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Abstract: In this paper, the case deletion approach and mean shift outlier model are
developed to identify influential and outlier observations using the Liu corrected like-
lihood estimator in linear mixed measurement error models when multicollinearity is
present. We derive a corrected score test statistic for outlier detection based on mean
shift outlier models. Furthermore, according to the Liu corrected likelihood estimator,
several Cook’s distance is constructed for influence diagnostics. A parametric bootstrap
procedure is used to obtain empirical distribution of the test statistic and a simulation
study is conducted to demonstrate the performance of the diagnostic criteria. Finally,
a real example is provided to illustrate the performance of the test statistics.
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1 Introduction
A linear mixed measurement error model is written as

yi = Ziβ + Uibi + εi, i = 1, . . . , l,

Xi = Zi + δi, (1)

where yi shows an ni × 1 vector of responses, Zi is an ni × p known design matrix
of full column rank for the fixed effects and can be observed through the matrix Xi
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with the measurement error δi, which δi is p × 1 uncorrelated random vectors with
E(δi) = 0 and V ar(δi) = Λ. β is a p × 1 vector of unknown regression coefficients,
which are called fixed effects; Ui is an ni × qi known design matrix of the ith random
effect factor and bi is a qi × 1 vector of unobservable random effects from N(0, σ2

i Iqi)
and independent of εi which is an ni × 1 vector of unobservable random errors from
N(0, σ2Ini

). The variances σ2 and σ2
i are called variance components. We assume

that εi and δi are mutually independent. Let y = (y′1, y
′
2, . . . , y

′
l)

′, n =
∑l

i=1 ni, Z =

(Z ′
1, Z

′
2, . . . , Z

′
l)

′, U = ⊕l
i=1Ui, q =

∑l
i=1 qi, b = (b1, b2, . . . , b

′
l)
′, ε = (ε′1, ε

′
2, . . . , ε

′
l)
′

and ∆′ = [δ1, δ2, . . . , δn]. In addition it is assumed that b, ε and ∆ are mutually
independent. As in Zhong et al. (2002), Zare et al. (2012) and Riguelmea et al. (2015)
the matrix Λ is considered to be known and if it is unknown, we can estimate it by
repeated observations on the independent variables (see Nagelkerke (1992) for details
of derivation of unbiased estimation of covariance matrix and Liang et al. (1999)). Let
us consider the general linear mixed measurement error model as

y = Zβ + Ub+ ε,

X = Z +∆, (2)

usually assumed that b ∼ N(0, σ2Σ) and ε ∼ N(0, σ2In), where Σ is a block diago-
nal matrix with the ith block being γiIqi for γi =

σ2
i

σ2 , so that y has MN(Zβ, σ2V ),
which V = In +

∑l
i=1 γiUiUi

′ = In + UΣU ′ . The conditional distribution of b |y
is N(ΣU ′V −1(y − Zβ), σ2ΣT ), where T = (Iq − U ′V −1UΣ) = (Iq + U ′UΣ)−1. If
the γi’s (and hence V ) are known, the corrected likelihood estimates (CLE) of β, b

and σ2 are given by β̂ =
[
X ′V −1X − tr(V −1)Λ

]−1
X ′V −1y, b̃ = ΣU ′V −1(y − Xβ̂)

and σ̂2 = n−1
[
(y −Xβ̂)′V −1(y −Xβ̂)− tr(V −1)β̂′Λβ̂

]
and, respectively, in which

σ̂2
i =

[b̃′ib̃i−tr(D̂′
iD̂i)β̂

′Λβ̂]
qi−tr(Tii)

