.2 8.6 8.6 8.6 8.8 8.8
8.9 8.9 9.5 9.6 9.7 9.8 10.7 10.9
11 11 11.1 11.2 11.2 11.5 11.9 12.4

12.5 12.9 13 13.1 13.3 13.6 13.7 13.9
14.1 15.4 15.4 17.3 17.3 18.1 18.2 18.4
18.9 19 19.9 20.6 21.3 21.4 21.9 23.0
27 31.6 33.1 38.5

6.2 Competing distributions
The competing distributions considered in this research include Beta-Dagum (B-D)
distribution by Domma and Condino (2013), Gamma-Dagum (G-D) distribution by
Rodrigues and Silva (2015), Weibull-Dagum (W-D) distribution by Tahir et al. (2018),
Extended-Dagum (E-D) distribution by Gomes-Silva et al. (2017), Exponentiated Gen-
eralized Exponential-Dagum (EGE-D) distribution by Nasiru et al. (2019), and Topp
Leone-Dagum (T-D) distribution by Rasheed (2020).

The pdfs plots for the proposed Maxwell-Dagum distribution and the competing
distributions using first and second data sets are provided in Figure 3.

6.3 Information criteria
The information criteria considered in this study include the use of Akaike Informa-
tion Criterion (AIC), Corrected Akaike Information Criterion (CAIC), and Bayesian
Information Criterion (BIC). The model with a minimum value of these criteria is con-
sidered the best that fits the data sets. The estimate of each parameter (estimate) and
its corresponding standard error (SE), AIC, CAIC, and BIC values for the proposed
distribution and other competing distributions by using first and second data sets are
presented in Tables 10 and 11.

The estimate, SE, AIC, CAIC, and BIC values for the Maxwell-Dagum distribution
and other competing distributions by using first and second data sets are presented in
Tables 10 and 11. It is observed from these tables that the Maxwell-Dagum distribution
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Figure 3: Fitted pdfs for the proposed and competing distributions using first data set
(left) and second data set (right).

has a minimum value of AIC, CAIC, and BIC against its competing distributions. This
implies that the Maxwell-Dagum distribution could be chosen as the best distribution
fitted for both data sets.

7 Conclusion
In this study, we proposed and derived some important properties of the Maxwell-
Dagum distribution including stress-strength, Rényi and q-entropies, and order statis-
tics. A simulation study was conducted from the basis of quantile function by us-
ing different methods of estimation including MPS, LSE and WSLE methods. Using
simulation, the LSE method could be chosen as the best method in estimating the
parameters of the Maxwell-Dagum distribution, and for the second simulation, the
WLSE could be a better choice. An application to two real life data sets relating to
the mortality rate belonging to Canada and the waiting time of bank customers was
used to assess the flexibility and potentiality of the Maxwell-Dagum distribution. It
found that the Maxwell-Dagum distribution could be preferred as the best distribution
used in modelling both data sets.

This research can further be extended as follows:
i. The research considered a compound Maxwell-Dagum distribution as the statistical
distribution developed by the same authors in Ishaq and abiodun (2020) and obtained
the estimates of its parameters by using different methods of estimation including MLE,
MPS, LSE, and WLSE. Further research will focus on developing a parametric regres-
sion model from the compound distribution, deriving some of its important features,
and obtaining the estimate of the parameters.
ii. The data sets used in this study were complete samples data. Further research
should consider incomplete (censored) data sets and apply them in the proposed para-
metric regression model.
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Table 10: The estimate, SE, AIC, CAIC and BIC values for the proposed and competing
distributions using first data set.

Model estimate SE AIC CAIC BIC
M-D a = 0.0976 0.1557 105.4012 106.6915 111.7352

t = 0.1349 0.0567
λ = 0.6493 0.3008
δ = 33.1759 6.7873

W-D b = 1.1833 0.4382 106.1207 107.411 112.4548
t = 0.1264 0.1080
λ = 2.0293 0.6608
δ = 71.9413 20.2296

T-D c = 0.5606 0.3738 108.7253 110.0157 115.0594
t = 0.0979 0.0706
λ = 2.5864 0.3246
δ = 337.9011 12.2972

G-D d = 20.8128 1.4445 106.1799 107.4702 112.514
t = 7.7367 13.4275
λ = 1.2322 0.4458
δ = 19.3742 15.1316

B-D θ = 8.3027 2.0350 106.2319 108.2319 114.1495
ϕ = 2.1335 19.1927
t = 0.5641 1.0149
λ = 3.9661 21.8523
δ = 147.4713 0.3548

E-D γ = 14.3839 3.6720 106.2567 108.2567 114.1743
τ = 3.3007 2.0012
t = 0.5243 0.0961
λ = 2.6039 0.8670
δ = 192.6840 4.1978

EGE-D ν = 0.1632 0.0159 447.1638 450.0604 456.6649
σ = 5.3390 1.1029
µ = 5.7547 0.2130
t = 4.8971 0.8541
λ = 0.0309 0.0015
δ = 5.3330 0.1793

iii. Subsequent research should develop many probability distributions by proposing a
Maxwell-Dagum generalized family of distributions. The properties and applications
to real data sets will also be considered in the study.
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Table 11: The estimate, SE, AIC, CAIC and BIC values for the proposed and competing
distributions using second data set.

Model estimate SE AIC CAIC BIC
M-D a = 0.6143 1.4989 641.9026 642.3237 652.3233

t = 0.1163 0.1560
λ = 0.4253 0.2177
δ = 15.4595 5.1714

W-D b = 1.7342 0.7400 641.9126 642.3337 652.3333
t = 0.2057 0.1315
λ = 0.5997 0.2348
δ = 14.1112 5.7188

T-D c = 0.1307 0.2713 643.1858 643.6069 653.6065
t = 95.3318 8.3673
λ = 2.0708 0.2196
δ = 7.2292 15.3440

G-D d = 7.6308 4.5926 642.269 642.6901 652.6897
t = 131.4359 5.5952
λ = 1.2701 0.2413
δ = 3.1382 1.3985

B-D θ = 0.6084 1.2539 644.1000 644.7383 657.1259
ϕ = 2.1390 3.0461
t = 0.5841 0.2416
λ = 9.3835 20.2932
δ = 31.9279 1.1943

E-D γ = 0.6038 1.0626 644.1352 644.7735 657.1611
τ = 1.9882 2.1556
t = 0.5809 0.2191
λ = 9.7680 17.8489
δ = 30.5689 1.2124

EGE-D ν = 6.7634 6.0289 646.1250 647.0282 661.7560
σ = 11.7648 10.6343
µ = 0.2994 0.1503
t = 1.4451 0.4103
λ = 17.6660 9.3523
δ = 13.4061 16.2329
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