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Abstract: In Bayesian inference, the acquisition of prior distributions plays a fun-
damental role. While authorized priors need not conform to traditional probability
densities and may be improper priors, obtaining proper prior densities remains a chal-
lenge in the Bayesian literature. This article explores a set of conditions that enable
the establishment of specific assumptions, ensuring that maximum entropy priors and
restricted reference priors become proper and transform into probability density priors.
By examining these conditions, this study contributes to the advancement of proper
prior acquisition in Bayesian analysis.

Keywords: Constrained prior; Jensen inequality; Maximum entropy prior; Restricted
reference priors.
Mathematics Subject Classification (2010): 62F15.

1 Introduction
In Bayesian literature, inference is made by mixing prior information about model pa-
rameters and available data which is called posterior probability. The posterior prob-
ability is a conditional probability distribution obtained by applying the distributional
form of Bayes theorem. Indeed, given prior distribution π(θ), posterior distribution
obtained as:

π(θ | x) = f(x | θ)π(θ)
p(x)

,

where f(x | θ) is likelihood function and p(x) =
∫
f(x | θ)π(θ)dθ. Accordingly, the

posterior distribution changes by changing π(θ). Gelman (2006) proposed two key
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issues about setting up a prior distribution as:
• what information is going into the prior distribution.
• the properties of the resulting posterior distribution.

Priors can be classified in several ways such as: 1- the information about the model
parameters that it divides them into informative, weakly informative and uninforma-
tive priors. For example, Jeffreys prior, proposed by Jeffreys (1946) is an uninforma-
tive prior. 2- the proper or improper priors. Indeed, improper priors are not actual
probability distribution but make posterior probability distribution. 3- conjugate or
non-conjugate priors. For example, beta distribution can be considered as conjugate
priors for data with Bernoulli, Binomial and Geometry distributions. Let us note that
a prior distribution can be in several class of the mentioned classes. We can define
another class of priors with an interior prior π0 in their structure. Maximum entropy
prior is one of these kind of priors. We call this class as interior based priors. The main
focus of this paper is around interior based priors and their conditions to be proper.
For more information about prior distributions and their classification, see Kass (2005),
Gelman (2006), Bernardo and Smith (2009) and their references.

Prior distribution makes a wide-range concept. Hence, the study of their mathe-
matical properties is an important subject in the concept of Bayesian statistics. Case
and Keats (1982) examined the relationship between defectives in the sample and defec-
tives in the rest of the lot for each of five prior distributions in the concept of Bayesian
acceptance sampling. Chen et al. (2020) studied several theoretical properties of Jef-
freys prior for binomial regression models and showed that Jeffreys prior is symmetric
and unimodal for a class of binomial regression models. Rojas et al. (2009) presented
an assessment of prior knowledge and a sensitivity analysis of the prior in groundwater
modeling, emphasizing the importance of selecting proper prior probabilities. Tang
et al. (2016) described tools for the evaluation of parameter sensitivity to the prior
distribution to provide guidelines for defining meaningful priors using Kullback-Leibler
Divergence and prior information elasticity. Gelman et al. (2017) precisely subjected
the challenge in choosing prior distributions in Bayesian analysis, mentioning various
common types of priors and their conceptual tensions. Their paper offers a resolution
by considering the choice of priors within the broader context of Bayesian analysis, en-
compassing inference, prediction, and model evaluation. Banner et al. (2020) provided
the underutilization of Bayesian data analysis in ecology due to insufficient attention
to prior specification. Their work showed the importance of choosing priors. Kosmidis
and Firth (2021) studied the properties of Jeffreys prior when it was used in the concept
of generalized linear models.

Our findings in the paper contribute to the broader field of Bayesian inference,
specifically focusing on the challenges related to prior distributions and the critical
role they play in Bayesian analyses. Additionally, we wrote this paper as the readers
even with little statistical knowledge can better comprehend our research.