in which D̂i = γ̂iU
′
iV

−1 for Tij is ijth block of matrix T

(Zhong et al., 2002; Zare et al., 2012). If the γi ’s are unknown, the corrected score
estimates are substituted back into Σ (and/or V ) to obtain β̂, σ̂2 and b̃ (Harville,
1977; Jennrich and Sampson, 1976; McCulloch and Searle, 2001; SAS, 1992; Searle et
al., 1992). The existence of multicollinearity in the linear regression models leads to
higher variance and instable parameter estimates in estimating linear regression mod-
els using ordinary least squares estimate. To overcome this problem, many suitable
biased estimators have been developed such as the Stein estimator Stein (1956), the
ridge regression Hoerl and Kennard (1970) and Liu estimator Liu. (1993). Ghapani
(2022) obtained Liu estimation of parameters with additional stochastic linear restric-
tions for unknown parameter vectors to linear mixed models with measurement errors.
The presence of outliers and influential observations in the data is complicated by the
existence of multicollinearity. In linear mixed models, diagnostic methods are studied
more widely by different authors including Christensen et al. (1992); Banerjee and Frees
(1997); Xuping and Bocheng (1999); Haslett and Dillane (2004); Zewotir and Galpin
(2005, 2007); Demidenko and Stukel (2005); Li et al. (2009). Fung et al. (2003) investi-
gated estimation and influence diagnostics in linear mixed measurement error (LMME)
models. Zare and Rasekh (2011) expressed case deletion and mean shift outlier models
for detecting influential observations and outliers in LMME models using the corrected
likelihood of Nakamura (1990). Also, Zare and Rasekh (2014) derived residuals and
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leverage in the LMME models. Recently, Maksaei et al. (2023) concentrate on diagnos-
tic methods in LMME models with Ridge estimation using the corrected score function
of Nakamura (1990). To the best of our knowledge, no attention has been paid to the
in the literature concerning outlier and influential detection on the outcome of the Liu
estimator in LMME models; so in this paper, we assess the diagnostic measures based
on the Liu estimator by using the mean shift outlier model (MSOM) and method of
approximate case deletion model (CDM) on the estimations of fixed effects, prediction
of random effects and predicted values in LMME models. The paper is organized as
follows. In Section 2, we derive Liu corrected likelihood estimator (LCLE) of parame-
ters in LMME models using the corrected likelihood of Nakamura (1990). In Section
3, we introduce the diagnostic models: MSOM and CDM. We construct a corrected
score test for detecting outliers. In Section 4, we develop influence measures to identify
influential observations in LMME models with LCLE. Also, a parametric bootstrap
procedure is used to generate the empirical distribution of test statistics. In Section 4,
a simulation study has been used to show the performance of the score test statistic
and cook distance. A numerical example is given in Section 5. Finally, concluding
remarks are given in Section 6.

2 Liu estimation of fixed and random effects
The presence of collinearity has some destructive effects on regression analysis. In
order to resolve this problem, we use the Liu estimator in linear mixed measurement
error models. For this end, based on Liu. (1993) we consider the linear restriction
dβ̂ = β + e, e ∼ N(0, σ2Ip) where 0 < d < 1 is the Liu biasing parameter and β̂ is
the corrected likelihood estimator in linear mixed measurement error model. In order
to incorporate the Liu restriction in the estimation of parameters, the corrected log-
likelihood function of y and the conditional corrected log-likelihood function of b |y
which denoted by l∗(θ,X, y) and l∗b (θ;X, y), respectively, are given by

l∗(θ,X, y) = −n

2
log(2πσ2)− 1

2
log |V | − 1

2σ2
[(y −Xβ)′V −1(y −Xβ)

−tr(V −1)β′Λβ]− 1

2σ2

[
(dβ̂ − β)′(dβ̂ − β)

]
,

l∗b (θ;X, y) = −q

2
log(2πσ2)− 1

2σ2
log |ΣTd| −

1

2σ2

{ [
b− ΣU ′

dV
−1
d (yd −Xdβ)

]′
×(ΣTd)

−1
[
b− ΣU ′

dV
−1
d (yd −Xdβ)

]
− tr(I − V −1)β′Λβ

}
,

where θ = (β, σ2, γ, d). Let E∗ denotes the conditional mean with respect to X given
y. Then the l∗(θ,X, y) and l∗b (θ;X, y), should satisfy

E∗[
∂

∂β
l∗(β, σ2, γ;X, y)] =

∂

∂β
l(β, σ2, γ;Z, y),

E∗[
∂

∂σ2
l1

∗(σ2, γ;X, y)] =
∂

∂σ2
l1(σ

2, γ;Z, y)

E∗[
∂

∂γi
l1

∗(σ2, γ;X, y)] =
∂

∂γi
l1(σ

2, γ;Z, y),
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E∗[
∂

∂b
lb
∗(β, σ2, γ;X, y)] =

∂

∂b
lb(β, σ

2, γ;Z, y),

where l1(σ
2, γ;Z, y) = l(β̂(γ), σ2, γ;Z, y), in which β̂ = β̂ (γ) is the maximum like-

lihood estimate of β and l1
∗(σ2, γ;X, y) = l∗(β̂(γ), σ2, γ;X, y) in which β̂ = β̂ (γ)

is the solution of the equation ∂l∗(β, σ2, γ;X, y)/∂β = 0. By solving the equations
l∗(θ,X, y)/∂β = 0 and l∗b (θ;X, y)/∂b = 0, the LCLE of β and b are given by

β̂d = (X ′V −1X − tr(V −1)Λ + Ip)
−1(X ′V −1y + dβ̂) = A−1

p (X ′V −1y + dβ̂),

b̃d = ΣU ′V −1(y −Xβ̂d),

where Ap = (X ′V −1X − tr(V −1)Λ + Ip) . Also, the LCLE of σ2 is defined as

σ̂2
d = n−1

[
(y −Xβ̂d)

′V −1(y −Xβ̂d)− tr(V −1)β̂′
dΛβ̂d

]
.

