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Abstract: The performance of justice systems is measured by empirical indicators in
both developing and developed countries. The findings of existing indicator initiatives
have historically been based on surveys of experts, document reviews, administrative
data, or public surveys. In this paper, Principal Component Analysis (PCA) and Clus-
ter Analysis (CA) methods were combined to resolve the problem of evaluating multiple
indicators. Using PCA, this method standardizes, reduces dimensions, and decorre-
lates multiple indicators of evaluation of justice systems and abstracts the principal
components. Then, CA is used to assign individuals (observations) to homogeneous
clusters (classes). Typically, hierarchical clustering on principal components (HCPC)
is employed to classify civil branches of a trial court in Iran to create a comprehensive
evaluation. By applying the multivariate statistical method to data, three principal
components are identified and interpreted. A hierarchical clustering algorithm is then
applied, which divides the data into three clusters based on dissimilarity. These groups
of the civil branches were identified based on nine judicial performance indicators. It
allows policymakers and reformers to measure the performance of each branch individ-
ually, and track their progress in reducing backlogs and delays separately. As shown
by the practical example, these methods are effective across justice units
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1 Introduction

A wide range of data is collected on different aspects of the justice system, which can
be summarized and communicated using justice indicators. They are useful for assess-
ing performance, drawing attention to problems, establishing benchmarks, monitoring
progress, and evaluating the effectiveness of policies or changes. The use of indicators
and other monitoring and evaluation mechanisms is critical to ensuring transparency
and accountability in justice. They also enable policymakers and reformers to obtain
valuable feedback Dandurand et al. (2015).

Since evaluating the operating state of an individual unit is a complex decision
system that involves multiple factors and indicators Luo et al. (2012), and there is
a correlation at each indicator, this will increase the difficulty of the analysis. In
order to evaluate the characteristics of unites, univariate analyses are limited, as they
evaluate each variable individually, whereas multivariate analyses take into account the
correlations between variables for a more complete interpretation of the information
extracted from a data set.

On the basis of principal component analysis (PCA), hierarchical clustering was
performed on the data to identify clusters of civil branches of an Iranian trial court
based on judicial performance indicators. PCA approach concentrates the information
and simplifies the structure of the indicators, making the process simple, intuitive, and
effective (Anderson (1962); Wolfgang and Leopold (2003)). It can be used to compress
a high-dimensional data set into a low-dimensional data set Santos et al. (2019). Thus,
it is able to monitor unperceived components in addition to univariate evaluation of
individual features Ribeiro et al. (2018). This multivariate statistical technique was
initiated by Pearson Pearson (1901) and developed by Hotelling (1933).

For developing inbuilt classification systems, hierarchical clustering has been a pow-
erful tool Murtagh and Contreras (2011). One of its highly desirable properties is that
the optimal number of clusters “K” does not need to be specified in advance, as in
other non-nested clustering techniques such as K-Means, etc. Hierarchical methods,
on the other hand, produce a unique nested hierarchy of clusters from which a partition
for any “number of clusters” can be obtained. Consequently, hierarchical clustering
provides an excellent framework for exploring relationships between clusters. The suc-
cess of hierarchical clustering in a procedure is also due to dendrograms, an extremely
insightful binary tree visualization of clustering Kimes et al. (2017). The analysis
is performed in the R environment for statistical computing and visualization. It is
free, runs on most operating systems, and contains valuable contributions from leading
computational experts in the field Thaka and Gentleman (1996).

Overall, each variable used in this study was examined to determine whether sim-
ilar characteristics of the analyzed performance could form groups and whether these
characteristics could be discriminatory in forming groups with homogeneity within
and heterogeneity between them Ventura et al. (2012). Based on Kaiser’s rule Kaiser
(1960), the number of principal components to be retained (i.e., the number of variables
required to explain variation in judicial performance) was determined by eigenvalues
(variances) greater than 1. Accordingly, only components with eigenvalues greater
than 1 were considered significant, while all components with eigenvalues less than 1
were discarded. Pearson’s correlation was used to analyze the relationship between the
original variables and the principal components. To confirm the results of the cluster
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analysis, we used the nonparametric Kruskal-Wallis test. Dunn’s (1964) post-hoc test
was also used to identify the variables that contributed to the differentiation of the
groups (p < 0.05), with Bonferroni corrections applied to the p—values. To confirm the
most important variables within each group, the hierarchical clustering by principal
components (HCPC) method was also used Husson et al. (2010).