This paper employs Jensen’s inequality in the context of statistical literature to in-
troduce two general inequalities for integrating prior distributions. These inequalities
are then utilized to establish the probability density conditions for maximum entropy
and restricted reference priors (continuous versions of them). These priors are partic-
ularly useful when dealing with scenarios where there is limited information available
about the model parameters. Obtaining a probability density as a prior under such



147 A.H. Ghatari, E. Tabrizi

circumstances is advantageous.
Section 2 of the paper provides a comprehensive overview of fundamental concepts,

including the definition of entropy. In Section 3, a generalized form of inequality
encompassing improper integrals is proven, leading to the derivation of the probability
density conditions for maximum entropy and restricted reference priors.

2 Basic concepts
In this section, we recall basic definitions which are required to obtain the main results
of the paper. Maximum entropy prior, restricted reference prior and Jensen inequality
are the concept that will be reviewed in continue.

2.1 Maximum entropy prior
In most of the cases, there is a low information about the unknown parameter. On
the other hand, it is better to use non-informative priors since by using them the
Bayesian inference has at least equal accuracy versus classical statistical inference. For
example, may be we know mean and variance of prior distribution. In this case, we
are looking for the most non-informative density between all of prior densities with the
given constrains. When we have a continuous parameter space, a useful approach is
using entropy concept.

Definition 2.1. When θ ∈ Θ and Θ is continuous, the entropy of prior density (π) is
defined as follows

En(π) = −
∫
Θ

π(θ) log(
π(θ)

π0(θ)
)dθ, (1)

where π0(θ) is an invariant non-informative prior for θ.

If our knowledge about unknown variable parameter θ be functions as gk(θ), k =
1, ..,m with these constrains:

E(gk(θ)) =

∫
Θ

π(θ)gk(θ)dθ = µk , k = 1, ...,m.

Maximum Entropy prior is density that maximize (1) and it can calculate as follows

π̄(θ) =

π0(θ) exp(
m∑

k=1

λkgk(θ))∫
Θ

π0(θ) exp(
m∑

k=1

λkgk(θ))
, (2)

where λk is constant that calculated based on knowledges gk(θ). For more informa-
tion about maximum entropy priors see Berger and Berger (1985), Cover (1999), and
Bernardo and Smith (2009). As we can see π̄(θ) in (2) is depended to π0(θ) and we
call it as interior prior for π̄(θ).
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2.2 Restricted reference prior
The reference prior framework can be applied to allow constraints much like the kind
imposed on the maximum entropy priors. Hence, we want the prior that maximizes the
mutual information between the prior and posterior while satisfying the constraints

Ep [gk(θ)] = βk, k = 1, . . . ,m,

where m is the number of constraints (similar to maximum entropy). The common
analytical form of restricted reference prior is

πRR(θ) = π0(θ) exp

(
m∑

k=1

λkgk(θ)

)
, (3)

where π0(θ) is the prior for the unconstrained form of problem (simultaneously interior
prior for πRR(θ)). This prior is known as a tilted distribution. For more information
about reference prior and its various types see Bernardo (2005).

2.3 Jensen inequality
Jensen inequality relates the value of a convex function of an integral to the integral
of the convex function. The inequality proposed and proved by Jensen (1906). If g is
a real-valued function that is integrable on its domain, and if φ is a convex function
on the real line, then Jensen inequality is defined as

ϕ

∫
Dx

g(x)dx

 ≤
∫
Dx

ϕ (g(x)) dx.

The same result can be equivalently stated in a probability theory setting Perlman
(1974), let X be an integrable real-valued random variable and ϕ a convex function.
Then:

ϕ (E(X)) ≤ E (ϕ (X)) . (4)

Note that the sign of the inequality is changed when ϕ be a concave function. Also
Jensen inequality has different types and special cases. For more information about
Jensen inequality, see Rudin (1987).

