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Abstract: Most of the research on optimal designs concentrates on D-optimal designs
for linear and nonlinear models with fixed effects. Recently nonlinear models with
random effects have been of great attention because these models are more applicable
to describing real data. In this paper, E-optimal designs for the Poisson regression
with random effects have been considered. A new version of the equivalence theorem
is prepared for this criterion in the Poisson regression model with random effects.
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1 Introduction
Experimental design is a powerful statistical tool for scientific research and industrial
applications. A well-planned experimentation is an effective way to improve the quality
of the analysis. The idea of optimal designs is to find the best values of the control
variables, which maximize the amount of information obtained from observations. To
compare different designs, it is necessary to define a criterion, a real-valued function on
the Fisher information matrix for the parameter vector that equals the inverse of the
variance-covariance matrix. Most of the literature on the optimal design concentrates
strongly on D-optimality, which is the based on minimizing of the real value function,
determinant , of the variance-covariance matrix of estimators. In contrast, it has
paid less attention to E-optimal designs, which minimize the largest eigenvalue of the
variance-covariance matrix of estimators. E-criterion is recognized as special case of
the Kiefer’s Φq-criterion for q → ∞, for example see Kiefer (1974).
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Dette and Studen (1993) consider the E-optimal design problem by investigating
the geometric properties of linear models. They presented new proof for spring balance
and chemical balance weighting designs. For the linear and nonlinear models with two
parameters, the optimality of their design was investigated analytically by Dette and
Haines (1994). The E-optimal designs for nonlinear regression models are presented
by Dette and Melas (2004) in detail. They showed the optimality that occurred in the
Chebyshev points. Prus (2019) discussed the equivalence of the E-criterion between
the fixed effects model and random coefficients regression models.

This work concentrates on the E-optimal designs for the Poisson regression model
with random effects. This model is widely used in biosciences when replicated measure-
ments are available from different individuals, for example Verbeke and Molenberghs
(2000). Due to the random effects, an explicit form for the variance-covariance ma-
trix could not be achieved. Niaparast (2009) and Niaparast and Schwabe (2013) used
the quasi-likelihood method and obtained a quasi-information matrix. Then consider
D-optimal designs for the quasi-likelihood estimator of parameters in mixed effects
Poisson regression models. We use these results to obtain candidates for the E-optimal
designs and check the optimality of these designs by using equivalence theorems. Fur-
thermore, among different strategies to find the optimal design for this model, we
consider designs as local because it is the basis for others.

This paper is organized as follows. In Section 2, we will introduce the model and
the variance-covariance structure of the quasi-likelihood estimator of parameters in the
Poisson regression model with random effects. In our case, a new equivalence theorem
for the E-criterion is deferred in Section 3. We will also obtain E-optimal designs for
some special cases of the Poisson regression model with random effects.

2 A review on the structure of model and design
specification

In this paper, we consider a Poisson regression model with random coefficients in which
the j-th observation of individual i, Yij , is distributed as a Poisson distribution with
the natural log link, log(λij) = fT (xij)bi, for i = 1, · · · , n and j = 1, · · · ,mi. Here
n is the number of individuals and mi is the number of observations per individual,
f = (f0, f1, · · · , fp−1)

T is the known regression function and the p × 1 vector bi =
(b0,i, · · · , bp−1,i)

T is a vector of random effects which is normally distributed with the
mean vector β = (β0, · · · , βp−1)

T and known variance-covariance matrix Σ. Further,
the random effects vector and observations in different individuals are assumed to be
uncorrelated, whereas observations into individuals are correlated.

On the individual level, the vector of the all mi observations, Yi = (Yi1, · · · , Yimi
)T ,

has the mean E(Yi) = (µ(xij), · · · , µ(ximi))
T where µ(x) = exp(fT (x)β + 1

2σ(x;x
′))

is the mean function with the dispersion function σ(x;x′) = fT (x)Σf(x′). Also the
variance-covariance matrix structure of Yi is given by Var(Yi) = Ai +AiCiAi where
Ai = diag{µ(xij)}j=1,··· ,mi

is a diagonal matrix with entries µ(xij) for j = 1, · · · ,mi

and Ci = (c(xij ;xik))j,k=1,··· ,mi
. Here c(x;x′) = exp(σ(x;x′))− 1 is the variance cor-

rection term.
By the same way, on the population level, the vector of the all observations Y =
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(Y T
1 , · · · ,Y T

n )T has the mean E(Y ) = (ET (Y1), · · · , ET (Yn))
T and the variance-

covariance matrix structure of Var(Y ) = A + ACA where A = diag{Ai}i=1,··· ,n
and C = diag{Ci}i=1,··· ,n.
Niaparast and Schwabe (2013) obtained the quasi-information matrix for the vector
of fixed effect parameters, β, in the Poisson regression model with random effects as
follows,

M(β) =
∑
i

Mi(β) =
∑
i

F T
i (A−1

i +Ci)
−1Fi,

where Fi = (f(xi1), · · · ,f(ximi))
T .