This paper is divided into five sections. Section 2 and Section 3 contain a descrip-
tion of the data and materials and methods, respectively. With the aim of capturing
the determinants of the judicial performance of the Iranian justice system, we used data
from a judicial complex (EJC) consisting of 18 individuals (civil branches) described by
9 variables (selected indicators) to derive key measures of judicial performance. Section
4 is dedicated to the results and discussion. In this section, the successful clustering of
judicial performance indicators by PCA is demonstrated. Then, hierarchical clustering
based on principal component analysis is used to produce a comprehensive evalua-
tion. The result of the evaluation proves that the paper evaluation method (HCPC) is
effective. Section 5 briefly summarizes this study.

2 Data description

In Iran, the Judiciary Statistics and Information Technology Center publishes a report
each month titled “Justice Performance Report”, which uses two indices to evaluate
the performance of the judicial branches: the administrative index and the judicial
index.

According to the preface of the aforementioned April 2014 report states, “The
comprehensive statistical system of the electronic justice plan is called SAJA”. This
system aims to identify all statistical needs at the different levels of the judiciary, as
well as the environment outside the system. In addition, the judiciary collects its data
in the court case management system known as SAMP. Here, the research object is
about the 18 civil branches of the EJC in 2021-2022. The performance of the branches
is measured by 20 indicators (11 for the calculation of the administrative score, 9 for
the calculation of the judicial score). These variables can be measured using SAMP and
have a greater impact on court efficiency. Descriptive statistics for the EJC performance
assessment (by Judicial SAMP Score items) are presented in Table 1.

Table 1: Average, minimum, maximum, standard error values (EP) and coefficient of
variation (CV) of the SAMP judicial variables of EJC branches.

Variable| Variable’s Name Average [ Minimum [ Maximum| EP CV

X1 Time without action -2681 -7252 -164 445.85 [-70.54
X2 Judge’s order to the branch | 1339 0 7956 501.97 | 159.05
X3 Minutes of the proceedings |3067.03 0 9366.50 | 866.87 |119.91
X4 Out of turn minutes 1232.03 0 7219 520.03 [179.08
X5 Discretionary minutes 1263.06 0 9506 600.62 |201.75
X6 Subsidiary Opinion 537 170 892 51.98 | 41.06
X7 Litigation of without deten-| 40630 17007 67615 |3222.37| 33.64

tion

X8 Other closed files 927.2 444 2658 130.44 | 59.68
X9 Lawsuit without legal action | -278.9 -845 0 64.14 |-97.58
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The correlation coefficients between the indicators ranged from -0.62 to 0.65 for
judicial SAMP score (Table 2). Holm’s method revealed that these coefficients were
significant (p < 0.05), except for variables X1, X5, and X9 (p > 0.05) in Table 2,
which did not present significant correlations. Figure 1 visualize the correlation matrix
using a correlation diagram.

Table 2: Pearson’s correlation matrix, Kaiser-Meyer-Olkin (KMO) and Bartlett’s test
results for nine SAMP judicial indicators.

Variable] XTI [ X2 [ X3 [ X4 [X5] X6 | X7 [ X8 X9
X1 1.00
X2 0.20 | 1.00
X3 0.16 | 0.52 | 1.00
X4 0.25 | 0.50 | 0.65 | 1.00
X5 0.15 {-0.28-0.22|-0.14 | 1.00
X6 0.13 |-0.17] 0.14 |-0.00|0.17| 1.00
X7 0.330.46 | 0.53 | 0.54 |0.08] 0.51 | 1.00
X8 1-0.08(-0.15[-0.40(-0.24|0.18 [-0.62 |-0.55 | 1.00
X9 0.38 1 0.37 1 0.35 ] 0.32 /0.33] 0.07 | 0.34 |-0.11 1.00
Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy  0.651
Bartlett’s Test of Sphericity Significance 0.036
Notes: KMO measure of sampling adequacy is 0.651 which is satisfactory and
Bartlett’s Testof Sphericity is 0.036, thus confirming the appropriateness of the

dataset.
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Figure 1: Visualize the correlation matrix for SAMP judicial indicators.