3 Problem and results
In the realm of Bayesian statistics, the selection of prior distributions poses significant
challenges. As discussed in Section 1, priors exhibit various properties, which include
the classification into proper and improper priors. While improper priors do not con-
form to probability density functions, the resulting posterior distributions can still
be expressed as probability densities under any circumstances. Within this section, we
present a set of inequalities, including an interval, that applies to a broad range of prior
distributions encompassing two specific types of constrained priors known as interior
based priors. These priors consist of the restricted reference priors and the maximum
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entropy priors. By making certain assumptions, we establish that both types of priors
become proper if their corresponding interior prior is proper. Next Lemma provides
a generalized form of Jensen inequality which is used to obtain inequalities (including
an interval) for prior distributions.
Lemma 3.1. suppose that f,g : Dx → R+ and concave function ϕ(x) = log(x) exist.
i. If

∫
Dx

f(x)dx = k and 1 ≤ k ≤ ∞ then:

∫
Dx

f(x)

k
log(g(x))dx ≤ log

∫
Dx

f(x)g(x)dx

 .

ii. If
∫
Dx

f(x)dx = k and 0 < k < 1 then for h=f/k:

∫
Dx

h(x) log(g(x))dx ≤ log

∫
Dx

h(x)g(x)dx

 .

Proof. i. If k = ∞ based on intermediate value theorem for integral there exists ξx so
that

log(

∫
Dx

f(x)g(x)dx) = log(g(ξx)

∫
Dx

f(x)dx) = k∞ = ∞.

So we have ∫
Dx

f(x)

k
log(g(x))dx ≤∞ = log(

∫
Dx

f(x)g(x)dx).

If 1 ≤ k < ∞, we have∫
Dx

f(x) log(g(x))dx = k

∫
Dx

(f(x)/k) log(g(x))dx = kE(log(g(X))).

Since f(x)
k is a density function, we have∫

Dx

f(x)

k
log(g(x))dx = E(log(g(x))),

according to (4) for concave functions, we have

E(log(g(x))) ≤ log(E(g(X)))

= log(

∫
Dx

(f(x)/k)g(x)dx) ≤ log(

∫
Dx

f(x)g(x)dx).

ii. if
∫
Dx

f(x)dx = k then
∫
Dx

h(x)dx = 1 so we have∫
Dx

h(x) log(g(x))dx ≤ E(log(g(X))) ≤ log(E(g(X))) = log(

∫
Dx

h(x)g(x)dx).
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Similar to the Lemma 3.1, if we put the concave function ϕ(x) = exp(x), we reach
to
i. If

∫
Dx

f(x)dx = k and 1 ≤ k ≤ ∞ then

∫
Dx

f(x)

k
exp(g(x))dx ≥ exp

∫
Dx

f(x)g(x)dx

 .

ii. If
∫
Dx

f(x)dx = k and 0 < k < 1 then for h = f/k

∫
Dx

h(x) exp(g(x))dx ≥ exp

∫
Dx

h(x)g(x)dx

 .

Using Lemma 3.1, the following theorem provides preliminaries to reach the conditions
of obtaining making probability density by maximum entropy and restricted reference
priors.

Theorem 3.2. Suppose that θ ∈ Θ and Θ is continuous and π(θ) be a interior based
prior for θ. If π(θ)

π0(θ)
≥ 1, then∫

Θ

π(θ)dθ ≥ 1

M
√∫

Θ

exp |log(π0(θ))| dθ
,

where M = sup
θ∈Θ

π(θ), and π0(θ) is same as an interior prior for π(θ).

Proof. i. Based on the assumptions of the theorem, π0(θ) and π(θ) are positive. Ac-
cording to (2.1), the entropy of π(θ) is defined as (1) and we can write

0 ≤ |En(π)| =

∣∣∣∣∣∣−
∫
Θ

π(θ) log(
π(θ)

π0(θ)
)dθ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
Θ

π(θ) log(
π(θ)

π0(θ)
)dθ

∣∣∣∣∣∣ .
Hence, we have

0 ≤ |En(π)| =

∫
Θ

π(θ)ln(
π(θ)

π0(θ)
)dθ

=

∫
Θ

π(θ) log(π(θ))dθ −
∫
Θ

π(θ) log(π0(θ))dθ.