If the elements of γi are unknown, the LCLE of unknown parameters are substituted
back into Σ to obtain β̂d , σ̂2

d and b̃d . According to Zare et al. (2012) we can obtain
the LCLE of σ̂2

i as

σ̂2
id =

b̃′dib̃di − tr(D̂′
diD̂di)β̂

′
dΛβ̂d

[qi − tr(Tii)]
, i = 1, . . . , l,

with D̂di = γ̂diU
′
iV

−1.

Theorem 2.1. β̂d has an asymptotically normal distribution with mean AE(β̂d) = Gdβ

and covariance matrix AV ar(β̂d) = Gd(Z
′V −1Z)−1(B + σ2Z ′V −1Z)(Z ′V −1Z)−1Gd,

which B = nσ2 + β′Z ′V −1Zβ and Gd = (Z ′V −1Z + Ip)
−1(Z ′V −1Z + dIp).

Proof. See Ghapani (2022).

Corollary 2.2. β̂ has an asymptotically normal distribution with mean AE(β̂) = β

and covariance matrix AV ar(β̂) = (Z ′V −1Z)−1(B + σ2Z ′V −1Z)(Z ′V −1Z)−1.

The advantage of adding Liu condition to the model is find a new estimator whose
length is closer to β than β̂. Ghapani (2022) showed that there exists an estimate of d
in interval (0,1) such that MSEM(β̂)−MSEM(β̂d) is a positive definite matrix (Note
that MSEM is an abbreviation of mean square error matrix).

3 Diagnostic methods using Liu estimator
In order to identify outlier observations in LMME models, we use MSOM. In the
following subsections, we study some of these measures in the context of the LMME
models with Liu estimation. We rearrange the matrices so that the ith deleted case to
be in the first row. Then

y =
[
yi
y(i)

]
, X =

[
x′

i
X(i)

]
, Z =

[
z′i
Z(i)

]
,
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C = V −1 =

[
cii c′i(i)
ci(i) V −1

[i] + ci(i)c
′
i(i)

/
cii

]
.

For notational simplicity x′
i denotes the ith row of X, X(i) denotes matrix X with the

ith row removed, cii the ith elements of the diagonal matrix V −1, c(i) denotes the ith
row of V −1, c(i) denotes vector c with the ith element removed and ci the ith element
of c, V[i] denotes matrix V without the ith row and the ith column.

3.1 Mean shift outlier model
Suppose that the ith case is suspected as being an outlier, so the MSOM for the model
can be represented as

yi = x′
iβ + u′

ib+ τ + εi,

yj = x′
jβ + u′

jb+ εj , j = 1, . . . , n, j ̸= i, subject to (3)
dβ̂ = β + e,

where τ is an extra parameter to indicate the presence of an outlier in the ith.

Theorem 3.1. For model MSOM in (3), the parameter estimation is as

β̂md = β̂d −A−1
p X ′ciτ̂md, σ̂2

md =
nσ̂2

d − (v̂2di
/
rpii)

n
, τ̂md =

v̂di
rpii

,

and b̃md ≃ b̃d − ΣU ′rpi
v̂di

rpii
. Where ci

′ and r′pi are ith rows of V −1 and Rp = V −1 −
V −1XA−1

p X ′V −1, respectively, rpii denotes the ith diagonal elements of Rp and v̂di =

yi − x′
iβ̂d − u′

ib̃d is the ith elements of residual of the model.

Proof. The log-likelihood and the conditional log-likelihood for MSOM, respectively
are given by

l∗m(θ, τ ;X, y)=−n

2
log(2πσ2)− 1

2
log |V |

− 1

2σ2

[
(y(i) −X(i)β)

′(V −1
[i] + ci(i)c

′
i(i)

/
i(i)c

′
i(i)ciicii)(y(i) −X(i)β)

+cii(yi − x′
iβ − τ)2 + 2(yi − x′

iβ − τ)c′i(i)(y(i) −X(i)β)

−tr(V −1)β′Λβ

]
− 1

2σ2

[
(dβ̂ − β)′(dβ̂ − β)

]
,

l∗bm(θ, τ ;X, y)=−q

2
log(2πσ2)− 1

2σ2
log |ΣT| − 1

2σ2

{
b′(ΣT )−1b

−2b′(ΣT )−1Σ

[
cii(yi − x′

iβ − τ)bi + (yi − x′
iβ − τ)U ′

ici(i)

+(yi −X(i)β)
′
[
I − V −1

[i] − ci(i)c
′
i(i)

/
cii

]
(yi −X(i)β)

+(1− cii)(yi − x′
iβ − τ)2 − 2(yi − x′

iβ − τ)c′i(i)(yi −X(i)β)

−tr(In − V −1)β′Λβ + uic
′
i(i)(yi −X(i)β)



Detection of outliers and influential observations 6

+U ′
i(V

−1
[i] + ci(i)c

′
i(i)

/
i(i)c

′
i(i)ciicii)(yi −X(i)β)

]}
.