Note that correlation analysis is an important source for understanding the degree
of association between two or more variables. It is also an essential prerequisite for use
in multivariate analyses, since variables must have some degree of correlation in order
to use PCA, for example.
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3 Materials and methods

It is necessary to have justice indicators that measure how effectively, efficiently, and
credibly a justice system is operating, and how sustainable it is. Among the variables of
justice indicators, univariate analyses are limited, as they evaluate each variable indi-
vidually, whereas multivariate analyses evaluate a set of characteristics concomitantly
considering the correlations between variables, resulting in a more reliable interpreta-
tion of the information extracted from a data set. Multivariate analysis of the EJC
branches allows to include in the analysis not only a single indicator but to select a few
variables and to make an analysis with a group of the selected indicators. Setting up
the variables is the first important step. The selection procedure is a critical aspect of
a multivariate analysis, as the outcome will depend on the original dataset analyzed.
In a multivariate analysis, the goal is to create relatively good isolated groups of EJC
branches, where the branches in a specific cluster are similar to each other and dif-
fer from those in other groups. For cases of strong correlations, the most significant
principal components were used instead of the original strongly correlated data set to
perform a cluster analysis. As principal components are linearly independent, they can
be used as inputs for cluster analysis.

3.1 Hierarchical clustering on principal components

PCA, hierarchical clustering, and K-means are three main multivariate data analysis
methods combined in HCPC. An analysis of PCA reduces the dimensionality of data by
extracting the most significant continuous variables. Cluster analysis is then performed
as a noise removal step to ensure robust clustering of the PCA findings (Maugeri et al.
(2021); Husson et al. (2010)). Lastly, the K-mean algorithm clusters them.

3.2 Layout and design of the study

All analyses were conducted using the R language for statistical computing Gardener
(2012). In the first step, R was installed and loaded with the packages necessary
for hierarchical clustering analysis. These packages included “FactoMineR” Lé et al.
(2008) and “factoextra” Kassambara and Mundt (2017).

As part of the second step of analysis, features were extracted using PCA, which
is frequently used to reveal hidden patterns in data. PCA is an unsupervised learning
method that reduces ambiguity while preserving trends over time for large datasets.
As our dataset contains variables that are correlated with one another, this was criti-
cal when working with it. Using PCA, a dataset is divided into principal components
(PCs), which correspond to uncorrelated variables that maximize variance successively
Lever et al. (2017). Setting ncp = 3 allowed us to analyze only the first three compo-
nents. Due to the significance of these three components, the less significant compo-
nents were ignored.

In the third step, hierarchical clustering was applied to selected principal compo-
nents. Implementation of the hierarchical clustering on principal components method
was done using the “FactoMineR” package. By applying the Ward criterion to the
selected principal components, hierarchical clustering was computed. In the hierar-
chical clustering algorithm, the Ward criterion, which is based on multidimensional
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variance and similar to principal component analysis, was implemented Maugeri et al.
(2021). In the initial partitioning, the hierarchical tree was split. K-means clustering
was used to make the partitioning robust, and individuals and variables were used to
characterize the clusters. Clustering is performed hierarchically on the basis of two
principles: (i) proximity within a class (a small variability within each class) and (ii)
distance between classes (a large variability between classes).

Having more classes makes homogeneity easier. A small number of classes, on the
other hand, will lead to more variability within each class. Therefore, before reaching
any strong conclusions based on this criterion, we consider the number of individuals
and number of classes. Ward’s method suggests a new way to do hierarchical clustering,
based on the criterion for quality of a partition Szekely and Rizzo (2005).