Let ξi =
{

xi1, · · · , xisi
pi1, · · · , pisi

}
be a design that we have planned to conduct experiments

for ith individual where pj =
mij

mi
(j = 1, · · · , si) stands for the proportion of ob-

servations taken at xj and
∑

j mij = mi. Also, denote the population design by
ζ =

{
ξ1, · · · , ξr
w1, · · · , wr

}
where wi = ni

n (i = 1, · · · , r) is the proportion of individuals
observed under the same design ξi where

∑
ni = n. Niaparast and Schwabe (2013)

have discussed the optimality of designs issue to obtain an optimal design ζ∗. They
showed to discover ζ∗ it is sufficient to consider single-group design instead of popu-
lation design, in other words ζ∗ =

{
ξ∗

1

}
. Therefore, we can observe all individuals

under the same design ξ. For design ξ, the quasi-information matrix can exhibit as
follows,

Mβ(ξ) = F T
ξ (A−1

ξ +Cξ)
−1Fξ,

where

Fξ = (f(x1), · · · ,f(xs))
T , Aξ = diag{mjµ(xj)}j=1,··· ,s, Cξ = (c(xj , xk))j,k=1,··· ,s.

Note that the quasi-information matrix depends on the unknown parameter vector β
through the mean function. Such a dependency usually occurs in nonlinear models.
To cover this difficulty, we will apply a locally optimal design approach that uses only
a point estimation.

3 Locally E-optimal
In optimal experimental design, it is necessary to determine the criterion which mea-
sures the quality of a design. Among different criteria in the literature for this purpose,
we concentrate on the E-optimal criterion, which focuses on the eigenvalue of the in-
formation matrix, for example see Pukelsheim (2006). We define the E-criterion

Ψ(ξ) = λmax(M
−1
β (ξ)),

as the largest eigenvalue of the inverse of the quasi informatin matrix. Hense, ξ∗ is
E-optimal if that minimizes Ψ(ξ). For the E-criterion, monotonicity can be seen easily
concerning loewner ordering. The following lemma verifies concavity for the E-criterion.

Lemma 3.1. The E-criterion is a concave function of ξ on the set of all designs.



E-optimal designs for Poisson regression models with random coefficients 150

Proof. The concavity of the E-criterion follows directly from Lemma 5.1 in Niaparast
and Schwabe (2013). Then the result is obtained in the sense of the Loewner ordering
of nonnegative definiteness. The following theorem gives a sufficient and necessary con-
dition that ξ∗ is E-optimal. For stating the equivalence theorem, we need to introduce
the sensitivity function d(x, ξ) as

d(x, ξ) = mµ(x) (f(x)− F T
ξ (A−1

ξ +Cξ)
−1cξ,x)

TM−1
β (ξ)qqT

×M−1
β (ξ)(f(x)− F T

ξ (A−1
ξ +Cξ)

−1cξ,x),

where q is the eigenvector corresponding to λmax(M
−1
β (ξ)) and the vector cξ,x =

(c(xj , x))j=1,...,s of joint (correlation) correction terms for the settings x1, ..., xs of a
design ξ for prediction of a further setting x.

Theorem 3.2. Let ξ∗ is a design with the maximum eigenvalue λmax(M
−1
β (ξ)) of the

inverse of quasi-information matrix with multiplicity 1. ξ∗ is locally E-optimal at β in
the mixed effects Poisson regression model, if and only if for all x ∈ X

d(x, ξ∗) ≤ qT (M−1
β (ξ∗))q − qT (M−1

β (ξ∗)F T
ξ∗(A

−1
ξ∗ +Cξ∗)

−1Cξ∗

×(A−1
ξ∗ +Cξ∗)

−1Fξ∗M
−1
β (ξ∗))q.