On the other hand, according to Lemma 3.1, we have:∫
Θ

π(θ) log(π0(θ))dθ ≤
∫
Θ

π(θ) log(π(θ))dθ
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≤ log

∫
Θ

kπ(θ)π(θ)dθ ≤ log kM

∫
Θ

π(θ)dθ ≤ log(Mk2), (5)

where k =
∫
Θ

π(θ)dθ. We can obtain from (5) and using the properties of absolute and

logarithmic functions

exp{
∫
Θ

π(θ) |log(π0(θ))| dθ} ≥ 1

Mk2
.

Again according to Lemma 3.1 for convex function f(x) = ex we have∫
Θ

π(θ) exp (|log(π0(θ))|) dθ ≥ 1

Mk2
.

Hence, using the property of M , we can conclude that

M

∫
Θ

exp |log(π0(θ))| dθ ≥ 1

Mk2
.

Therefore, we have

k =

∫
Θ

π(θ)dθ ≥ 1

M
∫
Θ

exp |log(π0(θ))| dθ
.

Before presentation of Corollary for Theorem 3.2, we need to consider a set like Π1

with following definition

Π1 = {π(θ) | π(θ) ≥ 1 , θ ∈ Θ}.

It contains all possible priors which their range is greater than 1. In continue, we
obtain an interval for all π(θ) satisfying the terms of Theorem 3.2. Then, we show
that the restricted reference priors satisfy the terms of Theorem 3.2. In addition, we
prove that maximum entropy priors hold the both terms of Theorem 3.2 under different
assumptions.

Corollary 3.3. if π(θ)

π0(θ)
≥ 1 and π0(θ) ∈ Π1, then

1

M2
∫
Θ

π0(θ)dθ
≤
∫
Θ

π(θ)dθ ≤ 1

I1
log

∫
Θ

π0(θ)dθ,

where M is defined in Theorem 3.2 and I1 = inf
θ∈Θ

log π0(θ)
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Proof. Form Theorem 3.2, we have∫
Θ

π(θ)dθ ≥ 1

M2
∫
Θ

exp (|log(π0(θ))|) dθ
,

and because π0(θ) ∈ Π1 it will be obtained that |log(π0(θ))| = log(π0(θ)). Hence, we
can write ∫

Θ

π(θ)dθ ≥ 1

M2
∫
Θ

exp (|log(π0(θ))|) dθ
=

1

M2
∫
Θ

π0(θ)dθ
. (6)

On the other hand, since π0(θ) ≥ 1 then π(θ) ≥ 1. Therefore, we can immediately
conclude that

π(θ) log(π0(θ)) ≤ log(π0(θ)).

Hence, we have

I1

∫
Θ

π(θ)dθ ≤
∫
Θ

π(θ) log(π0(θ))dθ ≤ log

∫
Θ

π0(θ)dθ, (7)

where we know I1 ≥ 0. Finally, according to (6) and (7), we reach to

1

M2
∫
Θ

π0(θ)dθ
≤
∫
Θ

π(θ)dθ ≤ 1

I1
log

∫
Θ

π0(θ)dθ.

It can be said that Corollary 3.3 shows that when π0(θ) ∈ Π1, any unknown prior
π(θ) is bounded just if it holds the assumptions. Note that if the lower bound of
interval in Corollary 3.3 be infinity then without any calculation we can conclude that
all of the interior based priors obtained by π0(θ) are improper priors. For example,
maximum entropy (π̄(θ)) and reference (restricted or not) priors are improper if they
satisfy the conditions of Theorem 3.2 or Corollary 3.3.