Equating the partial derivatives of l∗m(θ, τ ;X, y) with respect to the elements of β and
τ to zero and using β̂md and τ̂md, to denote the Liu corrected score estimator solutions
gives

β̂md = (X ′V −1X − tr(V −1)Λ + Ip)
−1(X ′V −1y − xiτ̂md)

= β̂d − (X ′V −1X − tr(V −1)Λ + Ip)
−1X ′ciτ̂md

= β̂d −A−1
p X ′ciτ̂md,

and τ̂md(cii − c′iXA−1
p X ′ci) = v̂di, therefore τ̂md = v̂di

rpii
. Replacing τ̂md into β̂md we

obtain β̂md = β̂d − A−1
p X ′ci

v̂di
rpii

. Also, by solving the equation l∗bm(θ, τ ;X, y)/∂b = 0,
the Liu corrected score predictor ofb is given by b̃md = ΣU ′V −1(y − Xβ̂md). Substi-
tuting β̂md in to b̃md we have b̃md ≃ b̃d − ΣU ′rpi

v̂di
rpii

. In addition, the LCLE of σ2 is
defined as

nσ̂2
md = (y −Xβ̂md)

′V −1(y −Xβ̂md)− (yi − xiβ̂md)
2 − tr(V −1)β̂′

mdΛβ̂md,

by put β̂md in above Equation, we obtain σ̂2
md =

nσ̂2
d−(v̂2

di/rpii)
n .

Theorem 3.2. The score test statistic for the ith observation of the MSOM for testing
H0 : τ = 0 versus H1 : τ ̸= 0 is defined as SCi(β) = s2i (1+

β̂mdΛβ̂md

σ̂2
md

), where si =
v̂di

σ̂v
√
rpii

is the ith studentized residual of the model with σ̂2
v = σ̂2

d + β̂′
dΣβ̂d.

Proof. The score test statistic for the ith observation based on the corrected observed
information matrix J(β, γ) of the MSOM, is given by

SCi(β) =

[
∂l∗m(θ, τ ;X, y, r)

∂τ

]2
Jττ ,

in which Jττ is the lower right corner of the inverse of Fisher information matrix
J(β, τ). The corrected observed information matrix J(β, τ) for model (3) is defined as

J(β, τ) =
1

σ2

[
X ′V −1X − tr(V −1)Λ + Ip X ′ci

c′iX cii

]
=

1

σ2

[
Ap X ′ci
c′iX cii

]
.

Also, we have ∂l∗m(θ,τ ;X,y)
∂τ = 1

σ2 c
′
i(y −Xβ) and Jττ = σ2

rpii
. Substituting τ = 0, β = β̂d

and σ2 = σ̂2
d, we have SCi(β) = (y−Xβ̂d)

′cic
′
i(y−Xβ̂d)

σ̂2
drpii

=
v̂2
di

σ̂2
drpii

= s2i (1 + β̂dΛβ̂d

σ̂2
d

). If
H0 is rejected, then the ith case may not come from the original model and so is an
outlier.

3.2 Case deletion diagnostic
The aim of the analysis of influential observations is to evaluate the impact of the ith
observations and the most common approach is case deletion diagnostics with the ith
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case deleted. There are a number of different statistics used by statisticians to detect
influential observations in the data set. We study some of these measures in the context
of LMME models for Liu estimator. The case deletion model based on Liu restriction
with the ith observation deleted is defined as

y(i) = Z(i)β + U(i)b+ ε(i), X(i) = Z(i) +∆(i), i = 1, 2, . . . , n,

dβ̂ = β + e, (4)

The corrected log-likelihoods of and the conditional corrected log-likelihood of b |y for
model (4) are defined as

lci
∗(θ,X, y) = −n− 1

2
log(2πσ2)− 1

2
log

∣∣V[i]

∣∣
− 1

2σ2
[(y(i) −X(i)β)

′V −1(y(i) −X(i)β)− tr(V[i]
−1)β′Λβ]

− 1

2σ2

[
(dβ̂ − β)′(dβ̂ − β)

]
,

l∗bci(θ;X, y) = −q

2
log(2πσ2)− 1

2
[log(

∣∣∣U ′
(i)U(i) +Σ−1

∣∣∣−1

)]

− 1

2σ2

{[
b′[U ′

(i)U(i) +Σ−1]b

−2b′[U ′
(i)U(i) +Σ−1]−1Σ[U ′

(i)V
−1
[i] (y(i) −X(i)β)

]
+(y(i) −X(i)β)

′(I − V −1
[i] )(y(i) −X(i)β)− tr(I − V −1

[i] )β′Λβ

}
.