The sensitivity function d(x, ξ∗) of the optimal design ξ∗ attains its maximum at the
support of ξ∗. Moreover, equality hold for all support points of ξ∗.
The proof can be found in Appendix.

4 Application
We are going to investigate the simple Poisson regression model in two cases, random
intercept and random slope, respectively:

λ = exp(b0 + β1x) with b0 ∼ N(β0, σ
2),

λ = exp(β0 + b1x) with b1 ∼ N(β1, σ
2),

where β = (β0, β1)
T and f(x) = (1, x)T . In this case µ(x) = exp(β0+β1x+

1
2σ(x;x

′))
with σ(x;x′) = (1, x)Σ(1, x)T . Note that we restrict our research to designs with only
two different settings x1 and x2.
Lemma 4.1. If ξ is any design with two points in the experimental setting, i.e. ξ ={

x1 x2
p (1− p)

}
, then the largest eigenvalue of inverse quasi-information matrix for β

is as

λmax(M
−1
β (ξ)) =

tr(M−1
β (ξ)) +

√
(tr(M−1

β (ξ)))2 − 4 det(M−1
β (ξ))

2
.

Proof. By standard definition of eigenvalues, we can write a quadratic polynomial as

λ2 − λ(tr(M−1
β (ξ))) + det(M−1

β (ξ)) = 0.

The result is obtaind by solving this equation.



151 M. Niaparast, S. Mehr Mansour, A. Zangenehmehr

Then we obtain the following result by the above criterion definition to check that
the two point design is optimal.

Corollary 4.2. Design ξ∗ is the E-optimal design for two points design in the Poisson
regression model with random coefficient if and only if for all x ∈ X

d(x, ξ∗) ≤ tr(M−1
β (ξ∗))− tr(M−1

β (ξ∗)DM−1
β (ξ∗)) +

1

B

[
tr2(M−1

β (ξ∗)

−tr(M−1
β (ξ∗))tr(M−1

β (ξ∗)DM−1
β (ξ∗))

]
−

2 det(M−1
β (ξ∗))

B

×(2− tr(DM−1
β (ξ∗))),

where B =
√

tr2(M−1
β (ξ∗))− 4 det(M−1

β (ξ∗)) and D = F T
ξ∗(A

−1
ξ∗ +Cξ∗)

−1Cξ∗(A
−1
ξ∗ +

Cξ∗)
−1Fξ∗ and also the sensitivity function is

d(x, ξ∗) = mµ(x)RTM−2
β (ξ∗)R

+
1

B
[mµ(x)tr(M−1

β (ξ∗))RTM−2
β (ξ∗)R− 2mµ(x) det(M−1

β )RTM−1
β R,

with R = f(x)− F T
ξ∗(A

−1
ξ∗ +Cξ∗)

−1cξ∗,x.

In most situations, the explanatory variables explain nonnegative quantities. In
particular, an experimenter may define the design region as X = [h, g], where both
h and g are nonnegative. Furthermore, we consider the case that µj is a monotone
function of xj especially where µj is a decreasing function of xj . Hence, it is reasonable
to define the canonical standardized mean µ̃j = µ̃(xj) =

µ(xj)
µ(h) will always lie in [µ̃g, 1]

corresponding to [h, g]. In this paper, we set [h, g] = [0,∞).

4.1 The case random intercept
It was shown by Niaparast (2009), Lemma 4.1.3, that M−1

β (ξ) for a Poisson regression
model with random intercept is

M−1
β (ξ) = M−1

β (ξ) +U ,

where Mβ(ξ) = exp( 12σ
2)F T

ξ ÃξFξ with Ãξ = diag{mj exp(f
T (xj)β)}j=1,2. Noth that

F T
ξ ÃξFξ is information matrix for the corresponding model without random effects and

U = (exp(σ2)− 1)
[
1 0
0 0

]
. Calculations show that for β = (−2,−5)T and m = 100,

we have µ̃∗
1 = 0.0775 and µ̃∗

2 = 1, whereas optimal weights are different in terms of
σ2. Since µ̃∗ = exp(β1x

∗), we can drive optimal support points with x∗
i =

log(µ̃∗
i )

β1
for

i = 1, 2.
Figure 1 indicates optimal weights for some special values of σ2. The results show

as σ2 increases, the optimal weight decreases. It is easy to see that the equivalence
theorem can be indicated as following corollary.