The Ward method begins with the clustering where each individual represents a
class. This implies that, within each class, there is no within-class variability, so the
between-class variability equals the total inertia (total variance), which leads to a per-
fect partition. According to Ward’s method, two classes, a and b, should be selected
so that aggregating them minimizes the decrease in the between-class inertia Szekely
and Rizzo (2005). In essence, the between-class inertia can only decrease when we ag-
gregate two classes, and we want to minimize this decrease. The dendrogram resulting
from hierarchical clustering was illustrated in the 4th step, using the “fviz_ dend()”
function in the factoextra package. Individuals on the principal component map were
highlighted in the fifth step using the “fviz_ cluster()” function of the “factoextra”
package, based on the cluster to which they were assigned.

In the sixth step, the plot() function was used to create a three-dimensional plot
combining hierarchical clustering with a factor map. The original data were created
along with the cluster designations and quantitative features that best define each
cluster. Key information about all clusters, including the “mean in category”, the
“overall mean”, “p—value” and principal dimensions significantly associated with these
clusters were calculated. Finally, a list of key individuals (civil branches of the courts)
in each cluster was compiled.

4 Results and discussion

This section provides details of all analyzes performed as part of this study. Most of
the analysis results have been presented as visualizations for ease of understanding.
The main purpose of this analysis is to extract the hidden patterns in the data and
visualize them in an appropriate way.

The circular diagram in Figure 2 represents the hierarchical clustering dendrogram
using Ward’s linkage and the Euclidean distance method for the 9 explanatory judicial
variables considered in the analysis. The output of the hierarchical clustering algorithm
on principal components resulted in a “factor map”, a “hierarchical clustering on the
factor map”, and a “dendrogram”. These visualizations can be seen in Figure 3 and
Figure 4. The hierarchical cluster tree with three clusters in black, green and pink
triangles is shown in Figure 4.

Figure 3 shows maps with identified clusters. Panel (a), in Figure 3, depicts the
PCA plot showing EJC branches assigned to each of the tree clusters. Cluster 1 and
2 have coordinates on dimension 2, which explain 18.9% of the variance in the data.
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Figure 2: Circular dendrogram for 9 explanatory judicial variables.
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Figure 3: (a) the court branches assigned to each of the 3 clusters, (b) a combined plot of hierarchical
clustering and PCA in a three-dimensional view.

Cluster 3 has coordinates on dimension 1, which explain 37.3% of the variance. Panel
(b) shows a combined plot of hierarchical clustering and PCA in a three-dimensional
view. Figure 4 which shows the hierarchical cluster tree showing the cluster dendrogram
dividing the EJC branches into 3 clusters along with a graphical output showing the
loss of inertia. Cluster 1 is enclosed in the black rectangle, whereas the pink and green
rectangles encloses the areas coming under Cluster 2 and Cluster 3, respectively. In
this figure, at the first bar in the graph, we see that there is a large loss in inertia when
passing from two classes to one, which means that it is not a good option to group
them together. In the same way, we see that there is a loss of inertia when passing
from three classes to two. In contrast, there is very little loss of inertia when passing
from four classes to three.
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Figure 4: Cluster dendrogram dividing the EJC branches into 3 clusters, showing the loss of inertia.

Eigenvalues obtained through PCA are used to determine the number of PCs to
keep, such that the most significant features are retained, and the trivial ones are
ignored. The eigenvalues presented in Table 3 show that a total of three PCs were
obtained. The eigenvalue of the first principal component explained 37.32% of the
variation, while 18.86% of the variation is explained by the second eigenvalue. The third
eigenvalue explained 16.67% of the variance. The cumulative percentage explained
is calculated by adding the running total of the successive proportions of variation
explained by each principal component; results can be observed in Table 3.

Table 3: Three principal components with their corresponding eigenvalues, percentage

of variance and cumulative percentage of variance for each principal component.