Theorem 3.3. For model (4), the parameter estimation is as

β̂d(i) ≃ β̂d −A−1
p

X ′civ̂di
rpii

, b̃d(i) ≃ b̃d − ΣU ′rpi
v̂di
rpii

,

and σ̂2
d(i) ≃

nσ̂2
d−(v̂2

di/rpii)
n−1 where β̂d(i), σ̂2

d(i) and b̃d(i) denote the estimates of β, σ2 and
b when the ith case is deleted, respectively.

Proof. With differentiating l∗ci(θ;X, y) with respect to β , we have

β̂d(i) = (X(i)
′V −1

[i] X(i) − tr(V −1
[i] )Λ + Ip)

−1(X(i)
′V −1

[i] y(i) + dβ̂),

where V −1
[i] denotes inverse matrix V with the ith row and column removed. Using

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1,

(Rao et al. (2008), Theorem A. 18), can be written as

β̂d(i)=(X ′V −1X − X ′cic
′
iX

cii
− tr(V −1)Λ + ciiΛ + Ip)

−1(X ′V −1y − X ′cic
′
iy

cii
+ dβ̂)

= (A−1
p +A−1

p

X ′ci
cii

(In −
c′iXA−1

p X ′ci

cii
)−1c′iXA−1

p )
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×(X ′V −1y + dβ̂ − X ′cic
′
iy

cii
) +Op(n

−1)

≃ β̂d −A−1
p

X ′civ̂di
rpii

.

As the same way by solving the equation l∗bci(θ;X, y)/∂b = 0, the corrected score
predictor ofbis given by

b̃d(i) = ΣU ′
(i)V

−1
[i] (y(i) −X(i)β̂d(i)) ≃ b̃d − ΣU ′(ci − V −1XA−1

p X ′ci)
v̂di
rpii

= b̃d − ΣU ′rpi
v̂di
rpii

,

and the LCLE of σ2 is defined as

(n− 1)σ̂2
d(i) = (y(i) −X(i)β̂d(i))

′V −1
[i] (y(i) −X(i)β̂d(i))− tr(V −1

[i] )β̂d(i)Λβ̂d(i).

Then, σ̂2
d(i) ≃

nσ̂2
d−(v̂2

di/rpii)
n−1 .

A commonly used method to detect influential observations for the fixed and random
parameters is Cook’s distance, which will be discussed in the following sub sections.

3.3 Generalized Cook’s distance for fixed effects
To assessment changes in estimated vector of parameters, Cook’s distance based on
Cook (2000) for the deletion of the ith observation in LMME models with Liu estima-
tion is defined as

CDi(β) = (β̂d − β̂d(i))
′Φ(β̂d − β̂d(i))

′,

where Φ = σ̂−2
d

[
X ′V −1X − tr(V −1)Λ + Ip

]
. Then, we have

CDi(β) =
(β̂d − β̂d(i))

′ [X ′V −1X − tr(V −1)Λ + Ip
]
(β̂d − β̂d(i))

σ̂2
d

,

we have approximately CDi(β) =
(cii−rpii)v̂

2
di

σ̂2
dr

2
pii

+ Op(n
−1). Large values of CDi(β)

indicate that observation i has a substantial effect on the full sample estimate.

3.4 Generalized Cook’s distance for random effects
A convenient measure of influence for random effects in LMME models with Liu esti-
mation based on the difference between two estimators, one includes the ith observation
in the data set; the other excludes the ith observation. The Cook’s distance for random
effects is define as

CDi(b) =
(b̃d − b̃d(i))

′(U ′U +Σ−1)(b̃d − b̃d(i))

σ̂2
d

.

Since b̃d(i) ≃ b̃d − ΣU ′rpi
v̂di

rpii
, we can get CDi(b) = r′pi(V − In)V rpi

v̂2
di

σ̂2
dr

2
pii

. A large
CDi(b) indicates that the k observations indexed by i are jointly influential on the
predictions of the random effects.
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3.5 Conditional Cook’s distance
To investigate the influence of observations on the predicted values, we define the
conditional Cook’s distance similar to Tan et al. (2001) in LMME models with Liu
estimation as follows

CDcondi = σ̂−2
d (ŷd − ŷd(i))

′(ŷd − ŷd(i)),

which can be decomposed in to the three components

CDcondi
= CD1

condi
+ CD2

condi
+ CD3

condi
,

with

CD1
condi

= σ̂−2
d (β̂d − β̂d(i))

′X ′X(β̂d − β̂d(i)),

CD2
condi

= σ̂−2
d (b̃d − b̃d(i))

′U ′U(b̃d − b̃d(i)),

CD3
condi

= 2σ̂−2
d (β̂d − β̂d(i))

′X ′U(b̃d − b̃d(i)).