E-optimal designs for Poisson regression models with random coefficients 152

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.
2

0.
4

0.
6

σ2

p*

Figure 1: Optimal weights p∗ for model with random intercept for different values of σ2.

Corollary 4.3. The design ξ∗ is E-optimal design for a Poisson regression model with
random intercept if and only if for all x ∈ X

d(x, ξ∗) ≤ tr(M−1
β (ξ∗)) +

1

B

[
tr(M−1

β (ξ∗))tr(M−1
β (ξ∗) +U)

−2 det(M−1
β (ξ∗) +U)tr(M−1

β (ξ∗) +U)−1M−1
β (ξ∗)),

where B =
√
tr2(M−1

β (ξ∗) +U)− 4 det(M−1
β (ξ∗) +U) and

d(x, ξ∗) = mµ(x)fT (x)M−2
β (ξ∗)f(x) +

1

B

[
tr(M−1

β (ξ∗) +U)

×(mµ(x)fT (x)M−2
β (ξ∗)f(x))− 2 det(M−1

β (ξ∗) +U)

×(mµ(x)fT (x)M−1
β (ξ∗)(M−1

β (ξ∗) +U)−1M−1
β (ξ∗)f(x))],

is the sensitivity function.

Figure 2 confirm the optimality ξ∗ by using above colollary.
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Figure 2: Sensitivity function of ξ∗ with µ̃∗
1 = 0.0775 and µ̃∗

2 = 1.

As a benchmark, we turn to consider the efficiency of a given design with respect
to the locally E-optimal design using Eeff which is defined by

Eeff =
λmax(M

−1
β (ξ∗))

λmax(M
−1
β (ξ))

.

Usually in practice, a standard two points design with uniform weights and endpoints
µ̃ = 0.001 which is near zero, and µ̃ = 1 is used to carry out experiments. In Table
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1 we provide comparsion of such design with E-optimal designs. It is shown that the
efficiency of standard design tend to be closer to E-optimal design when the value of
variance increase. This trend meight be correct when the parameters β0 and β1 are
increase.

Table 1: Efficiency for model with random intercept.
σ2 Eeff (β0 = −3, β1 = −5) Eeff (β0 = −2, β1 = −5) Eeff (β0 = −2, β1 = −2)
0 0.076 0.077 0.083

0.5 0.078 0.078 0.146
1 0.078 0.084 0.464

1.5 0.083 0.192 0.995

4.2 The case random slope
Unlike the random intercept model, the random effect’s size depends on the explanatory
variable’s value in the random slope model. For this model, the corresponding mean
function equals µ = exp(β0 + β1x + 1

2σ
2x2). So, the canonical standardized mean

µ̃ = exp(β1x + 1
2σ

2x2). Recall that we have supposed that the mean response is a
decreasing function of the explanatory variable. It means that

dµ

dx
= (β1 + σ2x)µ < 0,

and then β1 + σ2x < 0. This leads to a restricted region for points of design, i.e.
0 ≤ x < − β1

σ2 . It implies that β1 < 0 and exp(
−β2

1

2σ2 ) < µ̃ ≤ 1. Applying numerical
methods, we obtain E-optimal designs for some representative values of β, m and σ2.
The results are listed in Table 2.

Table 2: E-optimal designs for model with random slope.
β0 = 1, β1 = −5,m = 200

σ2 p∗1 µ̃∗
1 µ̃∗

2
0 0.7726 0.0775 1

0.5 0.7493 0.1095 1
1 0.7011 0.1798 1

1.5 0.6684 0.2465 1

As σ2 increases, optimal point design get more closer to each other. To obtain
optimal support points, note that log(µ̃∗) = β1x

∗ + 1
2σ

2x∗2 is a quadratic function for
the random slope example. By regarding to above assumptions, we have

x∗ =
−β1 −

√
β2
1 + 2σ2 log(µ̃∗)

σ2
.

Figure 3 confirms optimality obtained design for special value of parameters. It is
showed that the Fréchet derivative is zero at ξ∗.

As model with random intercept, we want to consider efficiency of the standard
design ξ =

{
x1 x2
0.5 0.5

}
with endpoints x1 = 0 and x2 =

−β2
1

σ2 using Eeff . The
results are shown in Table 3.
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Figure 3: Sensitivity function of ξ∗ for βT = (1,−5), m = 200 and σ2 = 0.5.