Principal |Eigenvalue Total Accumulated

Component Variance (%) | Variance (%)
PC1 3.3583900 | 37.315445 37.31544
PC2 1.6970643 | 18.856270 56.17171
PC3 1.5002547 | 16.669497 72.84121
PC4 0.7217379 | 8.019310 80.86052
PC5 0.5580466 | 6.200517 87.06104
PC6 0.4678144 | 5.197938 92.25898
PC7 0.2976201 | 3.306890 95.56587
PC8 0.2417719 | 2.686354 98.25222
PC9 0.1573001 1.747779 100.00000

The covariance matrix is symmetric, and symmetric matrices include orthogonal
eigenvectors; the PCA produced orthogonal components (Husson et al. (2010); Abdi
and Williams (2010); Wold et al. (1987)). The first principal component of the data
is the eigenvector with the highest eigenvalue 3.3583900; this component explains the
most variation in the data, making it the most significant component. Similarly, the
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eigenvector with the second largest eigenvalue, 1.6970643, became the second principal
component, and the third component became significant as well. However, the fourth
principal component explained almost law variance. As a result, this feature was not
examined further.

In the present study, the highest weighting coefficients (autovectors) and contribu-
tions (Figure 5a), for Table 4 represented by: X7(0.849), X3(0.797), X4(0.749) and
X2(0.654). As a result, X7 is an important indicator of the judicial SAMP score of-
fered to the EJC branches. Similarly, in PC2 the variables of major autovectors and
contributions were X6(0.818), X2(-0.541) and X5(0.537) which explained 18.86% of
the total variance (Figure 5b). Further, X5 presented an autovector of 0.697 in the
PC3, X9 (0.628), X8(0.510) and X1(0.508) explaining 16.67% of the total variation
of the data (Figure 5¢). X5 content proved to be the component with the highest
variability of the judicial SAMP score analyzed EJC branches.

Table 4: Autovectors for the nine descriptive variables of EJC.
Variable]| PCI | PC2 | PC3
X1 0.44110.123 [ 0.508
X2 0.654 |-0.5411 0.055
X3 0.797 1-0.249(-0.151
X4 0.749 -0.345| 0.027
X5 1-0.082| 0.537 | 0.697
X6 0.378 | 0.818 [-0.271
X7 0.849 | 0.255 |-0.045
X8 ]-0.605(-0.430| 0.510
X9 0.551 | 0.028 | 0.628
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Figure 5: The main components (PC1, PC2 and PC3) contributions for SAMP judicial indicators.

PCA used a projection diagram (Figure 6) to evaluate the behavior of variables
based on correlations inherent to the distribution of the components, as well as a
function of the angle formed by the vectors. When the angle between the variables
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(vectors) is close to zero, the correlation is very high and positive and will be close;
when the angle is close to 180°, the correlation is very high and negative and will be
more distant; when the angle is 90°, the correlation is less Bodenmiiller et al. (2020).
According to the judicial score indicators, a strong correlation could be observed
between the contents of X7, X1, X9, X3, X4 and X6, characterizing the EJC branches
performance and these variables were close to axis 1 and in the same quadrant (1),
except for X3, X4 and X2 which appeared in the quadrant (4). Therefore, we can
verify that the variables with the greatest length vectors were the most important. In
addition, the angle formed between the variables was less than 45°, indicating a strong
relationship between those characteristics. The inverse situation was observed for X8,
which formed an angle close to 180° and appeared in opposite quadrants, presenting
a strong negative (positive) correlation. In the graph, different colors are used to
represent the correlations between the analyzed characteristics within a component,
the colors orange and blue represent positive and negative correlations respectively.

Variables - PCA

1.0-

Dim?2 (18.9%)
g

0.0
Dim1 (37.3%)

Figure 6: Projection of judicial performance variables for EJC branches in the main components
(PC1, PC2).

It is common to use a graphical representation known as a scree plot to determine
how many PCs should be retained. In a scree plot, each PC’s eigenvalues are depicted
in a simple line segment plot. A scree plot, on the other hand, serves as a diagnostic
tool to determine if you need to run PCA on your data or not. The y-axis shows the
eigenvalues, and the z-axis shows the number of factors. In scree plot, all components
are selected just before the line flattens out, looking for the “elbow” in the curve. The
curve always indicates a downward slope.