Large values of CDcondi
indicate that the subset of the observations indexed by i are

jointly influential on fixed effects and random effects.

3.6 Empirical distribution
To generate an empirical distribution of the test statistics under the null hypothesis
that no outlier (influential) observations are exist in the data, we perform the following
Algorithm (Lin et al., 1993; Rebai et al., 1994).

Algorithm 3.4. Generate an empirical distribution of the test statistics. The algorithm
is carried out in four steps:
Step 1: We fit the model (1) to the data and calculate LCLE of parameters. An estimate
of can be derived as, Ẑd = X + σ̂−2

v v̂dβ̂
′
dΛ (Zare et al., 2012).

Step 2a: Generate a new data vector as

y∗ = Ẑdβ̂d + Ub∗ + ε∗,

X∗ = Ẑd +∆,

which ∆ is randomly generated asMN(0, In ⊗ Λ), b∗ and ε∗are randomly generated as
N(0, σ̂2

1dIq) and N(0,σ̂2
dIn), respectively.

Step 2b: Compute the test statistics of SCi, CDi(β), CDi(b) and CDcondi
for i =

1, 2, . . . , n and save the order statistics of the set.
Step 3. Repeat steps 2a and 2b, N times, for N reasonably large. This generates an
empirical distribution for each order statistic.
Step 4: Calculate the 100(1−α) percentile for each order statistic for the level α which
used as a threshold for the test statistic from the original analysis. If the ith largest
values of the test statistic from the original data all exceed their respective thresholds,
then it is concluded that these data are all outliers (or influential) observations.
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4 Simulation study
In this section, we perform a simulation study to evaluate the performance of different
diagnostic measures in terms of type I error and power of test in LMME models with
LCLE. For this purpose, the jth set of simulated data is generated as

yj = Zβ + Ubj + εj , j = 1, . . . , 1000,

X = Z +∆, (5)

where yj = (y11j , . . . , y1mj , y21j , . . . , y2mj , . . . , yq1j , . . . ., yqmj), bj = (b1j , b2j , . . . , bqj)
′,

Z = (z(1), . . . , z(p)) and z(t) = (z
(t)
11 , . . . , z

(t)
1m, z

(t)
21 , . . . , z

(t)
2m, . . . , z

(t)
q1 , . . . , z

(t)
qm)′, t = 1, . . . , p,

εj is rewritten in accordance with yj . In addition q can be interpreted as the number
of independent groups; m is the group size, so n = m× q is the total size in data set.
U = Iq ⊗ 1m is an n × q matrix, where 1m is m × 1 vector all of whose elements of
1’s. To achieve different degrees of collinearity, following McDonald and Galarneau
(1975) the fixed effects variables are computed as zit = (1− ρ2)

1
2wit + ρwi,p+1, i =

1, . . . , n, t = 1, . . . , p where wit are independent standard normal pseudo-random num-
bers and ρ2 represents the correlation between any two fixed effects. We consider
four different values of ρ corresponding to 0.75, 0.85, 90 and 0.95. The following
combinations were taken for simulation: n = 40 or n = 90, p = 3, εij ∼ N(0, σ2),
bkj ∼ N(0, σ2

1), k = 1, . . . , q, (σ2
1 , σ

2) = (0.16, 0.36) or (σ2
1 , σ

2) = (0.09, 0.49) and
Λ = diag(0.05, 0.05, 0.05). For each set of explanatory variables the parameter vec-
tor is chosen as the eigenvector corresponding to the largest eigenvalues of Z ′V −1Z.
The simulation study was conducted using the R software. For each simulated data
set, diagnostic measures were calculated for the first observation. The choice of the
first observation was arbitrary. Now, to generate an empirical distribution of the test
statistics under the null hypothesis, the datasets were simulated as

y∗jh = Ẑdj β̂dj + Ub∗jh + ε∗jh,h = 1, . . . , 1000,

X∗
jh = Ẑdj +∆,

where ε∗jh, b∗jh are randomly generated as N(0, σ̂2
djIn), N(0, σ̂2

1djIq) and ∆ is randomly
generated as N(0, In ⊗ Λ), respectively. Additionally, β̂dj , Ẑdj , σ̂2

dj and σ̂2
1dj are the

LCLE of parameters from model (5). The diagnostic measures mentioned were per-
formed for the first observation of each simulated data and 100(1− α) percentile from
the empirical distribution of test statistics were used as threshold value of the test
statistics of the model (5). The probability of a type I error estimate for the different
test statistic and α = 0.05 were calculated as the number of data sets for which the
test statistic exceeded the 100(1 − α) percentile of the empirical distribution, divided
by the number of replicates.