Table 3: Efficiency for model with random slope.
σ2 Eeff (β0 = −2, β1 = −5,m = 200) Eeff (β0 = 1, β1 = −5,m = 200)
0 0.082 0.078

0.5 0.099 0.261
1 0.119 0.186

1.5 0.065 0.035

5 Discussion
This article focuses on E-optimal designs in Poisson regression models with random
effects. Since the likelihood function has not a closed form, alternately, we use the
quasi-likelihood function to obtain the information matrix. This criterion has been
discussed in detail for one-variable Poisson regression models in two special situations,
random intercept and random slope on specific experimental regions. Also, we discuss
the equivalence theorem to confirm obtained optimal designs.

A Proof of Theorem 3.2
First, we make use of the formula (A−1

ξ +Cξ)
−1 = Aξ−Aξ(I+CξAξ)

−1CξAξ, Harville
(2013), for the inverse of a sum of matrices. Then we rewrite the quasi-information as
Mβ(ξ) = F T

ξ (Aξ −Aξ(I +CξAξ)
−1CξAξ)Fξ.

Regarding to this equation, the quasi-information matrix of convex combination of
ξ and ξ′ for 0 ≤ α ≤ 1 is

Mβ((1− α)ξ + αξ′) = FT
ξ,ξ′ [Aξ,ξ′(α)−Aξ,ξ′(α)(I+Cξ,ξ′Aξ,ξ′(α))

−1Cξ,ξ′Aξ,ξ′(α)]Fξ,ξ′ ,

where Fξ,ξ′ =
(
F T
ξ F T

ξ′
)T is the joint reduced design matrix for the designs ξ and

ξ′, Aξ,ξ′(α) =

(
(1− α)Aξ 0

0 αAξ′

)
is the weighted intensity matrix for two designs

ξ and ξ′ and by Cξ,ξ′ =

(
Cξ Γξ,ξ′

ΓT
ξ,ξ′ Cξ′

)
the combined correction matrix, which

contains the mixed correction terms for ξ′ and ξ in Γξ,ξ′ = (c(x, x′)), where x and x′

are the support points of ξ′ and ξ, respectively.
Then for the E-criterion, the directional derivative of Ψ(ξ) in the direction of ξ′
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with multiplicity 1 in λmax(M
−1
β (ξ)) equals

FΨ(ξ, ξ
′) =

d

dα
Ψ((1− α)ξ + αξ′)|α=0+

=
d

dα
λmax(F

T
ξ,ξ′ [Aξ,ξ′(α)−Aξ,ξ′(α)(I +Cξ,ξ′Aξ,ξ′(α))

−1

Cξ,ξ′Aξ,ξ′(α)]Fξ,ξ′)|α=0+

= qT [−M−1
β ((1− α)ξ + αξ′)(FT

ξ,ξ′([A
′
ξ,ξ′(α)−A′

ξ,ξ′(α)

(I +Cξ,ξ′Aξ,ξ′(α))
−1Cξ,ξ′Aξ,ξ′(α) +Aξ,ξ′(α)

(I +Cξ,ξ′Aξ,ξ′(α))
−1Cξ,ξ′A

′
ξ,ξ′(α)(I +Cξ,ξ∗Aξ,ξ′(α))

−1

Cξ,ξ′Aξ,ξ′(α)−Aξ,ξ′(α)(I +Cξ,ξ′Aξ,ξ′(α))
−1Cξ,ξ′A

′
ξ,ξ′(α)]

Fξ,ξ′)M
−1
β ((1− α)ξ + αξ∗)]q|α=0+ ,

where A′
ξ,ξ′(α) is derivative of Aξ,ξ′(α) w.r.t α.

A simple calculation shows that (I +Cξ,ξ′Aξ,ξ′(0)) =

(
I +CξAξ 0
ΓT
ξ,ξ′Aξ I

)
which is

a lower block triangular with inverse

(I +Cξ,ξ′Aξ,ξ′(0))
−1 =

(
(I +CξAξ)

−1 0
−ΓT

ξ,ξ′Aξ(I +CξAξ)
−1 I

)
.