Visualize eigenvalues (scree plot) Show the percentage of variances explained by
each principal component. In Figure 7, just PC 1,2, and 3 are enough to describe the
data. These PCs have capture most of the information, then we can ignore the rest
without losing anything important.

After applying hierarchical clustering on PCs, the combined plot of hierarchical
clustering and PCA was created, which can be seen in Figure 4. The analysis of the
clusters revealed that five EJC branches were assigned to Cluster 1 and Cluster 3, and
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Figure 7: Scree plot for 9 judicial performance indicators.

eight EJC branches was assigned to Cluster 2.

Each cluster was found characterized by the variables (numerical characteristics) in
our dataset. The numerical characteristics that best define each cluster are displayed
in Table 5.

Table 5: The clusters characterized by the variables.

Clusters [ Variables[V. test| Mean in | Overall Sd in [Overall [ P-Value
Category| Mean |Category| Sd
X8 3.248 1.235 [6.09Te-17| T1.069 0.972 | 0.001
Cluster 1 X3 -2.134 | -0.81 |6.167e-18 | 0.024 0.972 0.03

X7 -2.355 | -0.895 |-1.214e-16| 0.715 0.972 | 0.019
X6 -2.976 | -1.131 | 1.214e-17 | 0.333 0.972 | 0.003
Cluster 2 X6 2.280 | 0.603 | 1.214e-17| 0.668 0.972 | 0.022
X3 3.357 1.276 | 6.168e-18 | 0.476 0.972 | 0.001
X4 2.857 1.086 |-1.889e-17| 1.288 0.972 | 0.004
Cluster 3 X2 2.705 1.028 |-1.735e-18| 1.253 0.972 | 0.007
X7 2.111 0.802 |-1.214e-16| 0.724 0.972 0.035
X9 1.991 0.757 | 8.842e-17| 0.384 | 0.9718 | 0.0465

Table 5 shows quantitative variables significantly associated with clusters. When
compared to other clusters, EJC branches in Cluster 1 had significantly higher average
X8 with high score (mean in category). Similarly, EJC branches in Cluster 3 had a
higher average number of judicial performance score(mean in category) as compared
to other clusters. When compared to other clusters, EJC branches in Cluster 3 had
a significantly higher average point prevalence rate of X3 (mean in category). Table
6 shows the principal dimensions belonging to each cluster. Table 6 output indicates
that Cluster 1 has lower coordinates on dimension 1. Cluster 2 has high coordinates
on dimension 2. Similarly, Cluster 3 has high coordinates on dimension 1.

Hierarchical clustering is based on an appropriate metric as a measure of distance
between pairs of observations Erigoglu and Sakallidglu (2010). Cursory scrutiny of the
hierarchical clustering dendrogram, which serves as a summary of the distance matrix,
reveals the similarities and differences between individuals in each cluster. From Figure
3, it can be observed that EJC branch “2” is closer to “1, 16” as compared to “8, 9,
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Table 6: Clusters with their respective coordinates.
Clusters [ Variables[ V. test| Mean in | Overall Sd in [Overall[P-Value
Category| Mean |Category| Sd
Cluster 1| Dim.3 [2.0414] 0.978 [-3.968e-17| 1.087 1.225 | 0.041
Dim.1 |-2.353 | -1.687 |-4.626e-17| 0.935 1.833 | 0.019
Cluster 2| Dim. 2 | 2.692 | 0.951 | 1.667e-16 | 1.045 1.303 | 0.007
Cluster 3] Dim. 1 | 3.284 | 2.353 [-4.626e-17| 1.132 1.833 | 0.001