The results are listed in Tables 1-2 . Also, in order to evaluate the relative sensitivity
of the score test statistic, we introduce the shift values 1 and 3 for the first observation
and again for each combination of parameters, 1000 data sets are generated from the
following model:

yj = Zβ + Ubj + φτ + εj , j = 1, . . . , 1000,
X = Z +∆

for φ = 1 or φ = 1 where τ is an n× 1 vector with value 1 in the first element and zero
elsewhere. It appears that in general the type I error of score test statistic for different
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Table 1: Type of I error and power of score test statistics with different combination
of parameters.

n ρ σ2 σ2
1 Sig.level Power

φ = 1 φ = 3
40 0.75 0.36 0.16 0.051 0.247 0.976

0.49 0.09 0.051 0.238 0.938
0.85 0.36 0.16 0.049 0.217 0.952

0.49 0.09 0.044 0.209 0.915
0.90 0.36 0.16 0.045 0.190 0.888

0.49 0.09 0.033 0.190 0.860
0.95 0.36 0.16 0.043 0.154 0.627

0.49 0.09 0.051 0.144 0.618
90 0.75 0.36 0.16 0.036 0.294 0.989

0.49 0.09 0.058 0.242 0.967
0.85 0.36 0.16 0.045 0.294 0.991

0.49 0.09 0.054 0.229 0.966
0.90 0.36 0.16 0.042 0.312 0.987

0.49 0.09 0.057 0.264 0.964
0.95 0.36 0.16 0.045 0.304 0.988

0.49 0.09 0.039 0.225 0.957

combinations of parameters are close to the nominal value of . Also, with the increase
of the displacement, φ , the power of the score test statistic increases in general.
In the next step, in order to assess power of the Cook’s distances, we consider two
cases:
(i) z11 ∼ U(0, 5) , z12 ∼ U(0, 5) and z13 = z12 + υ with ε1 = 1.5,
(ii) z11 ∼ U(5, 10) , z12 ∼ U(5, 10) and z13 = z12 + υ with ε1 = 2.5 ,
which are generated as points with high influence for the first observation and again
for each combination of parameters, 1000 data sets are generated from the following
model

yj = Zβ + Ubj + εj , j = 1, . . . , 1000,

Xj = Z +∆

The parameters remained as in the evaluation of type I error. Again, for each simulated
data set, we derive the Liu estimate of parameters and the different cook’s distances for
the first observation. The power of the cook’s distance was calculated as the number
of data sets for which the cook’s distances exceeded the percentile 100(1 − α) of the
empirical distribution, divided by the number of replicates. According to Table 3, we
can see that power of the different cook’s distances increase as the sample size increases.
Moreover, we can see that in case (ii) power of the cook’s distances increased in general.

5 Real data analysis
In this section, to evaluate the performance of the proposed diagnostic measures, we
consider a sample of real data which is known as the Boston Housing data set. This data
set was the basis for a 1978 paper by Harrison and Rubinfeld (1978) which discussed
approaches for using housing market data to estimate the willingness to pay for clean
air. Zhong et al. (2002) considered this data and used the data of 132 census tracts
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Table 2: Type of I error of Cook’s distance with different combination of parameters.
Sig. level

n ρ σ2 σ2
1 CDi(β) CDi(b) CDcondi

40 0.75 0.36 0.16 0.040 0.052 0.044
0.49 0.09 0.044 0.056 0.047

0.85 0.36 0.16 0.042 0.058 0.056
0.49 0.09 0.038 0.050 0.047

0.90 0.36 0.16 0.032 0.050 0.041
0.49 0.09 0.026 0.035 0.029

0.95 0.36 0.16 0.033 0.036 0.034
0.49 0.09 0.035 0.037 0.029

90 0.75 0.36 0.16 0.039 0.048 0.048
0.49 0.09 0.034 0.043 0.044

0.85 0.36 0.16 0.031 0.038 0.040
0.49 0.09 0.029 0.050 0.047

0.90 0.36 0.16 0.025 0.039 0.039
0.49 0.09 0.043 0.058 0.055

0.95 0.36 0.16 0.031 0.040 0.048
0.49 0.09 0.046 0.044 0.058

Table 3: Power of of Cook’s distance with different combination of parameters.
Power

n ρ σ2 σ2
1 CDi(β) CDi(b) CDcondi

case(i) case(ii) case(i) case(ii) case(i) case(ii)
40 0.75 0.36 0.16 0.892 0.969 0.325 0.325 0.803 0.953

0.49 0.09 0.885 0.962 0.247 0.250 0.792 0.945
0.85 0.36 0.16 0.866 0.955 0.299 0.329 0.769 0.934

0.49 0.09 0.854 0.942 0.230 0.259 0.776 0.920
0.90 0.36 0.16 0.826 0.942 0.238 0.322 0.720 0.903

0.49 0.09 0.761 0.919 0.167 0.243 0.668 0.874
0.95 0.36 0.16 0.672 0.854 0.159 0.196 0.525 0.732