Using multiplication of the block matrix we have

FΨ(ξ, ξ
′) = qT (−M−1

β (ξ))[−FT
ξ AξFξ + FT

ξ′Aξ′Fξ′ + FT
ξ Aξ

(CξAξ + I)−1CξAξFξ + FT
ξ′Aξ′Γ

T
ξ,ξ′Aξ(CξAξ + I)−1

CξAξFξ − FT
ξ′Aξ′Γ

T
ξ,ξ′AξFξ − FT

ξ Aξ(CξAξ + I)−1

CξAξ(CξAξ + I)−1CξAξFξ − FT
ξ Aξ(CξAξ + I)−1

Γξ,ξ′Aξ′Γ
T
ξ,ξ′Aξ(CξAξ + I)−1CξAξFξ + FT

ξ Aξ

(CξAξ + I)−1Γξ,ξ′Aξ′Γ
T
ξ,ξ′AξFξ + FT

ξ Aξ(CξAξ + I)−1

CξAξFξ − FT
ξ Aξ(CξAξ + I)−1Γξ,ξ′Aξ′Fξ′ ](M

−1
β (ξ))q.

Then, above equation can be represented as

FΨ(ξ, ξ
′) = qT (−M−1

β (ξ))[(Fξ′ − ΓT
ξ,ξ′(A

−1
ξ +Cξ)

−1Fξ)
TAξ′

(Fξ′ − ΓT
ξ,ξ′(A

−1
ξ +Cξ)

−1Fξ)− FT
ξ (A−1

ξ +Cξ)
−1Fξ

+FT
ξ (A−1

ξ +Cξ)
−1Cξ(A

−1
ξ +Cξ)

−1Fξ)](M
−1
β (ξ))q.

Niaparast and Schwabe (2013) showed that the directional derivative FΨ(ξ, ξ
′) is linear

in ξ′. Therefore it suffices to consider one-point design ξx which assign all m obser-
vations to one setting x. For such one-point designs the directional derivative reduces
to

FΨ(ξ, ξx) = qT (−M−1
β (ξ))[(f(x)− F T

ξ (A−1
ξ +Cξ)

−1cξ,x)mµ(x)



E-optimal designs for Poisson regression models with random coefficients 156

(f(x)− F T
ξ (A−1

ξ +Cξ)
−1cξ,x)

T − FT
ξ (A

−1
ξ +Cξ)

−1Fξ

+FT
ξ (A

−1
ξ +Cξ)

−1Cξ(A
−1
ξ +Cξ)

−1Fξ)](M
−1
β (ξ))q

= d(x, ξ)− qTM−1
β (ξ)q + qTM−1

β (ξ)

[FT
ξ (A

−1
ξ +Cξ)

−1Cξ(A
−1
ξ +Cξ)

−1Fξ]M
−1
β (ξ))q.

According to the general equivalence theorem a design ξ∗ is optimal, if and only if

∀x ∈ X ; FΨ(ξ
∗, ξx) ≥ 0.

Hence ξ∗ is E-optimal if

d(x, ξ∗) ≤ qTM−1
β (ξ∗)q − qTM−1

β (ξ∗)

[FT
ξ (A

−1
ξ∗ +Cξ∗)

−1Cξ∗(A
−1
ξ∗ +Cξ∗)

−1Fξ∗ ]M
−1
β (ξ∗))q.

References
Dette, H. and Haines, L.M. (1994). E-optimal designs for linear and nonlinear models

with two parameterst. Biometrika, 81:739–754.

Dette, H., Melas, V.B. and Pepelyshev, A. (2004). Optimal designs for a class of
nonlinear regression models. The Annals of Statistics, 32(5):2142–2167.

Dette, H. and Studden, W.J. (1993). Geometry of E-optimality. The Annals of Statis-
tics, 21(1):416–433.

Harville, D.A. (1997). Matrix Algebra From a Statistician’s Perspective. New York:
Springer.

Kiefer, J. (1974). General equivalence theory for optimum designs (approximate the-
ory). The Annals of Statistics, 2(5):849–879.

Niaparast, M. (2009). On optimal design for a Poisson regression model with random
intercept. Statistics & Probability Letters, 79(6):741–747.

Niaparast, M. and Schwabe, R. (2013). Optimal design for quasi-likelihood estimation
in Poisson regression with random coefficients. journal of Statistical Planning and
Inference, 143(2):296–306.

Prus, M. (2019). Various optimality criteria for the prediction of individual response
curves. Statistics & Probability Letters, 146:36–41.

Pukelsheim, F. (2006). Optimal Design of Experiments. Society for Industrial and Ap-
plied Mathematics.

Verbeke, G. and Molenberghs, G. (2000). Linear Mixed Models for Longitudinal Data.
New York: Springer.