4, 17”. The individuals lying on the same unit of the hierarchical dendrogram tree
are closer to one another and closest to their respective clusters’ centers. The same
phenomena are displayed in Table 7, denoted as paragons. The top five individuals as
the regions closest to the cluster center are presented for each cluster. The individuals
in each cluster obtained in Figure 4 are similar to the individuals shown in Table 7
as paragons of each cluster. EJC branch “3, 7, 11, 14, 18” belongs to Cluster 1 and
is the closest to the center of the first cluster. EJC branch “1, 5, 10, 13, 16” belongs
to Cluster 2 and is the closest to the center of the second cluster. EJC branch “2,
4, 8,9, 17” belongs to Cluster 3 and is closest to the center of the third cluster (see
Table 7). The individuals, based on the dissimilarity matrix, have been separated into
different clusters, and the individuals belonging to one cluster are at a farther distance
from the individuals belonging to another cluster. The phenomenon is expressed in
Table 7. Thus, these court branches were the most important ones characterized by
high judicial performance score. These court branches should be given greater priority
while implementing adequate reform in the future.

Table 7: Each cluster’s most important variables, closest to their respective cluster
centers.

Clusters [ Court Branches| Paragons
0.4149238

3 0.8798506

Cluster 1 18 1.4922195
14 1.8237490

11 2.2481085

T 0.6183443

16 1.1859279

Cluster 2 13 1.3220244
5 1.6551833

10 1.6998633

4 0.9396393

17 1.0442786

Cluster 3 9 1.4678501
2 1.7547585

8 2.8218436

Table 8 displays the distances between EJC branches in one cluster and EJC
branches in other clusters. EJC branch “11, 14, 7, 3, 18” belongs to Cluster 1 and
is far away from the centers of Clusters 2 and 3. EJC branch “6, 13, 10, 15, 12” be-
longs to Cluster 2 and is far away from the centers of Clusters 1 and 3. Similarly, EJC
branch “8, 9, 4, 17, 2” belongs to Cluster 3 and is far away from the centers of Clusters
1 and 2.
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Table 8: Dissimilarity matrix separated the individuals.

Clusters [ Court Branches|Distance
11 4.317831
14 3.752673
Cluster 1 7 2.928004
3 2.121412
18 2.018444
6 4.193934
13 3.481620
Cluster 2 10 3.326223
15 3.044014
12 2.997662
8 5.975218
9 3.515840
Cluster 3 4 2.584119
17 2.576383
2 2.522028

Discussion and conclusions

Justice indicators have been developed and used numerous times over the last decade.
In different contexts, they were driven by different goals, took different forms, had
different scopes, used different methods, and were managed differently Dandurand et
al. (2015). In the present paper, we used the HCPC method to provide an effective
evaluation of judicial performance indicators in the justice systems. This method has
been used in many researches in different fields (Koh et al. (2022), Abreu et al. (2020),
Combes and Azéma (2010), Penkova (2017), Shang and Wang (2015)), but it has not
been used before in this field. By employing principal component analysis to identify
the major judicial indicators affecting the operation state of a court branches, the com-
prehensive evaluation index system was considered. The principal components were
then extracted as new data matrices for clustering, which eliminates the need for sub-
jective selection of cluster variables. Finally, using the principal component score to
quantify the pros and cons of each factor, the final evaluation results accurately reflect
the overall operating state of the court. Calculation results show that, when there
is a strong linear association between the indicators, the most significant principal
components are used, rather than the original strongly correlated dataset. Nine indi-
cators were used to group 18 civil branches based on their similarity. Based on judicial
score indicators, those branches were divided into three subgroups at the end of the
study. Overall, the paper method (HCPC) could give guidance unite state comparisons
among different justice institutions and launching competition among different levels
of judicial institutions. This method could produce acceptable clustering based on a
set of justice performance indicators. It involves determining the distance between
each pair of objects based on the study’s indicators, and then grouping units that are
close enough together. A primary benefit of this method in judicial context is that it
uses a clustering approach to investigate PCA results, resulting in a better cluster ar-
rangement. The effectiveness of the reforms of the judiciary system must be evaluated
by distinguishing between different clusters of judicial performance scores. Delineating
the demarcation may also aid in directing future countermeasures, which should be
implemented in accordance with unite conditions. Furthermore, making appropriate
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modifications to our strategy might help us deal with emergencies in the future.
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