0.49 0.09 0.679 0.828 0.128 0.146 0.502 0.680
90 0.75 0.36 0.16 0.987 0.996 0.521 0.661 0.922 0.988

0.49 0.09 0.958 0.990 0.334 0.478 0.890 0.982
0.85 0.36 0.16 0.990 0.994 0.514 0.666 0.941 0.993

0.49 0.09 0.954 0.989 0.347 0.474 0.882 0.981
0.90 0.36 0.16 0.982 0.993 0.501 0.652 0.934 0.987

0.49 0.09 0.939 0.980 0.350 0.454 0.881 0.967
0.95 0.36 0.16 0.945 0.982 0.447 0.564 0.882 0.960

0.49 0.09 0.903 0.958 0.324 0.422 0.840 0.931

within the 15 districts of the Boston city [as a part of 506 observations on census tracts
in the Boston Standard Metropolitan Statistical Area (SMSA) in 1970]. The authors
examined criteria to check the level of satisfaction with housing prices, with structural
characteristics (such as size, age, and condition) as well as neighborhood Characteristics
(such as crime rate, accessibility, and environmental factors). They used the followings
fixed effects variables: Average number of rooms per dwelling (RM), proportions of
owner-occupied units built prior to 1940 (AGE), weighted distances to the employment
centers (DIS), blacks population proportion (B), lower status population proportion
(LSTAT), crime rate (CRIM), location contiguous to the Charles River (CHAS), and
level of nitrogen oxide (NOX). All fixed effects variables can be measured precisely
except the pollution variable (NOX), which is taken to have measurement error. This
method is often used to quantify the effects of environmental factors that affect the
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value of a property. Since the range of census tracts among the districts is measured
with repetition, therefore, the mixed linear model should be used. More description
of this data set can be found in Harrison and Rubinfeld (1978); Belsley et al. (1980).
Also analysis of this data set can be found in, for example, Zare and Rasekh (2011);
Zare et al. (2012); Zare and Rasekh (2014); Ghapani (2022). We apply the same data
set and illustrate the use of the proposed diagnostic measures for a linear mixed model
with the measurement error under Liu restriction. To investigate whether the data
set is ill-conditioned, we obtain the condition number. We first estimated component
variance by considering σ2 = 0.36 and σ2

1 = 0.16. The eigenvalues of Ẑ ′V −1Ẑ are
calculated as λ1 = 9.962542e + 04, λ2 = 1.706426e + 04, ..., and λ9 = 2.662981e− 01.
Then the condition number

√
λmax/λmin = 611.647 which indicate severe collinearity.

The CLE and LCLE for linear mixed measurement error model are displayed in Table
4.

Table 4: The CLE and LCLE of LMM for Boston data.
Variable CLE LCLE Variable CLE LCLE
Intercept 9.06673 9.06351 CRIM -0.00733 -0.00733
RM -0.00143 -0.00143 CHAS -0.02970 -0.02974
AGE 0.00076 0.00077 NOXSQ -0.01032 -0.01029
DIS 0.08789 0.08847 σ2 0.02844 0.02844
B 0.45788 0.45773 σ2

1 0.04783 0.04782
LSTAT -0.53433 -0.53457

Now, we derive different diagnostic measures for linear mixed measurement error
model with Liu restriction given in previous section. Figure 1 give the plot of the
score test and Cook’s distance for fixed effects. Figure 2 shows plot of Cook’s distance
for random effects and plot of condition Cook’s distance versus observation numbers.
According to Figure 1, it is obvious that observation 36 stands out as a possible outlier
with relatively large value of score test statistic. A glance at Figures 1-2 shows that
observation 9 has more influence on fixed effect and observations 9, 16 and 36 have
more influence on random effects. Finally, from Figure 2 we conclude that observations
9, 15 and 16 have more influence on the predicted values.

6 Discussion and conclusions

In this study, we extended mean shift outlier and case deletion models to detect out-
liers and influential observations under using Liu estimates. Based on the corrected
likelihood, we derived a score test statistic to test whether an observation stands out
as a possible outlier. In addition, we obtained analogous Cook’s distance for detecting
influential observations of the proposed model. Using parametric bootstrap simulation
different diagnostic measures were studied in terms of type I error and test power. It
was found that the type I error of the test statistics for different combinations of pa-
rameters is close to the nominal value of and with an increase in sample size the power
of the test statistics increases. Furthermore, real data analysis showed that the pro-
posed diagnostic measures successfully identified outliers and influential observations
in LMME models with Liu estimates.



Detection of outliers and influential observations 14

Figure 1: Plot of score test statistic and Cook’s distance for fixed effects.

Figure 2: Plot of Cook’s distance for random effects and Conditional Cook’s distance.
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