Consider restricted reference prior (3). It is clear that

πRR(θ)

π0(θ)
= exp

(
m∑

k=1

λkgk(θ)

)
≥ 1. (8)

Hence, we can conclude that πRR(θ) holds the condition of the first term in Theorem 3.2
in any case. Also, if π0(θ) ∈ Π1, then we have the results of Corollary 3.3 for πRR(θ).
In continue, we check the required conditions for π̄(θ) to satisfy the assumptions of
Theorem 3.2. According to (2), we have

π̄(θ) =

π0(θ) exp(
m∑

k=1

λkgk(θ))∫
Θ

π0(θ) exp(
m∑

k=1

λkgk(θ))
. (9)
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The denominator of π̄(θ) is a constant value and we call it C. Hence, if C ≤ 1 then we
have:

π̄(θ)

π0(θ)
=

1

C
(θ) exp

(
m∑

k=1

λkgk(θ)

)
≥ 1.

Therefore, the terms of Theorem 3.2 holds. If C ≥ 1, there is no certain answer but, it
depends on the numerator of π̄(θ). Note that we have the results of Corollary 3.3 for
π̄(θ) when C ≤ 1.

In the concept of prior distributions, sometimes the obtained prior is improper
and actually cannot considered as probability density. The following theorem propose
situation about interior based priors which says that they are proper if we choose a
proper interior prior (π0(θ) be proper).

Theorem 3.4. Suppose that π0(θ) is proper,
i. if π(θ)

π0(θ)
≥ 1 and π0(θ) ∈ Π1, then π(θ) is proper and we can reach to a prior

probability density on Θ.
ii. If π(θ)

π0(θ)
≤ 1, then π(θ) is proper and we can reach to a prior probability density.

Proof. According to the assumptions,
∫
Θ

π0(θ)dθ = K < ∞. Also, π0(θ) ≥ 1. Hence,

I1 = inf
θ∈Θ

log π0(θ) < ∞.
i. From Corollary 3.3 we have∫

Θ

π(θ)dθ ≤ 1

I1
log

∫
Θ

π0(θ)dθ =
logK

I1
= K∗ < ∞,

therefore,
∃ C1 ∋

∫
Θ

π(θ)dθ = C1 < ∞ =⇒
∫
Θ

π(θ)

C1
dθ = 1.

Hence, π∗(θ) = π(θ)
C1

is a probability density on Θ.
ii. Based on the assumptions and Theorem 3.2, log π0(θ)

π(θ) ≥ 0. Hence, I = inf
θ∈Θ

log π0(θ)
π(θ) <

∞. Consequently, we have
∫
Θ

π(θ)dθ ≤ K
I < ∞ therefore,

∃ C2 ∋
∫
Θ

π(θ)dθ = C2 < ∞ =⇒
∫
Θ

π(θ)

C1
dθ = 1.

Hence, π∗∗(θ) = π(θ)
C1

is a probability density on Θ.

Corollary 3.5. Suppose that π0(θ) is proper. If π0(θ) ∈ Π1, then restricted reference
prior provides a proper prior.

Proof. From the inequality (8), we have πRR(θ)
π0(θ)

≥ 1. Also, π0(θ) ∈ Π1, then according
to Theorem 3.4,

∃ C3 ∋
∫
Θ

πRR(θ)dθ = C3 < ∞ =⇒
∫
Θ

πRR(θ)

C3
dθ = 1.
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Similarly, for maximum entropy prior, if C ≤ 1 in (9) then we can obtain C4 such
that ∫

Θ

π̄(θ)

C4
dθ = 1.

Indeed, if we choose a proper interior prior, then we can build a certain density proba-
bility prior based on restricted reference prior and maximum entropy prior as interior
based priors.

4 Discussion and conclusions
In Bayesian literature, posterior distributions are inherently represented as probability
densities. However, the priors employed in such analyses can take on either proper
or improper forms. By utilizing a prior with a probability density function for the
parameters within a statistical model, we gain access to valuable insights into the
parameter distribution prior to observing data and computing posterior densities. The
main contribution of this paper lies in establishing the conditions which are necessary
for obtaining proper priors when the parameter space is continuous and particularly in
scenarios where limited information is available regarding the model parameters (such
as when maximum entropy and restricted reference priors are employed). For future
research endeavors, it would be worthwhile to explore the properties of priors utilized
for linear model coefficients, especially within the context of non-Gaussian distributed
models.
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